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Abstract: Chemical energy conversion strategies by photocatalysis and electrocatalysis are promis-
ing approaches to alleviating our energy shortages and environmental issues. Due to the 2D layer
structure, adjustable composition, unique thermal decomposition and memory properties, abun-
dant surface hydroxyl, and low cost, layered double hydroxides (LDHs) have attracted extensive
attention in electrocatalysis, photocatalysis, and photoelectrocatalysis. This review summarizes the
main structural characteristics of LDHs, including tunable composition, thermal decomposition
and memory properties, delaminated layer, and surface hydroxyl. Next, the influences of the struc-
tural characteristics on the photo(electro)catalytic process are briefly introduced to understand the
structure–performance correlations of LDHs materials. Recent progress and advances of LDHs in
photocatalysis and photoelectrocatalysis applications are summarized. Finally, the challenges and
future development of LDHs are prospected from the aspect of structural design and exploring
structure-activity relationships in the photo(electro)catalysis applications.

Keywords: LDHs; two-dimensional layered materials; photochemistry; structure-performance correlations

1. Introduce

Globalization and industrialization development have accelerated population increase
and economic development, which greatly increase demand of fossil fuels [1]. As of
2018, fossil energy still accounted for 80% of the world’s primary energy [2]. The huge
consumption of fossil energy brings numerous ecological and social problems, such as the
greenhouse effect [3,4], environmental pollution [5,6], and reduction of fossil energy [7–9].
Solar and hydrogen energy attract attention as promising green and clean energy sources
to address our energy shortages and environmental problems. However, it is necessary to
convert solar energy and excess electrical energy into chemical energy stored in chemical
molecules, due to limits of time and space [10]. Among various chemical energy conversion
strategies, photocatalysis and electrocatalysis are attractive approaches for converting solar
energy and produce hydrogen or hydrocarbon fuels, such as water splitting and CO2
reduction by photo(electro)catalysis [11–16]. A variety of materials have been exploited
in photo(electro)catalytic energy conversion. Among these materials, two-dimensional
(2D) materials have attracted tremendous interest due to its high charge mobility and large
specific surface area [17–19].
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Layered double hydroxide (LDH) is a classical 2D layered material. Natural LDH
(hydrotalcite) was discovered in 1842 [20]. In 1942, Feitknecht and Gerber first synthe-
sized LDHs and proposed the concept of a double sheet structure [20,21]. Until 1969, the
lamellar structure of LDHs was determined by Allmann and Taylor using single crystal
X-ray diffraction [22]. Due to the unique structures and properties, the interest in LDHs
is gradually increasing and the application is also widely explored [23–28]. For example,
the interlayer space, exchangeable guest anions, and high specific surface areas are very
beneficial for the removal of pollutants (organic contaminant, heavy metal ions, etc.) and
the loading of drugs, resulting in potential applications in the fields of environmental
protection and drug delivery [24,26]. Due to the 2D layer structure, adjustable composi-
tion, high specific surface area and abundant active sites, and mass producibility, LDHs
have attracted extensive attention in electrocatalysis [29–32], photocatalysis [33–35], and
photoelectrocatalysis [36–38]. Among the many structural features of LDHs, tunable struc-
ture, such as controllable composition (tunable metal cations and guest anions) and size
(delamination of LDH), are huge advantages for function-oriented design of LDHs in
photo(electro)catalysis. Thus, it is crucial to understand the relationship between structure
and photo(electro)catalytic performance of LDHs.

In this review, we briefly highlight the influences of the intrinsic structural character-
istics of LDHs on the photo(electro)catalytic process to better understand the structure–
performance correlations. Recent progress and advances of LDHs in photocatalysis and
photoelectrocatalysis applications (water splitting, CO2 reduction, and contaminant degra-
dation) are summarized in Section 2. Finally, the challenges and future development of
LDHs are also examined from the aspect of structural design and exploration of structure–
activity relationships in photo(electro)catalysis applications.

2. Structures and Properties of LDH

LDHs, also called hydrotalcite-like compounds, are two-dimensional layered clays.
LDHs consist of host layers with metal cations and interlayer anions to keep charge
balance with H2O molecules. Thus, the general formula for LDHs is written
as [M2+

1−xM3+
x(OH)2]x+[Ap−

x/p]x−·mH2O, where M2+ is divalent metal cation (e.g., Fe2+,
Mg2+, Ni2+, Co2+, Cu2+, Mn2+, Zn2+, Cd2+, Pd2+, and Ca2+), M3+ is trivalent metal cation
(e.g., Co3+, Al3+, Mn3+, Fe3+, Cr3+, Ga3+, V3+, and Tb3+), X = M3+/(M2++M3+), (0.2 ≤ x ≤ 0.33),
Ap- is an interlayer anion, and m represents the number of H2O molecules [2,39,40], as
shown in Figure 1. On occasion, there are metal cations of M+ and M4+ in LDHs, but only
with the exception of M+ being Li+ and M4+ being Ti4 + [18]. The main structural properties
of LDH are tunable composition, thermal decomposition, memory properties, delaminated
layer, and abundant surface hydroxyls [17]. Next, we will elaborate on the effect of these
structural properties on photo(electro)catalysis performance.
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2.1. Adjustable Composition

The most significant structural property of LDH is the compositional flexibility, in-
cluding tunable metal cations in the host layer and guest anions in the interlayer. The
tunability of composition significantly affects the physicochemical properties of LDH. We
will discuss the influences of tunable composition on the physicochemical properties and
photoelectrocatalytic performance of LDH.

2.1.1. Regulating Energy Band Structure

The varied metal cation species and ratios modulate the composition of LDHs, and
their physicochemical properties change significantly. The band structure of the LDH
is usually regulated by the changed types and ratios of metal cations in the host layer,
which change the range of light absorption and oxidation–reduction potential of LDH.
Xu et al. [41] found band gaps of Mg and Zn-based LDH were greater than 3.1 eV, whereas
the Co and Ni-based LDH samples absorbed visible light with a band gap lower than 3.1 eV
(Figure 2). Guo et al. [42] loaded TiO2 to three different cobalt-based LDHs (CoAl-LDH,
CoCr-LDH, and CoFe-LDH). The Ti-TiO2@CoCr-LDH had the optimal photoelectrocatalytic
(PEC) performance with a 43% increase in photocurrent in those samples. This is because
the band structure of CoCr-LDH has the best matching with reduced TiO2, resulting in the
best water oxidation performance.
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The changed ratio of metal cations can also adjust the band gap and light absorption of
LDHs. Han and Yang et al. [43] reported that BiVO4/NiFe-LDH core/shell heterostructure
films had four times higher photocurrent intensity than that of pure BiVO4 at 1.23V vs.
reversible hydrogen electrode (RHE). The higher content of Fe3+ in NiFe-LDH resulted
in a smaller band gap and stronger light absorbance and conductivity. Parida et al. [44]
fabricated the ternary series of Mg/Al + Fe-CO3 LDHs by adjusting the rate of Al/Fe. The
Fe3+ doping increased the visible-light absorption of MgAl-LDHs, resulting in the better
H2 evolution performance.

2.1.2. Promoting Electron-Hole Pairs Separation

The variable valence state of metal cations of LDHs directly promotes the transfer
and separation of charge carriers. Low-valence metal cations are oxidized to high-valence
metal cations by the photogenerated holes, which improve the transfer and separation
of photogenerated charge carriers. For example, Bai et al. [45] synthesized the NiFe-
LDH/Mo-BiVO4 heterostructure by an electrodeposition method. The photogenerated
holes transferred from BiVO4 nanoparticles to NiFe-LDH due to a type II staggered band
structure of the heterostructures. At the same time, the photogenerated holes oxidized
Ni2+ from NiFe-LDH to Ni3+and Ni4+. The Ni3+and Ni4+ take part in oxygen evolution
reaction (OER) and improve the performance of PEC for decomposing water (Figure 3a). In
the work of Shao et al. [14], a ZnO@CoNi–LDH core−shell nanoarray was prepared by an
electrosynthesis method. The Co2+ was oxidized to Co3+/Co4+ by the photogenerated holes,
which enhanced the efficiency of photogenerated charge carrier separation. Moreover, the
Co3+/Co4+ served as co-catalysts to improve water splitting ability.

Suitable interlayer anions facilitate the transport and separation of charge carriers.
Hunter et al. [46] synthesized different interlayer anions inserted into NiFe-LDH samples.
The experimental results indicated that all interlayer anions were replaced by CO2 in the
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air to CO3
2−, which had the highest catalytic activity. In non-CO3

2− interlayer anions, the
catalytic activity is a function of the alkalinity of the interlayer anion. The interlayer anions
with more negative charges act as stronger proton acceptors and electron donors than
interlayer anions with one negative charge. Zheng et al. [47] obtained 4,4-diaminostilbene-
2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2-disulfonate (DNS) co-intercalated Zn2Al-
LDH nanosheets. Due to the matched HOMO/LOMO energy levels of DAS and DNS,
the photogenerated electrons of DAS efficiently migrate to DNS under UV-visible-light
illumination (Figure 3b). When the percentage of DAS is 50%, the DAS (50%)-DNS/LDHs
exhibit excellent photogenerated charge separation ability and stability. Photogenerated
electron transfer within the interlayer anion was achieved with water splitting.
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2.1.3. Adjusting Selectivity of Reactions

The different types of metal cations of LDHs lead to different active sites of the
reaction and thus different products. The different positions of the conduction bands of
the photocatalysts determine the different reduction capabilities, leading to the different
selectivity in photo(electro)catalytic reactions [48]. Xiong et al. [49] prepared a series
of Zn-based layered ZnM-LDH (M = Ti4+, Fe3+, Co3+, Ga3+, Al3+) by a co-precipitation
method. The varied M3+ or M4+ in the ZnM-LDH could precisely adjust the product
selectivity of the CO2 reduction. The experimental and computational results revealed that
d-band center positions of the metal cations dominated the adsorption strength of CO2 and,
ultimately, product selectivity. The d-band centers of intralayer metal ions of ZnTi-LDH,
ZnGa-LDH, and ZnAl-LDH were relatively adjacent to the Fermi level, which facilitated
the reduction of CO2 to CH4 (ZnTi-LDH) and CO (ZnGa-LDH and ZnAl-LDH). ZnFe-LDH
and ZnCo-LDH cannot reduce CO2 but induce water desorption and hydrogenation due
to the d-band centers of Fe3+ and Co3+ further away from the Fermi level. Zhao et al. [50]
investigated the electronic properties, reaction path, and reaction kinetics of CO2PR in
10 MII

2MIII/IV-NO3-LDHs (MII = Mg2+, Co2+, Ni2+, Zn2+; MIII = Al3+, In3+, Cr3+, Fe3+;
MIV = Ti4+) by Hubbard-corrected density functional theory. The calculation showed
that all LDHs might exhibit CO2PR except Ni2Al-LDH and Ni2FeNO3-LDH. Among the
remaining eight LDHs, the favorable products of the others were CH4, except for the
product of Co2Fe-NO3LDH, which was HCOOH. According to the relationship between
the effective driving force (∆∆Gb) of CO2 reduction to CH4 or CO and the adsorption energy
of CO2, which resembled the relationship between ∆∆Gb and valence band maximum
(VBM) of LDH, Mg2In-LDH was most likely to photocatalytically reduce CO2 to CH4,
whereas Mg2Al-NO3-LDH was most likely to reduce CO2 to CO.

2.1.4. Improving Absorption Capacity

LDHs with exchangeable interlayer anions are widely used to adsorb harmful anions
or contaminants of wastewater and polluting soil. The type of interlayer anion affects the
adsorption capacity of LDH for the anions in solution. HONGO et al. [51] prepared MgAl-
LDH with Cl−, NO−

3 , or SO2−
4 as the interlayer anion to adsorb harmful anions (F−, CrO2−

4 ,
HAsO2−

4 , and HSeO−
3 ) using a co-precipitation method. The LDHs with different interlayer

anions showed excellent attraction for harmful anions and display adsorption capacity in
the order NO−

3 > Cl− > SO2−
4 . They concluded that the two adsorption mechanisms of

LDH for anions were fast adsorption on the surface and slow interlayer anion exchange.
The exchange rate of interlayer anions depends on the strength of the interaction between
interlayer anions and LDH. The stronger the interaction of interlayer anion and LDH, the
weaker the ion exchange capacity of the LDH, resulting in a poorer adsorption capacity
of anion. In the first minute, the fast adsorption process is caused by the synergy of
two adsorption mechanisms. However, the surface anion adsorption by anion exchange
is usually relatively slow. Based on the experimental results and analysis, they believe
that the nanocrystallization and highly Al substituted phase of NO3-formed Mg-Al LDH
obviously improve the anion adsorption ability, resulting in fast surface adsorption. The
fast surface adsorption dominates the adsorption ability for NO3-formed Mg-Al LDH.

The interaction of interlayer anion and metal ions dominates the adsorption capacity
of LDH and selectivity for different metal ions. Jawad et al. [52] synthesized MoS2−

4
intercalated FeMgAl-LDH as an absorber to removal heavy metals. The results showed
the following order of selection for adsorption: Hg2+ ∼ Ag+ > Pb2+ > Cu2+ > Cr6+ > As3+ >
Ni2+ ∼ Zn2+ ∼ Co2+. The adsorbed metal cations can form coordination complexes in the
interlayer channels. At the same time, the layered structure of LDH provide a protective
space for Fe-MoS4 to prevent its oxidation. The adsorption capacity of samples for metal
ions was determined by the strength of soft-soft acid base bonding interactions between
Fe-MoS and metal ions.
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2.2. Thermal Decomposition and Memory Property

The calcination process causes significant change of the structure and properties of
LDHs. The thermal decomposition process of LDHs generally includes three stages [17]:
First, the calcination temperature is below 300 ◦C, adsorbed water of the interlayer and
surface is removed, and the layer structure of LDHs is well maintained. Second, during the
calcination process at 300–450 ◦C, the intralayer hydroxyl groups and water are gradually
removed. Third, when the calcination temperature is above 450 ◦C, the layer structure of
LDHs gradually collapses, and a composite oxide (M2+M3+O) is formed.

Calcined LDHs decompose into complex metal oxides and thus form in-situ heterojunc-
tions between the metal oxides, resulting in improved photo/electrocatalytic performance.
Suárez-Quezada et al. [53] synthesized a series of ZnAl-LDH samples calcined at different
temperatures. They found that Zn was present as hexagonal ZnO in all samples, and
Al was present as ZnAl2O4 and Zn6Al2O9 depending on calcination temperature. Both
ZnAl2O4 and Zn6Al2O9 can form heterojunctions with ZnO. As the temperature increased,
the higher crystallinity led to higher hydrogen production efficiency, reaching a peak at
600 °C. Mostafa et al. [54] prepared novel 1D CoBiTi-LDH with a bandgap of 2.4 eV and 2D
CoBiTi layered double oxides (LDO) with high infrared (IR)-responsivity. After drying at
150 ◦C for 1D CoBiTi-LDH, 1D CoBiTi-LDH and in-situ formed 2D CoBiTi-LDO formed a
novel 3D-heterojunction. The hydrogen evolution reaction (HER) of CoBiTi-LDH/CoBiTiO
heterojunction increased nearly four times (∼1255 µmolg−1h−1) compared with the 1D
CoBiTi-LDH. The increased HER of the heterojunction was attributed to the enhancement
of light absorbance in the IR-region (53% of sunlight) and the trapping of photoexcited
species by the functional groups of CBT-LDH.

The calcined LDHs have a stronger adsorption capacity for anionic dyes than the
pristine LDHs due to higher specific surface areas and better reconstruction ability [17].
Li et al. [55] prepared hierarchical ZnAl-LDH by ZnAl-LDOs reaction with carbonate
solution. The adsorption capacity of ZnAl-LDHfor methyl orange (MO) is far less than that
of LDOs due to the decreased specific surface area, adsorption sites, or positive surface
charge. Kim et al. [56] reported that calcination process of MgAl-LDHs induced the crystal
deformation and formation of an interlayer structure of layered double oxides, leading
to the development of mesopores and increased specific surface area. When LDHs were
calcined at 500 ◦C for 10 h and transformed to LDOs, the specific surface area of LDHs
obtained by hydrothermal reaction for 1 day (H1-LDH) and 3 days (H3-LDH) increased
from 18.4 and 11.3 m2/g to 206 and 187 m2/g, respectively. The enhanced specific surface
area originated from the developed mesopores of the LDO and larger pore volume.

Interestingly, at a certain temperature, the disordered lamellar structure of calcinated
LDHs are restored to its original layer structure by immersing it in water or an aqueous
solution containing anions [57]. This unique property of LDH is known as the “memory
effect”. Peng et al. [58] obtained MgAl-LDH by intercalating 5-Fluorouracil anions using the
memory effect of the LDH. The as-prepared samples not only showed improved corrosion
resistance, but also inhibited human bile duct cancer cells. Thus, the intercalation of
anions in interlayer by the memory effect of LDH is an efficient approach for designing
functionalized LDHs [18]. However, some LDHs, such as Ni–Cr, Ca–Al, and Co–Al,
have irreversible thermal decomposition behavior, and their lamellar structure cannot be
recovered [59].

2.3. Delamination of LDH

The LDHs possess a typical layered structure whose layers are connected by strong
interlayer electrostatic interactions and interlamellar hydrogen bonding [18]. Although
delamination of LDHs remains a big challenge (especially for monolayer LDH) [60], de-
lamination is still an attractive way to improve photo(electro)chemical activity and expand
the applications for LDH nanomaterials. This is because the delaminated LDHs have
a larger specific surface area, more active sites, and higher electron transport efficiency.
Hu et al. [61] delaminated CoCo-LDH, NiCo-LDH, and NiFe-LDH using a liquid phase ex-
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foliation method. The delaminated nanosheets have lower overpotential. When η = 300 mV,
the current densities of the CoCo-LDH, NiCo-LDH, and NiFe-LDH nanosheets were 2.6,
3.4, and 4.5 times that of their bulk LDHs, respectively.

Delamination of LDHs introduces more vacancy defects and thus increases number of
reactive sites [19]. For example, Wang et al. [62] prepared ultrathin CoFe LDH nanosheets
by exfoliation of bulk CoFe LDHs with nitrogen plasma. The exfoliation process induces
formation of defects of ultrathin CoFe LDHs nanosheets. The defects increase the dangling
bonds near reactive sites and decrease the coordination number of reactive sites, resulting
in the improved electrocatalytic activity.

2.4. Hydroxyl Groups on the LDH Surface

The LDH surface has abundant surface hydroxyl groups that are nearly perpendicular
to the host layer [18]. The hydroxyl groups not only effectively adsorb reactants [63], but
also form interfacial chemical bonds with other semiconductor surfaces, thereby facilitating
the transport of interfacial charge carriers [15]. For example, Liu et al. [13] deposited NiFe-
LDH onto Co-intercalated TiO2 by electrodeposition. The hydroxyl groups of NiFe-LDH
form hydrogen bonds with TiO2 (Figure 4). Therefore, under illumination, the holes in
Co-TiO2 VB can be transferred to the VB of NiFe-LDH through hydrogen bonding in time to
participate in water decomposition, which improves transfer and separation of interfacial
photogenerated charge.
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3. The Photo(Electro)Chemical Applications of LDHs
3.1. Water Splitting

When the energy of light harvesting is more than the bandgap energy of LDHs,
the electrons in the valence band of LDHs would inject into the conduction band and
leave photogenerated holes in the valence band. The photogenerated electrons and holes
will migrate to LDH surfaces to participate in a hydrogen evolution reaction and an
oxygen evolution reaction. However, in photoelectrocatalysis, the photogenerated electrons
will drift to the cathode to participate in a hydrogen evolution reaction, whereas the
photogenerated holes will drift to the anode to participate in an oxygen evolution reaction.

Water splitting by photochemistry can be divided into three steps [17]: (i) water
adsorption. LDHs and LDH compounds will directly contact water without a concentration
gradient. The ability of water adsorption is determined by the specific surface area of LDHs.
(ii) Separation and migration of charge carriers: High separation and migration rate of
carriers greatly improve the performances of LDH water splitting by photochemistry [64].
(iii) Surface redox reaction: The valence band maximum should be greater than the potential
of O2/H2O (1.23 V vs. normal hydrogen electrode (NHE)), and the conduction minimum
should be less than the potential of H+/H2 (0 V vs. NHE) [65].
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Hydrogen is an excellent clean energy and has many potential applications [66], such
as hydrogen electric vehicles [67], reduction iron in industry [68], treatment in clinical appli-
cations [69], and so on. Water splitting by photochemistry is one effective method to evolve
hydrogen. However, the high charge carrier recombination and the low efficiency of hydro-
gen evolution limit commercial scale production. Among many photo/ electrocatalysts,
LDHs have attracted wide attention in photo(electro)catalytic water splitting, due to high
specific surface areas, highly dispersed metal active sites, adjustable composition, and low
cost [17]. However, many drawbacks of LDHs, such as low conductivity, low carrier mobil-
ity, and high electron-hole recombination rate, greatly hinder the photo(electro)catalytic
applications [17,70]. Thus, many modification methods of LDHs have been used to improve
the photo(electro)catalytic performance.

Constructing LDH-based heterostructure is an effective strategy to enhance the photo-
chemical hydrogen evolution performance for LDHs. Chen et al. [71] successfully prepared
hierarchical CoNi-LDH modified TiO2 nanotube arrays (NTAs) by a quick electrochemical
deposition method. The photocurrent density of TiO2@CoNi-LDH NTAs was 4.4 mA·cm−2

(vs. RHE), which was 3.3 times higher than that of pure TiO2. The band gap of TiO2@CoNi-
LDH NTAs was smaller than that of pristine TiO2. When light radiation is introduced
during the synthesis of the heterostructure, the interface of heterostructure become more
compact, leading to better separation ability of charge carriers. Zhang et al. [72] ob-
tained two types of ZnFe-LDH/TiO2 nanoarrys (NAs) by photo-assisted electrodeposition
(TiO2/ZnFe-LDH-PE) method and electrochemical deposition method (TiO2/ZnFe-LDH-
E), respectively. The photocurrent density of TiO2/ZnFe-LDH-PE was 2.29 and 1.31 times
than that of pure TiO2 and TiO2/ZnFe-LDH-E, respectively. For pristine TiO2, the inter-
face formed between TiO2 and ZnFe-LDH reduced the recombination of photogenerated
electrons and holes (Figure 5a). At the same time, Fe species captured photogenerated
holes and served as active sites for oxygen evolution reaction. For TiO2/ZnFe-LDH-E,
the light radiation resulted in the stronger interaction between Zn 2p3/2 and Ti 2p3/2,
resulting in the enhanced separation and transfer efficiency of photogenerated charges
(Figure 5b,c). Carbon nanodots (CDs) have superior rapid charge separation due to their
unique structure [73]. Lv et al. [74] reported the introduction of CDs further improved
carrier mobility and reduced overpotential for oxygen evolution of CDs/NiFe-LDH/BiVO4
photoanode, leading to enhanced water splitting ability. Yang et al. [75] constructed a novel
CoFe-LDH/NiFe-LDH core-shell architecture supported on nickel foam by a hydrother-
mal and electrodeposition strategy. The heterostructure showed the lowest Tafel slope of
88.88 mV dec−1, indicating excellent HER kinetics. The outstanding kinetics of the HER
reaction was attributed to the strong synergistic effect as well as the typical 3D intercon-
nected architectures. The HER activity of the core-shell architecture electrode is similar
to or better than many state-of-the-art HER electrocatalysts. Zhang et al. [76] fabricated
hierarchical NiFe-LDH@NiCoP nanowires on nickel foam as electrodes by a hydrothermal–
phosphorization–hydrothermal strategy. The 3D heterostructure NiFe-LDH@NiCoP/NF
electrodes require a low overpotential of 120 and 220 mV to deliver 10 mA cm−2 for
the HER and OER, respectively. The overall water splitting of the heterostructure elec-
trodes showed a cell voltage of 1.57 V at 10 mA cm−2 and excellent stability. Due to the
strong electronic interaction between the NiFe-LDH and NiCoP, the synthetic strategy
and interface engineering of the heterostructure facilitated charge transfer and improved
reaction kinetics.

The formation of positive–negative (PN) junctions is a common and effective method
to improve photochemical water splitting performance. Yang et al. [77] used NiV-LDH and
CdS to form P-N heterojunctions by physically mixing them together in a mass ratio of
1:10 (Figure 6a). The formed NiV-LDH/CdS heterostructure had excellent electron-hole
separation ability, and the hydrogen evolution efficiency is significantly greater than that of
pure NiV-LDH and CdS (Figure 6b). Sahoo et al. [78] constructed a heterojunction between
Co(OH)2 and ZnCr-LDH by an ultrasonication method. The H2 and O2 evolution apparent
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conversion of optimized Co(OH)2-modified ZnCr LDH sample reached 13.12% and 6.25%
in 2 h, respectively.
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3.2. CO2 Reduction

Currently, the greatest threat to ecosystems is climate change. In order to achieve
the plan specified in Conference of the Parties 21, energy and industrial processes need
to reduce carbon emissions by 60% to limit global temperature rise to 2 ◦C [79]. There
are also a number of ways to reduce the environmental impact of CO2: carbon capture
and storage (ccs) chemical cycle capture, thermal decarbonization, photo(-electro)chemical
reduction, and so on [80]. While reducing CO2, it is highly anticipated that CO2 can be
used to generate electricity and convert it into more valuable compounds [81,82]. However,
the traditional CO2 absorption method requires high temperature and pressure. A fresh
LDH is not able to capture CO2, but LDHs forming a metal oxide mixture will have the
ability to capture CO2 [83].

At present, the photochemical CO2 reduction attracts much attention due to the mild
reaction condition. For photochemical CO2 reduction, when the energy of the absorbed
light is greater than the band gap energy of LDHs, electron–hole pairs are produced. The
photochemical CO2 reduction is roughly divided into three steps: (1) CO2 adsorption;
hydroxyl groups adsorption on the surface [84], and interlayer anions adsorption [85];
(2) separation and migration of photogenerated charges [86]; (3) CO2 reduction reaction;
CO2 will be reduced to hydrocarbons or CO by electrons [87]. The difference between
PEC and photocatalytic (PC) CO2 reduction is that photoelectrocatalysis uses light and
bias voltage to reduce CO2. Light performs as the drive, and the bias voltage improves the
catalysis efficiency. Photosemiconductor structure, intrinsic properties, and active centers
on the surface affect the efficiency of CO2 reduction in PEC [88].

In the photocatalytic CO2 reduction by LDH, the amount of CO2 absorbed depends
on the type of divalent metal cation. Wang et al. [89] reported the bond strength between
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CO2 and MAl-LDH was relevant to the position of the d-band center. The higher the
position of the d-band center, the higher the photocatalytic activity for CO2 reduction
(Figure 7). The reduction capacity of CO2 was as follows: NiAl-LDHs > CuAl-LDHs >
ZnAl-LDHs > MgAl-LDHs.
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In photochemical reduction of CO2, the reduction of H2O tends to compete with the
reduction of CO2 for electrons [90]. Therefore, much effort has been made to improve the
selective reduction of CO2 by LDHs. Tan et al. [91] successfully obtained a composited
photocatalyst with ruthenium and NiAl-LDH. The experimental results confirmed that
a monolayer NiAl-LDH (m-NiAl-LDH) could completely suppress the hydrogen evolu-
tion reaction under a longer wavelength irradiation (λ > 600 nm). This phenomenon was
attributed to the metal-induced defect states in the forbidden zone of m-NiAl-LDH. Photo-
generated electrons only localized at the defect state, and the driving force of the defect
state (0.313 eV) could reduce CO2 to CH4 instead of H2O reduction. Wang et al. [92] suc-
cessfully prepared NiO samples with different vacancy amounts by calcinating NiAl-LDH.
The vacancy concentrations of Ni and O determine the selectivity of CO2 reduction under
visible light irradiation. The NiAl-275 sample with the highest defect concentration has the
highest selectivity for CH4 (22.8%).

Constructing heterostructure still effectively improves the photo(electro)chemical
performance of CO2 reduction. Lin et al. [93] prepared a FeWO4/NiAl-LDH(FWLDH) het-
erostructure using NiAl-LDH flower-like spheres and FeWO4 nanoflakes. The NiAl-LDH
and FeWO4 formed a direct Z-scheme heterostructure. Tight binding of the heterostruc-
ture interface resulted in a larger specific surface area and thus formed more active sites.
The internal electric field enhanced the separation and transport of photogenerated elec-
trons, leading to the prominent improved photoelectron reduction ability of the NiAl-LDH
(Figure 8). The photocatalytic CO yield of 10%FWLDH was 2.4 times than that of the
original NiAl-LDH. Song et al. [94] fabricated a MgAl-LDO/carbon nitride with nitrogen
defect (MgAl LDO/Nv-CN) 2D heterostructure. The photocatalytic activity of 10% MgAl
LDO/Nv-CN for CO2 reduction was seven times than that of pure g-C3N4 under visi-
ble light illumination. Liu et al. [95] synthesized ultrathin Cu2O/CuCoCr-LDH p-n type
heterojunction nanosheets (U-Cu2O/CuCoCr-LDH) as the cathodes of PEC. The photo-
generated electrons at the photocathode reduced CO2 to CO and CH4. The maximum CO
product yield of photoelectrocatalysis was 1167.6 mmol g−1h−1, which was approximately
four times higher than that of electrocatalysis. The obvious improvement of photoelectro-
catalytic performance was attributed to the internal electric field constructed by Cu2O and
CuCr-LDH, which accelerates the separation of carriers.
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LDHs have also been used in the electrocatalytic reduction of CO2. Fu et al. [96]
prepared a monolayer NiFe-LDH catalyst using a solid-phase exfoliation method as an
electrode for CO2 electroreduction. The optimized NiFe-CN-1 catalyst (NiFe-LDH was
1 wt%) exhibited a faradaic efficiency of CO generation of 93.5 % at 0.8v (vs. RHE). The
excellent electrocatalytic performance originates from effective exposure of Ni and Fe
active sites doped on the char material and efficient proton transfer channels of NiFe-LDH.
Iwase et al. [97] prepared 2D CuAl-LDH as an electrocatalyst for electrochemical CO2
reduction (CO2RR). The optimized CuAl-LDH exhibited a faradaic efficiency of 42% for
CO2 reduction to CO and 22% formate generation. It was found that the size of the LDH
sheet was a key of CO2RR activity.

3.3. Contaminant Degradation

In 2015, about 9 million people died from environmental pollution, of which 1.8 million
people died from diseases caused by water pollution [81]. Organic contaminants, as an
important source of water pollution, are difficult to biodegrade because of their stability [98].
Photo(electro)catalysis has attracted extensive attention for solving environmental pollution
problems, due to low cost, no pollution, and mild conditions [99,100].

Organic contaminant degradation by photo(electro)catalysis can be broadly divided
into three steps: (1) The adsorption of the organic contaminant [101]. (2) The separation
and transfer of photogenerated charges: This step is the key to improving photochemical
activity [102]. (3) Redox reactions: Organic contaminant are converted to carbon dioxide,
water, and inorganic acids by participating in redox reactions [103].

Recently, LDHs, particularly, transition metal-based LDHs (TLDHs), have emerged
as promising candidates for contaminant degradation by photo(electro)catalysis [104].
Baliarsingh et al. [105] investigated the effect of M2+ (Co, Ni, Cu, and Zn) in MII/Cr-
LDH to photodegrade methyl orange (MO). Among them, CoCr-LDH showed the highest
photoactivity for MO (90% MO removal in 3 h). The improved photocatalytic activity
of CoCr-LDH is mainly attributed to the excitation of M2+–O–Cr3+ bridge bonds under
visible light irradiation and the effective transfer of photogenerated charge through the
bridge bonds, which leads to the production of hydroxyl radicals and superoxide radicals.
Zhao et al. [106] synthesized a series of MCr-LDH (M = Cu, Ni, Zn) samples with visible
light response. The MCr-LDH samples have excellent photocatalytic activity for degra-
dation of Sulforhodamine-B, Congo red, chlorinated phenol, and salicylic acid sodium.
Experimental and computational results indicate that the obvious excellent visible light
photocatalytic activity of MCr-NO3-LDHs is attributed to the low band gap and the abun-
dant surface OH groups. The visible light response was induced by a d–d transition of
CrO6 octahedra.
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Construction of heterostructures is a common and effective approach to address the
low photogenerated charge transport efficiency of LDHs. Megala et al. [107] obtained NiAl-
LDH/CuWO4 heterostructures by a one-pot hydrothermal method. The photodegradation
rate of LDH with 5% CuWO4 for methylene blue (MB) dye reached 87.5% in 5 h. The en-
hanced photocatalytic ability of NiAl-LDH/CuWO4 nanocomposite mainly originates from
the heterojunction, which effectively promotes the separation of photogenerated charges.
Ma et al. [108] synthesized BiOCl-NiFe-LDH composites using NiFe-Cl-LDH and Bi(NO3)3
as precursors. Photocatalytic activity of BiOCl-NiFe-LDH composites for Rhodamine B
(RhB) degradation was 4.11 times higher than that of BiOCl. The heterostructure formed by
BiOCl and NiFe-LDH can transfer photogenerated electron-holes in time (Figure 9a). At the
same time, the highly dispersed BiOCl on the NiFe-LDH surface facilitates the formation of
·OH. Walaa R. Abd-Ellatif et al. [109] prepared ZnCo-LDH by a co-precipitation method
and then obtained LDO (ZnO/CoO composite) by calcination. The ZnO/CoO composite
formed S-scheme heterojunctions, as shown in Figure 9b. The removal rates of LDH calci-
nated at 300 ◦C for ponceau 4R (E124) and tartrazine (E102) were 90% and 80%, respectively.
Pirkarami et al. [110] prepared CdS/NiCo-LDH heterojunctions by a hydrothermal method
to construct photoelectrodes (Figure 9c). The degradation efficiency of Allura Red under an
alkaline environment was over 90%. During the degradation process, the N = N of Allura
Red would first break and it would eventually become H2O, NO3, NO2, CO2, SO3, Na+.
Lu et al. [111] prepared Ni foam@ZnO@ZnFe-LDH photoelectrodes through electrodepo-
sition of ZnO and hydrothermally grown ZnFe-LDH. Ni foam@ZnO@ZnFe-LDH acted
as photoelectrodes in the PEC process and effectively removed Cr (VI) and Acid Red 1
by the synergistic effect of photoelectrocatalysis. Experimental results indicated that the
2D/2D core-shell heterojunction formed by ZnO and ZnFe-LDH not only narrowed the
bandgap of ZnO and increased visible light absorption, but also promoted electron-hole
separation. Argote-Fuentes et al. [112] synthesized activated MgAl-LDH through the co-
precipitation method as heterogeneous catalysts for degradation of Congo red dye. In the
photoelectrocatalysis process under 0.5v bias, the photoelectrocatalytic degradation rate
of the MgAl-LDH/Cu electrode reached 95% and was the highest compared with other
degradation processes. The synergistic effect of the Cu2+ ions induced by electric current
and the photogenerated electrons suppressed the recombination of the electron–hole in the
catalyst, resulting in excellent catalytic activity of Congo red degradation.

Figure 9. (a) The photocatalytic mechanism of BiOCl/NiFe−LDH heterostructure [108]. Copyright
2015 Elsevier. (b) The possible photodegradation mechanism of ZnO/CoO [109]. Copyright 2022
Elsevier. (c) Proposed photoelectrocatalytic degradation mechanism of CdS/NiCo−LDH heterojunc-
tions [110]. Copyright 2022 Elsevier.
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4. Conclusion and Outlook

LDHs are promising 2D photo(electro)catalysts with the advantages of low cost, tun-
able composition, unique thermal decomposition and memory properties, delaminated
layer, and abundant surface hydroxyls. The compositional flexibility of LDHs can tune
band structure, improve the absorption capacity and separation of charge carriers, and
change the selectivity of the reaction. Calcined LDHs form in situ heterojunctions between
the metal oxides, resulting in improved photo/electrocatalytic performance. Delamina-
tion and calcination of LDHs introduces more vacancy defects and specific surface areas,
leading to an increased number of reactive sites. These insights into structure–activity rela-
tionships of LDHs provide a theoretical basis for function-oriented design of LDH-based
photo(electro)catalytic materials.

Although a great deal of exciting research has appeared for improving the
photo(electro)catalytic performance and fulfilling the practical applications, the two major
drawbacks that need to be addressed for LDHs are the structural instability in a low pH
environment and a low quantum efficiency induced by its low conductivity. The structure
regulation of LDHs should be an ideal strategy to overcome the drawbacks. LDH is calcined
at a certain temperature and then recovered by the memory effect, which improves its
structural stability in an acidic environment and its photo(electro)catalytic performance.
However, the corrosion resistance mechanism of calcined LDH has not yet been given a
certain explanation. Taking advantage of the tunable composition characteristics of LDHs,
the doping and defect introduction can effectively improve the conductivity of LDHs,
resulting in enhanced quantum efficiency. How to precisely control the composition and
structures of LDHs is still a huge challenge, such as precisely controlling the thickness of
LDH and adjusting the ratio between metal cations by the electrodeposition method.

The structure–performance correlations of LDH-based photo(electro)catalytic mate-
rials needs to be more deeply understood to provide theoretical guidance for the design
of efficient LDH photo(electro)catalysts. In order to better explore the structure–activity
relationship of LDHs, advanced and effective characterization methods should be vigor-
ously developed and applied. In situ characterization techniques would more precisely
investigate structural changes of LDHs under reaction conditions. Transient spectroscopic
techniques facilitate the research of photogenerated electron-hole separation and transfer
dynamics and should be wildly utilized. In addition, theoretical simulations, especially
density functional theory calculations, are powerful tools to study the relationship between
the structure and properties of LDHs. The combination of advanced and valid charac-
terization technologies and theoretical simulations is necessary to reveal complex charge
dynamics, which supply a more detailed understanding of photo(electro)catalytic mecha-
nisms. Further creative investigations will overcome the challenges in photochemistry of
LDHs and will continue to advance the photo(electro)catalytic applications of LDHs.
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Abbreviations

LDH Layered double hydroxide
RHE Reversible hydrogen electrode
NHE Normal hydrogen electrode
OER Oxygen evolution reaction
HER Hydrogen evolution reaction
PEC Photoelectrocatalytic
VBM Valence band maximum
LDO Layered double oxide
PN Positive–negative
NTAs Nanotube arrays
NAs Nanoarrays
CD Carbon nanodot
Nv Nitrogen defect
PE Photoassisted electrodeposition method
MO Methyl orange
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