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Abstract: Fe-substituted YFexCr1−xO3 crystalline compounds show promising magnetic and multi-
ferroic properties. Here we report the synthesis and characterization of several compositions from
this series. Using the autocombustion route, various compositions (x = 0.25, 0.50, 0.6, 0.75, 0.9, and 1)
were synthesized as high-quality crystalline powders. In order to obtain microscopic and atomic
information about their structure and magnetism, characterization was performed using room tem-
perature X-ray diffraction and energy dispersion analysis as well as temperature-dependent neutron
diffraction, magnetometry, and 57Fe Mössbauer spectrometry. Rietveld analysis of the diffraction data
revealed a crystallite size of 84 (8) nm for YFeO3, while energy dispersion analysis indicated compo-
sitions close to the nominal compositions. The magnetic results suggested an enhancement of the
weak ferromagnetism for the YFeO3 phase due to two contributions. First, a high magnetocrystalline
anisotropy was associated with the crystalline character that favored a unique high canting angle
of the antiferromagnetic phase (13◦), as indicated by the neutron diffraction analysis. This was also
evidenced by the high magnetic hysteresis curves up to 90 kOe by a remarkable high critical coercivity
value of 46.7 kOe at room temperature. Second, the Dzyaloshinskii–Moriya interactions between
homogenous and heterogeneous magnetic pairs resulted from the inhomogeneous distribution of
Fe3+ and Cr3+ ions, as indicated by 57Fe Mössbauer studies. Together, these results point to new
methods of controlling the magnetic properties of these materials.

Keywords: DM interaction; crystalline YFeO3; magnetic properties; enhanced weak ferromagnetism;
exchange interactions

1. Introduction

Bulk orthoferrites and orthochromites have been the subject of various studies since
the 1950s, but the interest of the scientific community has recently been renewed due to
their possible technological applications in sensors, switching devices, and spintronics [1,2].
New research is focused on improving novel synthesis methods, consequently producing
materials with different and improved magnetic and electrical properties. It is important
first to point out that the first publications were carried out almost exclusively with single
crystal samples, a synthesis process that requires specialized equipment not often found
in ordinary laboratories, and that inherently prevents the production of large quantities
of materials [3,4]. Currently, new synthesis methods have been explored to produce poly-
crystalline samples that have the advantage of rapid preparation, low cost, and the ability
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to produce relatively large masses of material [4]. On the other hand, developments in
nanotechnology have also made it possible to obtain nanocrystalline orthoferrites with
highly controlled stoichiometry using wet methods, such as the sol–gel approach, allowing
continuous doping between the orthoferrite and orthochromite endmembers [5]. Such syn-
thesis developments may be instrumental in studying the Fe–Cr phase diagram, which has
been historically challenging due to the thermodynamic considerations of the Y2O3–Fe2O3
binary phase diagram, in which magnetite or ternary garnets can easily be obtained as
parasitic (or secondary) phases. Therefore, the use of these new techniques to scale up the
synthesis and carefully control the composition allows unprecedented access to the Fe–Cr
phase diagram, potentially enabling the optimization and understanding of the interesting
magnetic properties of these materials.

The YFeO3 orthoferrite (YFO) and the YCrO3 orthochromite (YCO) compounds crys-
tallize in the Pnma centrosymmetric space group symmetry and are biferroic with high
Néel temperatures (TN). Specifically, these materials are antiferromagnetic with TN = 644 K
and 140 K for YFO and YCO, respectively, with the a-direction of the unit cell as the easy
magnetization axis. Moreover, these materials exhibit weak ferromagnetism, which has
been attributed to the canting of magnetic moments along the c-direction, leading to the
convincing observation of ferromagnetic behavior [5]. As early as the 1960s, Treves [6] pro-
posed an antisymmetric interaction mechanism (Dzyaloshinskii–Moriya (DM) exchange)
for this type of ferromagnetism in orthoferrites based on torque measurements in single
crystals of rare earth orthoferrites (RFeO3, R = rare earth and Y). Considering these intrigu-
ing physical properties and the possibility to combine the two above materials (i.e., forming
a Fe-substituted YCO phase), improved electrical and magnetic properties are expected.
In particular, the case of the YFe0.5Cr0.5O3 compound is very interesting because it has
the largest magnetoelectric effect in the series [7] and may present a spin reorientation
phenomenon according to the literature [8]. However, most of these studies have been
performed on bulk polycrystalline samples, leaving the effects of another tuning parameter,
namely, the crystallite size, unstudied. To optimize and understand the magnetoelectric
effect in these materials, one could use the crystalline size as well as the application of large
magnetic fields to try to stabilize different magnetic configurations or tune the canting
angle and thus potentially improve the magnetoelectric effect.

In this work, the structural and magnetic properties of the Fe-substituted YCO phase
(i.e., theYFexCr1−xO3 compounds) in the crystalline regime are studied in detail. The
structural and composition features were obtained from Rietveld refinements and scanning
electron microscopy (SEM), which showed (i) a single phase in the studied compounds
and (ii) their nanoscale characteristics. The magnetic properties of the Fe-substituted
compounds were studied by performing direct current magnetization measurements at
and between 300 K (room temperature (RT)) and 5 K using both zero-field-cooling (ZFC)
and field-cooling (FC) protocols, while the local magnetic properties were investigated
using 57Fe Mössbauer spectrometry performed at 300 K and 77 K and under an external
magnetic field. The obtained results suggested an enhancement of WFM associated mainly
with the sub-micrometric size character of the YFO phase (84 (8) nm), which has favored a
relevant spin canting of 13◦, i.e., a net spin contribution related to the sample finite-size
effect. This property is not observed in the single and polycrystalline systems reported in
the literature. In addition, the presence of the finite-size effect (spin-canting) in our sample
was also reflected in the increase of the saturation magnetization that reached 0.79 emu/g
at 3.5 kOe.

2. Materials and Methods

The whole series of YFexCr1−xO3 perovskites was synthesized by the combustion method
by stoichiometrically mixing the following initial reactants: Y(NO3)·6H2O, Fe(NO3)3·9H2O,
Cr (NO3)3·9H2O, urea, and glycine. To improve the crystallization process, all powder
samples were heated up to 1200 ◦C and annealed under ambient conditions. The synthe-
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sized samples were labeled as the RSx series, where RS1, RS2, RS3, RS4, RS5, RS6, and RS7
correspond to x = 0, 0.25, 0.50, 0.60, 0.75, 0.90, and 1.0, respectively.

Structural characterization was carried out using Bruker Advance D8 X- ray diffraction
equipment (Bruker Corporation, Billerica, MA, USA), operating with a Cu–Kα radiation
source (1.5418 Å wavelength), and the X-ray diffraction (XRD) diffractograms were recorded
at RT with a 2θ from 15◦ to 65◦ in a step of 0.02◦ and with an accumulating time of 10 s.
Neutron diffraction (NPD) of the RS3 (YFe0.5Cr0.5O3) sample was performed on the HB-2A
line of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) [9].
X-ray and NPD data were analyzed using the FullProf suite (Gif sur Yvette Cedex, France,
version January 2021). In all nuclear diffraction peak modeling, the previously reported
orthorhombic crystal structure (space group Pnma) was found to account for all observed
peak positions and intensities, identified using the software Match v3. As initial cell param-
eter values, we employed a = 5.59 Å, b = 7.59 Å, and c = 5.27 Å (Match entry 210–1387) and
allowed the parameters to refine during the profile fitting for the different temperatures
and compositions. The instrumental resolution function (IRF) of the X-ray diffractome-
ter was obtained from the aluminum oxide (Al2O3) standard with Caglioti parameters:
U = 0.0093, V = −0.0051, and W = 0.0013 [10]. The morphology, size, and composition of
the powders were obtained using a TESCAN LYRA3 high-resolution scanning electron
microscope (Tescan Brno s.r.o., Brno, Czech Republic) with an FEG type electron source
coupled with an Oxford energy-dispersive X-ray spectroscopy (EDS) detector. Secondary
electron imaging and atomic element mapping were acquired simultaneously using an
accelerating voltage of 15 kV and a working distance of 9 mm.

Zero-field-cooling (ZFC) magnetic hysteresis loops (M(H) loops) were recorded at
300 K and 5 K using the vibrating sample magnetometer (VSM) option operating in a
Dynacool (Quantum Design North America, San Diego, CA, USA) setup for a maximum
applied field of 90 kOe. ZFC and warm-field-cooling (WFC) magnetization measurements,
M(T), were performed under two different probe fields: 50 Oe and 1000 Oe.

57Fe Mössbauer spectra were obtained with WissEl equipment (WissEl—Wissenschaftliche
Elektronik GmbH, Starnberg, Germany) in a transmission geometry using a 57Co source
diffused into an Rh matrix with an activity of about 1.5 GBq and mounted on a conventional
constant acceleration vibrating electromagnetic transducer. The sample was in the form of
a powder layer containing about 5 mg Fe/cm2. Spectra were obtained at 300 K and at 77 K
in a bath cryostat. A thin foil of α-Fe was used at 300 K for calibration of the spectrometry
(isomer shift values are given relative to Fe at 300 K). The modeling of the hyperfine
structures was performed using a homemade Mosfit program based on the least squares
method, and magnetic and quadrupolar components were composed of Lorentzian peaks.

3. Results and Discussion
3.1. XRD and Rietveld Analysis

From the Rietveld refinement of the XRD and neutron diffraction powder (NPD)
patterns measured at RT and 2 K, respectively, the results suggested for all samples the
presence of only an orthorhombic Pnma (No. 62) crystal structure [11], i.e., no secondary
phase was observed. In addition, both experiments showed similar behavior for the
lattice parameters a, b, and c within their uncertainties. Thus, the refined values of the
cell parameters are plotted in Figure 1a,b, which suggested: (i) a linear evolution of the
cell parameters (Figure 1a) at RT and 2 K as a function of iron concentration (x), (ii) the
c parameter changed more rapidly than the a or b parameters, and (iii) a continuous
increase in cell volume with Fe concentration (Figure 1b) at both temperatures. For the
size estimation of YFeO3 crystallites (RS7 sample) (see refined diffractogram in Figure 1c),
we used the modified Scherrer’s formula that expresses the anisotropic size broadening
as a linear combination of spherical harmonics (SHP) if the anisotropic size contribution
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belongs only to the Lorentzian component of the total Voigt function [10]. Therefore, the
explicit formula for the SPH approach of size broadening is given by Equation (1) [12]:

βh =
λ

Dhcosθ
=

λ

cosθ ∑lmp almpylmp(Θh, Φh) (1)

where h is assigned to the (hkl) indices, βh is the size contribution to the integral width of
reflection (hkl), ylmp(Θh, Φh) are the real components of spherical harmonics (arguments
Θh and Φh are the polar and azimuthal angles of vector (hkl) with respect to a Cartesian
crystallographic frame), and almp are the refined coefficients, related to the Laue class [13].
For the RS7 sample, a -1 Laue class was used.
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Figure 1. Cell parameter (a) and volume (b) variation with the x (Fe concentration) and Rietveld
refinement XRD diffractogram (c) for the RS7 sample. The inset in (c) is the simulated structure
obtained after refinement using VESTA (red spheres are oxygen atoms, white and blue are yttrium
atoms, and green spheres are iron atoms). While blue, red, and green arrows indicate the a, b, and c
crystallographic axes, respectively. Miller indexes are given between parentheses, black dots are the
experimental data, the red line is the calculated diffractogram, and the vertical green lines are the
Bragg’s diffraction position. Solid lines in (a,b) are guides for visualization.

The obtained profile refinement gave acceptable statistical parameters for the reliabil-
ity factor, Rp (%); weighted profile residual, Rwp (%); expected profile residual, Rexp(%);
and goodness of fit, χ2; having quantitative values as follows: Rp = 16.2%, Rwp = 10.4%,
Rexp = 26.19%, and χ2 = 0.94, while the refined harmonic coefficients were found equal
to Y00 = −0.00574, Y20 = 0.01395, Y21

+ = −0.06448, Y21
− = 0.01518, Y22

+ = 0.07557, and
Y22

− = −0.03690, respectively. With these values, the anisotropic Lorentzian size broaden-
ing gave a mean crystallite value of 84 (8) nm. Hence, combining all above data, it can be
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inferred that the autocombustion method allowed nanocrystalline Fe-substituted YCrO3
powders with a single phase, orthorhombic-like structure to be obtained.

3.2. SEM Analysis

For all samples, the autocombustion method with final annealing up to 1200 ◦C yielded
a distribution of agglomerates about (~200–500 nm) that form a series of interconnected
chains, as typical found in autocombustion synthesis [4]. In Figure 2a–q, the RSx series
shows similar morphologies as those obtained by Zhang et al. [4,14]. In all of them,
the notorious polycrystalline nature can be observed. The STEM images and elemental
analyses given by yellow, red, blue, and green colors (Figure 2d–m) show the evolution
of the systems when the Fe concentration increases. The systematic formation of the Fe-
substituted YCrO3 phase is noted in the EDS pattern given in Figure 2r, and the atomic
percentage contribution is summarized in Table 1. We can roughly say that the particles
produced by this combustion method have a similar morphology and similar dispersion in
all tested concentrations. In addition, considering the uncertainties of the element contents
in the samples, we can also affirm that Y and O are quite constant, while Fe increases and Cr
decreases its contribution; this indicates that Fe enters the crystalline cell, due to the larger
ionic radius of Fe3+ (0.645 А) (compared to Cr3+ = 0.615 А), which is consistent with the
unit cell volume determined from X-ray and neutron diffractions, as previously discussed.
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Figure 2. (a–c) SEM images for the RS1, RS3, and RS7 samples (bar length = 1 µm). The magnified
area was performed in high resolution mode, and the elemental mapping area for each sample is
given in (d–m) images. SEM images for the RS2, RS4, RS5, and RS6 samples (n–q) (bar length =10 µm).
(r) The EDS for the RS1–RS7 samples.

Table 1. Weight percentage composition of the elements found in all samples.

Sample Y (% wt)
± 2

Cr (% wt)
± 2

Fe (% wt)
± 1

O (% wt)
± 1

RS1 52 31 - 17
RS2 51 25 9 15
RS3 47 17 23 14
RS4 51 14 20 15
RS5 51 9 25 16
RS6 51 4 30 15
RS7 51 - 33 16
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3.3. VSM Analysis

Figures 3 and 4 illustrate the ZFC ± 90 kOe M(H) curves of the YFexCr1−xO3 series
taken at 5 K (top) and 300 K (bottom), respectively. At RT, the samples with x = 0.25
and 0.50 behaved as ordinary paramagnets (see Figure 3d,f), while the samples with
x = 0.60, 0.75, and 0.90 suggested an onset of a weak ferromagnetism (see Figure 4b,d,f).
For the x = 1.0 sample (YFeO3 compound, RS7), shown in Figure 5a, M(H), curves recorded
at different temperatures show the magnetic features of a weak ferromagnet with high
magnetic anisotropy, i.e., with characteristics similar to that found in the pure YFeO3
compound (set-like M(H) curve). Therefore, this sample (RS7) revealed an interesting
and complex magnetic behavior that is mainly attributed in the literature to an exchange
spring effect. In particular, the magnetic spring effect can be often observed by an exchange
magnetic coupling between coexisting and interacting soft and hard magnets in a sample,
as reported by Popkov et al. [5].
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Figure 3. M(H) curves recorded for a maximum field of 90 kOe at 5 K (top) and 300 K (bottom) for
the RSX samples. RS1 in (a,b), RS2 in (c,d), and RS3 in (e,f), respectively.

Thus, since the NDP, Rietveld, and SEM data of the SR7 sample suggested the presence
of a single-phase structure, and the presence of two magnetic phases of two crystalline
structures (as occurs in bilayer films) cannot be inferred as a reason for the observed phe-
nomenon. However, the atomic disordering in the orthorhombic structure and the change
in cell volume could lead to local different magnetic phases, which will be magnetically
interacting and producing the observed M(H) behavior discussed above.

Looking at the 5 K M(H) loop for the x = 0 sample (see Figure 3a), we can observe
the characteristic M(H) curve reported for the YCrO3 compound [15]. Below TN, the
non-saturation regime of the M(H) curve occurred till values of +90 kOe, indicating a
remarkable antiferromagnetic state, while above TN, a paramagnetic-like behavior was
regarded; see Figure 3b. On the other hand, the loss of hysteresis in the RS2 and RS6
samples (Figure 3c,e and Figure 4a,c,e) indicated the substitution of Cr by Fe atoms in
the orthorhombic crystal configuration, as confirmed by our XRD data. Table 2 contains
the remanence (Mr), coercivity (HC), and saturation magnetization (σsat) values of the
hysteresis ferromagnetic part. Using the slope of the M(H) curves, it was possible to
subtract the antiferromagnetic contribution of the M(H) curves, thus leaving the purely
ferromagnetic component, as shown in Figure 5b. Thus, these M(H) curves recorded at
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different temperatures really showed large HC fields, but their value decreased when the
temperature decreased, concomitantly with the increase of the saturation magnetization
(the area inside the M(H) loop remained nearly constant). In addition, all M(H) curves
show more clearly the step-like behavior near the zero-applied field region of the M(H)
curve, a feature discussed above and attributed to a magnetic spring-like effect.
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The magnetic parameters in Table 2 were plotted as a function of Fe concentration
(x), as seen in Figure 6a,b,d. At 300 K, the HC field dependence with x had two marked
regions (I and II): (i) region-I can be interpreted as the magnetic domain reorientations
(magnetization reversal) due to the increasing concentration of Fe atoms that are replacing
Cr, forming the pure YFeO3 crystalline phase; (ii) region-II has relatively high values of the
HC fields and that occur above x = 0.75, reaching a maximum value of 46.7 kOe for x = 1
(RS7 sample).
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Table 2. Remanence (Mr), coercive field (HC), and magnetic saturation (σSat) of the ferromagnetic com-
ponent, and susceptibility of the antiferromagnetic component to the RSx samples with x = 1, 0.9, 0.75,
and 0.60. For the samples with x = 0, 0.25, and 0.50, the values correspond to the ‘paramagnetic’ state.

x T (K) Mr
(emu/g) ± 0.05

HC
(kOe) ± 0.5

σSat
(emu/g) ± 0.05

Susc.
(emu/g × Oe)

± 0.01

1.00 300 0.75 46.7 0.79 0.02
1.00 5 0.84 40.9 0.87 0.02
0.90 300 0.64 43.2 0.77 0.02
0.90 5 0.27 0.3 0.61 0.02
0.75 300 0.18 0.3 0.55 0.02
0.75 5 0.02 0.02 (5) 0.41 0.02
0.60 300 0.05 0.1 0.20 0.02
0.60 5 0.05 0.1 0.23 0.02
0.50 300 0 0 0 0.02
0.50 5 0 0 0 0.02
0.25 300 0 0 0 0.02
0.25 5 0 0 0 0.03
0.00 300 0 0 0 0.02
0.00 5 0.80 18.9 0.89 0.03

The remanence (Mr) is calculated from Mr = (MR+ + MR−)/2, where MR+ and MR− are the values of the upper
and lower magnetization, respectively, when the magnetic field is zero. The coercive field (HC) is calculated from
HC = (HC+ − HC−)/2, where HC+ and HC− are the values of the right and left fields when magnetization is zero.
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Figure 6. (a) Dependence of the HC (kOe) vs. x (Fe concentration) at 300 K. (b) Dependence of the
Mr and σsat vs. x (Fe concentration) at 300 K. (c) Mr vs. σsat graph at 300 K. (d) HC, Mr, and σsat vs.
(Fe concentration) at 5 K.



Nanomaterials 2022, 12, 3516 9 of 16

These values were larger than those reported by Popkov et al. [5] for four YFeO3
crystalline samples synthesized by different routes. On the other hand, the Mr and σsat
values had a similar dependence with Fe concentration at 300 K and 5 K, as can be seen in
Figure 6b,d. The behavior of Mr vs. σsat is shown in Figure 6c. The Mr and σsat quantities
could reach maximum values of 0.75 and 0.79 emu/g, respectively. This σsat value of
0.79 emu/g was consistent with others found in the literature for either powder or single
crystals [3,4,16–19], as summarized in Figure 7. In particular, the value of 0.79 emu/g,
obtained for a field of 3.5 kOe, was almost two times higher than the values reported by
Zhang et al. [4] and four times higher than that obtained by Shen et al. [20] for a similar
system. Therefore, the RS7 sample behaved as an ordinary single crystal of the YFO phase
with a multidomain magnetic structure [4,20]. In addition, it is worth mentioning that the
RS7 sample exhibited weak ferromagnetism enhanced at 90 kOe.
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The WFC and ZFC M(T) measurements for all RSx samples were collected under two
probe fields, namely, 50 Oe and 1000 Oe, and the results are shown in Figures 8–10. For the
lowest applied field, the ZFC and WFC M(T) curves, displayed in Figure 8a, clearly show
the magnetization transition from the AFM to PM state of the YCrO3 compound at 159 K,
assigned to TN. No other magnetic transition was observed in M(T) curves, indicating that
no secondary phase was formed during the auto combustion synthesis, in agreement with
the XRD data. For the YFe0.25Cr0.75O3 compound, the TN value increased to 174 K (see
Figure 8b), but a further increase of Fe content, for example, x = 0.50, led to a cancelation
of total magnetization and a compensation temperature between the antiferromagnetic
sub-lattices of 245 K. The zero-net magnetization was observed as an enhancement of the
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diamagnetism contribution, as shown in Figure 8c. At x = 0.60 and 0.75, see Figure 8d,e, a
slight increase in the magnetization was observed, in agreement with the onset of WFM, as
also seen in the M(H) curves. At x = 0.90 and 1.0 (Figures 8f and 9), a significant increase
in the magnetization was observed with significant overlap between ZFC and WFC M(T)
curves above 250 K.
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The determination of the TN of the Fe-substituted YCO compounds was done record-
ing the ZFC and WFC M(T) curves at a higher field (1000 Oe). At this probe field, the
magnetization of the samples with x = 0.75 and x = 0.90 showed a strong interaction
with the external field, confirming the enhancement of the WFM. From ca. 5 K to higher
temperatures, both ZFC and WFC M(T) curves coincided for the sample with x = 0.9.

Based on the above experimental results, it can be inferred that the anisotropic
exchange-spring in crystalline compounds cause a significant increase in the coercive
field of 46.7 kOe at 300 K. This interesting magnetic response has also been observed by
Popkov et al. [5]. In our case, the hard and soft magnetic phases are intrinsically correlated
to the same structure, but they are due to chemical disorders in the sites of the orthorhombic
crystal nanostructure. Moreover, the hysteresis loop shape depends on the finite-size effects
under an applied DC magnetic field (in our case, we use the highest value reported in
the literature of 90 kOe). Hence, the observed ascending/descending hysteresis loops
at several temperatures is explained due to spin reorientation of the antiferromagnetic
vector in the x–z plane, reaching the z-axis at a critical magnetic field, as reported by Jacobs
et al. [21], where a value of 74 kOe at 4.2 K was obtained for the YFeO3 single crystal.
According to Popkov et al. [5], in nanocrystalline materials, the typical WFM hysteresis
cycle is observed only for the YFO phase when their grain sizes are equal and larger than
41 nm, i.e., the YFO material may exhibit WFM, and the exchange spring-like effect may
occur due to its high magnetocrystalline anisotropy energy. Consequently, considering our
experimental results that showed a grain size of 84 (8) nm, we can also expect the observed
ascending/descending branch behaviors of the M(H) loops of the YFO sample. More
precisely, the combined magnetic effects of the enhanced WFM and the presence of AFM
interactions among the Fe ions of the different sites of the orthorhombic crystal structure
gave rise to different local anisotropy contributions, producing high magnetocrystalline
anisotropy due to the size effect and the enhancement of DM (Dzyaloshinskii–Moriya)
interactions in the samples.

The two effects cannot be separated, and the improvement of WFM features can be
explained assuming a canting angle of 13◦, as demonstrated by previous neutron diffraction
analysis [11]. The presence of AFM interactions in the Fe-substituted YCO compounds is
also confirmed by the changes of TN values as a function of Fe content, as displayed in
Figure 11. Indeed, the TN values increase nonlinearly with increasing Fe content, reaching
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the reference value for YFO [8]. Of course, the Fe substitution phenomenon is randomly
changing locally the anisotropy by changing the lattice parameters, as shown by the
XRD results. These modifications favor the spin reorientation and magnetization reversal
phenomena.
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3.4. Mössbauer Analysis
3.4.1. Measurements at 300 K

In agreement with the magnetization data, the 300 K 57Fe Mössbauer spectra recorded
for samples with different Fe concentrations show, on the one hand, partial (x = 0.50) or
total (x = 0.25) paramagnetic behavior (see Figure 12a). On the other hand, the 300 K 57Fe
Mössbauer spectra of the samples with x = 0.75 and 1.0 show six absorption lines due to the
nuclear Zeeman interaction with a local magnetic hyperfine field (Bhf). The refined values of
the corresponding hyperfine parameters are given in Table 3. The values of isomer shift are
typical of the presence of Fe3+ ions. Another important feature that should be highlighted is
that the line widths of the Mössbauer spectra are generally broader for samples with x = 0.25,
0.50, and 0.75 compared with those of the RS7 sample (x = 1.0), the latter being expected to
show less atomic disorder. Therefore, the broadening effect of magnetic lines is probably
caused by different iron environments, since in the orthorhombic crystal structure of these
perovskites, a 3d5 Fe3+ ion is usually surrounded by 2, 3, 4, 5, or 6 Cr3+ ions in octahedral
sites. The result of the chemical disorder is a hyperfine magnetic field distribution, i.e., a
distribution of static sextets. In particular, the fit of the 57Fe Mössbauer spectrum of the
sample with x = 0.50 was done with two magnetic sextets and one quadrupolar doublet. The
two sextets will represent the different local Fe environments of the orthorhombic crystal
structure, while the doublet, best seen in the inset spectrum recorded in a low-velocity
range, must be associated with Fe3+ ions in the paramagnetic state resulting from Cr3+-rich
environments (TN < 300 K, e.g., for the x = 0.25, TN = 153 K). The features discussed above
tell us that the Fe substitution is not homogeneous, leading to an assembly of clusters
with different compositions, i.e., a chemical disorder in the octahedral sites (B-sites) of the
orthorhombic crystal structure. Thus, the largest magnetic component can be attributed
to Fe3+ ions preferentially surrounded by Fe3+ ions (TN > 300 K), while the quadrupolar
doublet is associated with a neighborhood rich in Cr3+ ions, of course, with TN values
lower than 300 K, as shown by our magnetization data.
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Figure 12. (a) RT Mössbauer measurements of the Fe-substituted YFexCr1−xO3 compounds. Samples
with x = 1.0, 0.75, and 0.5 are measured with ±12 mm/s. The inset shows the same spectra for x = 0.5
but with a maximal velocity of ±2 mm/s, as in the case of the YFe0.25Cr0.75O3 sample (last spectrum).
(b) Same sample measured at 77 K. The subspectra used to fit these spectra are also shown. The two
sextets represent the two iron configurations in octahedral sites of the orthorhombic crystal structure
of the perovskite.

Table 3. Refined values of the hyperfine parameters at given temperatures.

x T (K)
IS

(mm/s)
± 0.01

2ε or ∆

(mm/s)
± 0.01

Bhf
(T)

± 0.5

Absorption Area
Ratio % ± 2

1
300 0.37 0.00 50.1 100

77 0.48 0.01 55.2 100

0.75

300 <0.38> <0.04> <40.7> 100

77 0.47 0.03 53.8 49
0.47 0.05 52.6 51

<0.47> <0.04> <53.2>

0.50

300 0.39 0.28 62
0.40 −0.24 50.1 22
0.46 −0.12 48.5 8
0.35 0.15 13.3 8

77 0.48 0.02 51.0 62
0.48 −0.10 52.7 38

<0.48> <−0.02> <51.7>

0.25

300 0.36 0.28 100

77 0.47 0.08 47.9 74
0.47 0.08 45.0 23
0.47 0.79 3
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3.4.2. Measurements at 77 K

To better understand the local environment of the 57Fe ions in the orthorhombic crystal
structure, additional measurements were made at 77 K for all Fe-substituted series, and
the corresponding Mössbauer spectra are shown in Figure 12b. At 77 K, below the TN
values of the Fe-substituted YCO compounds (see Figure 11), one would therefore expect a
pure Zeeman nuclear interaction in all 57Fe spectra. The spectra, in general, show all six
expected absorption lines, but with different broadening and asymmetries depending on
the Fe content. While the 77 K Mössbauer spectrum of the YFO (x = 1) compound can be
perfectly described by a single magnetic component, those of RS5, RS3, and RS2 require at
least two magnetic components. The refined values of the hyperfine parameters are given
in Table 3. Thus, to fit these 77 K spectra, we have two magnetic sextets to account for, at
least, two octahedral configurations of Fe3+ ions for samples with non-zero x. The results
clearly show that Bhf values decrease with increasing content. Even at 77 K, the spectrum
of the YFe.25Cr.75O3 sample required an additional quadrupolar doublet, with a fraction of
5% of total spectra. Thus, considering that the magnetization data show a TN value for this
sample equal to 153 K, the quadrupolar doublet must be associated with Fe3+ ions with a
Cr3+ ion-rich neighborhood.

According to the Néel temperature of the series, it is understandable why the samples
with x = 1.0 and 0.75 show hysteresis cycles, although the YFeO3 sample has a lower
magnetic energy than the 50% sample. Similarly, for the other two samples with x = 0.25
and zero, the magnetic susceptibility is consistent with paramagnetic behavior, which is
understandable due to their lower TN values than 300 K. The series contains samples with
weak ferromagnetism and paramagnetic behaviors.

In brief, 77 K Mössbauer spectra were fitted, at least, with two different octahedral
environments for Fe ions, and the results suggest that the presence of Cr ions decreases the
Bhf value, but the difference between the two sextets of the Fe-substituted YCO compounds
increases, except for the pure YFO, where only the sextet was required to have a good fit
of the spectrum. One explanation for this decrease may be due to competing mechanisms
between the antiferromagnetic interactions between Fe–Fe, Fe–Cr, and Cr–Cr exchanges
and the DM interaction. Indeed, the asymmetric DM interaction is known to be the main
interaction responsible for the WFM observed in YFO, where the antiferromagnetic coupling
mechanism is due to superexchange interactions between the t3–O–t3 and e2–O–e2 orbitals,
whereas for the YCO compound, the mechanism is a coupling to the t–e orbitals [22–24].
Therefore, we have in the Fe-substituted YCO samples a mixed exchange mechanism that
is enhanced by the atomic disorder naturally present in our samples. It can be expected
that due to the Fermi contact and the transferred magnetic field contribution to the total
hyperfine magnetic field depend on the s electrons and the superposition of 3d, s, and
p electrons, respectively, there is increasing competition of Fe environments as the iron
concentration of the sample increases. An appropriate calculation using the mean field
theory gave the relationship JFe–Fe > JFe–Cr > JCr–Cr [8].

4. Conclusions

In the present work, the structural and magnetic properties of the Fe-substituted
perovskite series were studied in detail. Specifically, the average crystalline grain size of the
YFeO3 compound, calculated using the harmonic spherical approach in a Rietveld refine-
ment, was 84 (8) nm, a size where weak ferromagnetism can occur in this compound. In the
Fe-substituted YFexCr1−xO3 compounds, X-ray and neutron diffraction patterns collected
at RT and 2 K gave a linear increase in the lattice parameters of the orthorhombic structure
with increasing Fe concentration, where the c-parameter had the most pronounced increase.
This increase obviously translates into an increase in the volume cell and consequently a
change in the magnetocrystalline anisotropy of the samples, i.e., a magnetic anisotropy that
depends on the Fe concentration. Considering that X-ray and neutron diffraction showed
only one crystalline phase for all samples, and the above results of lattice parameters that
showed a gradual increase with increasing iron content, we can highlight that autocom-



Nanomaterials 2022, 12, 3516 15 of 16

bustion is a useful method for the synthesis of pure YFeO3 with high stoichiometry. The
90 kOe M(H) curves taken at RT and 5 K for all Fe-substituted samples suggest the presence
of spin reorientation and magnetization reversal phenomena associated with homogenous
(Fe–Fe, Cr–Cr) and non-homogeneous pairs of 3d-ions (Fe–Cr). The dependence of the
HC, Mr, and σsat with Fe concentration clearly showed the onset of WFM for x = 0.60–0.80
values. For x = 1.0, the high HC value of 46.7 kOe was calculated after subtracting the AFM
contribution (linear contribution of the paramagnetic phase). This latter result implies that
an enhancement in the WFM is achieved due to chemical inhomogeneity of the YFeO3
phase. Moreover, the values of Mr and σsat at 300 K are in agreement with the values com-
monly found in single crystals. The WFC and ZFC M(T) curves recorded at low (50 Oe) and
high (1000 Oe) probe field analysis allowed the magnetic properties and global magnetic
response of the spin reorientation process to be tuned. The high field M(T) curves allowed
for accurate determination of TN values and showed a nonlinear dependence of TN on
Fe concentration. The sample with x = 0.75 clearly exhibited a higher magnetic disorder,
as corroborated by Mössbauer spectra recorded at 77 K and 300 K. The magnetization
measurement performed in a low probe field of 50 Oe, for the sample with x = 0.50 showed
a diamagnetic-like behavior near the compensation temperature of 245 K, where an inverse
magnetization and the most intense remanence and saturation values at 300 K were found
compared to the other samples. For the low Fe content (x = 0.25) and pure orthochromite
samples, they showed paramagnetic-like behavior at RT, with a magnetic order only below
150 K. Mössbauer spectra allowed us to study the local Fe environment and visualize a
weak enhanced ferromagnetism, due to a remarkable high canting angle (13◦), estimated
previously from neutron diffraction analysis, and its variation with Fe concentration. At
least two octahedral Fe sites were identified in the non-pure Fe-substituted samples, whose
evolution of the magnetic hyperfine field (Bhf) can be explained using the results of mean
field theory reported in the literature. The sample with x = 0.50 showed good magnetic
properties and is a suitable candidate for further study.
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