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Študentská 2, 911 50 Trenčín, Slovakia
3 Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
* Correspondence: damjana.drobne@bf.uni-lj.si; Tel.: +386-1320-3375

Abstract: Electrochemical-based biosensors have the potential to be a fast, label-free, simple approach
to detecting the effects of cytotoxic substances in liquid media. In the work presented here, a cell-
based electrochemical biosensor was developed and evaluated to detect the cytotoxic effects of Zn2+

ions in a solution as a reference test chemical. A549 cells were attached to the surface of stainless-steel
electrodes. After treatment with ZnCl2, the morphological changes of the cells and, ultimately, their
death and detachment from the electrode surface as cytotoxic effects were detected through changes
in the electrical signal. Electrochemical cell-based impedance spectroscopy (ECIS) measurements
were conducted with cytotoxicity tests and microscopic observation to investigate the behavior of the
A549 cells. As expected, the Zn2+ ions caused changes in cell confluency and spreading, which were
checked by light microscopy, while the cell morphology and attachment pattern were explored by
scanning electron microscopy (SEM). The ECIS measurements confirmed the ability of the biosensor
to detect the effects of Zn2+ ions on A549 cells attached to the low-cost stainless-steel surfaces and its
potential for use as an inexpensive detector for a broad range of chemicals and nanomaterials in their
cytotoxic concentrations.

Keywords: electrochemical cell-based impedance spectroscopy (ECIS); A549 cells; stainless steel;
ZnCl2; cytotoxicity; biosensor; detector

1. Introduction

In recent years, the obtainment of easily accessible, accurate, real-time data on the
effects of different chemicals as pollutants has become a crucial environmental issue draw-
ing great public concern and scientific attention. Therefore, there is a growing interest in
developing label-free, low-cost, easy-to-use methods that provide qualitative and quanti-
tative on-site information about the effects of chemicals (pollutants) without the need for
sophisticated instruments that require extended preparation of samples [1–3]. Colorimetric
and electrochemical biosensors present a cost-effective alternative to conventional toxicity
tests [4], especially in places where ease of use and cost are important. There are also meth-
ods that tend to combine the simplicity of the measurement, without lengthy preparation,
with high accuracy. One such example is the impedance cell-based spectroscopy method,
which is already known in the area of cytotoxicity measurement [5,6]. These methods may
provide a label-free, on-site technique that can electrochemically identify and quantify the
effects of a variety of different compounds or their mixtures. The cellular morphological
responses to the compound reflect the effects of analysts and provide physiologically and
biologically more relevant information [6–10]. Electric cell-substrate impedance sensing
(ECIS) uses high-end potentiostats/galvanostats with disposable liquid holders that have
electrodes attached and on which the living cells grow. These are now commercially avail-
able systems that have been developed and applied to different aspects of the cytotoxicity
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field [11–14]. It was observed that the cytotoxic effects evaluated by impedance-based
systems were in good agreement with standard cytotoxicity methods [15], where ECIS
can also detect cellular changes, such as cell detachment, morphological changes during
apoptosis, cell spreading, and proliferation [16–19], in a quantitative and non-invasive
manner [20–22]. Currently available cell-based commercial platforms, such as xCELLi-
gence [23], can provide accurate, real-time, label-free analysis; however, its use of large
equipment and disposable gold microelectrodes makes it less convenient for large-scale
field analysis [24].

In our study, stainless steel (SS) was used as an electrode material instead of gold to
reduce the costs of the electrodes. Steel foil is a commercially easily accessible, available,
inexpensive material [25] that has been previously used as an electrode material with great
success in biosensors [26]. Specialized types of steel are used in many biomedical tools and
devices as steel possesses unique characteristics, including satisfactory electrical conduc-
tivity, high mechanical strength, and acceptable biocompatibility [27]. As such, portable
devices for cytotoxicity detection using inexpensive electrodes with good characteristics
may present a promising approach for fast and inexpensive cytotoxicity investigations.

In the study presented here, A549 human lung adenocarcinoma cells were used as a
biological sensing element due to their good characteristics [28], such as their ability to form
a homogeneous confluent monolayer on different surfaces [29] and their ability to indicate
good correlations between ECIS signal changes and the cellular morphology. As a response
to stress, A549 cells change morphology, spreading pattern, and adhesion when exposed to
a harsh environment, which can provide relevant information on stressful conditions.

The main motivation for this work was to develop an easy, cheap, on-site quantitative
method to detect the cytotoxic effect of studied substances (pollutants) and their mixtures
in the liquid environment. The cell adhesion to the steel surface and their morphological
changes after treatment with a selected pollutant (Zn2+ ions) were monitored in detail
by light and scanning electron microscopy (SEM). The SEM was used to examine the cell
shapes, protrusions, and cell surface morphologies of differently treated A549 cells. Zinc
ions were chosen as a representative metal pollutant and stress inducer [30–32]. It was also
observed that Zn2+ ions have a concentration-dependent cytotoxic effect [33].

The assembled biosensor uses three-electrode configurations with electrochemical
cell-based impedance spectroscopy (ECIS) as the main mode of detection. In parallel,
the effect of the Zn2+ ions on cell morphology (cell spreading, detachment, and death)
was investigated using light and electron microscopy to confirm and validate the ECIS
measurement (Scheme 1). The presented work discusses the possibility of adhering A549
cells onto an inexpensive substrate in order to detect any hazardous potential of the
substances or their mixtures in a liquid medium.Nanomaterials 2022, 12, x FOR PEER REVIEW 3 of 16 
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described previously [34]. For the resazurin assay, 25 μg/mL of resazurin was added to 
each well and incubated at 37 °C for two h. Fluorescence intensity of formed resorufin was 
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treatment condition, at least three independent experimental repeats, each with three rep-
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acid organelles. Cells were rinsed with PBS, followed by release of the internalized dye by 
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Scheme 1. Visual representation of work presented in this manuscript; presenting cell adhesion on
the electrodes, treatment of the samples, and methods used.
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2. Materials and Methods
2.1. Chemicals and Reagents

Coomassie Blue dye, Na-phosphate buffer, and paraformaldehyde were purchased
from Merck (Steinheim, Germany). Karnovsky’s fixative, OsO4, and hexamethyldisilox-
ane (HMDSO) were bought from SPI Supplies (West Chester, PA, USA). Milli-Q wa-
ter was used to prepare solutions. Stainless-steel foil (50 µm) AISI 321 was obtained
from Goodfellow (Hamburg, Germany). Carbon HB Pencil was bought from Staedtler
(Nuremberg, Germany). All other chemicals and reagents were purchased from Sigma-
Aldrich (Munich, Germany) unless otherwise mentioned.

2.2. Cell Culture

Lung cancer cells (A549 cells) were obtained from the ATCC cell bank. For all ex-
periments, cells with passage numbers 50–60 were used. A549 cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 2 mM L-glutamine
and 10% (v/v) FBS at 37 ◦C in a humidified atmosphere with 5% CO2, and were routinely
passaged once a week.

2.3. Cytotoxicity Tests

For all cytotoxicity experiments, A549 cells (2.2 × 104 cells/cm2) were seeded in
96-well plates. After 24 h incubation to allow the cells to adhere, cells were treated with a
serial dilution of ZnCl2 (concentrations 10, 40, 80, and 320 µg/mL). After 24 h treatment,
the cytotoxicity was measured by resazurin assay and neutral red uptake (NRU) assay, as
described previously [34]. For the resazurin assay, 25 µg/mL of resazurin was added to
each well and incubated at 37 ◦C for two h. Fluorescence intensity of formed resorufin
was measured (560/590 nm ex/em) using a spectrofluorometer (BioTek, Cytation 3). For
each treatment condition, at least three independent experimental repeats, each with three
replicates, were performed. For the NRU assay, 0.04 mg/mL neutral red dye was added
to each well, and cells were incubated for 2 h, allowing dye to become trapped inside the
acid organelles. Cells were rinsed with PBS, followed by release of the internalized dye
by a prepared solvent (50% v/v ethanol, 1% v/v acetic acid, and 49% v/v deionized water).
Fluorescence of the released neutral red dye was measured spectrofluorimetrically (BioTek,
Cytation3) at an excitation wavelength of 530 nm and an emission wavelength of 645 nm.
For each treatment condition, at least three independent experimental repeats, each with
three replicates, were performed.

2.4. Stainless-Steel Electrode Preparation (WE)
2.4.1. Stainless-Steel Cleaning Procedure

Stainless-steel surfaces were exposed to UV light for 30 min and then put in absolute
ethanol for 15 min to be sterilized.

2.4.2. Cell Attachment to the Stainless-Steel Surfaces

Cleaned and sterilized stainless-steel surfaces (working electrodes in ECIS) were
placed in the center of each well of the 12-well plates. Trypsinized A549 cells suspended in
supplemented cell culture medium were plated at a seeding density of 2.2 × 104 cells/cm2

into each well with stainless-steel electrodes. Submerged steel surfaces in 12-well plates
were left in an incubator for 2 days, so cells could attach to the surfaces and grow.

2.4.3. Cell Treatment

After two days, cells were treated with different concentrations of ZnCl2 (10, 40, 80,
and 320 µg/mL) for another two days. Untreated cells were used as control and surfaces
without cells as blanks. Prepared stainless-steel sensing elements were checked with optical
microscopy and analyzed with different microscopy methods and ECIS.
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2.5. Fluorescence Microscopy

The stainless-steel surfaces prepared as working electrodes (WE) after ZnCl2 treatment)
were rinsed with PBS and stained with 2 µg/mL Hoechst 33342 and 2 µg/mL propidium
iodide for 20 min to stain the nuclei of all cells blue and nuclei of nonviable cells red since PI
can pass only through damaged plasma membrane. The number of live cells was obtained
by subtracting the number of PI-positive cells from the total number of cells that were
stained by Hoechst 33342. Data were obtained from three independent experiments, and
five random images were analyzed for each condition. Random images of stained cells
on the stainless-steel surface were taken with a fluorescent microscope (Zeiss, Germany).
ImageJ was used to quantify the density of attached cells and cell viability.

2.6. Scanning Electron Microscopy Imaging

Cell-covered surfaces (WE) were washed with PBS and then fixed with Karnovsky’s
fixative over two days at 4 ◦C. After rinsing samples with Na-phosphate buffer, the post-
fixation procedure was performed with 1% OsO4 for 1 h followed by 3× dH2O washes.
Then, saturated thiocarbohydrazide solution was added to samples for 15 min and washed
three times with water, and the OsO4 step was repeated. To dehydrate the samples, a
serial dilution of ethanol and HDMS was used. After 24 h, the fully dried samples were
sputtered with Au/Pd (thickness: 6 nm) using Precision Etching Coating System (PECS).
SEM (JEOL, Tokyo, Japan) was used to visualize the attachment and morphology of A549
cells on surfaces. Random images were taken from the ZnCl2-treated WEs. Data were
obtained from 3 independent experiments and 5 random images were analyzed for each
condition. ImageJ was used to calculate cell coverage.

2.7. Electrochemical Impedance Spectroscopy
2.7.1. Biosensor Construction

The biosensor device was constructed using three electrodes including a working elec-
trode (WE) (as described above), reference electrode (RE), and counter electrode (CE)—all
made from stainless steel with modifications. A plain steel electrode served as the RE,
which was made from the same material as the WE, with the exclusion of living cells to
negate any side reactions during measurement that could be due to corrosion of steel in
the buffer media as a result of prolonged exposure. A stainless-steel counter electrode
(CE) was prepared by gently scrubbing already cleaned stainless-steel foil with an HB lead
pencil until it was fully covered with graphite. The stainless-steel CE was then used in an
assembled biosensor device.

The WE, CE, and RE were assembled in a cuvette well, where each individual electrode
was covered with insulation tape on the backside, placed in the well, and attached with
connecting clips to the connector wire and side of the cuvette. First, the RE and CE were
placed facing each other on opposite sides of the cuvette. Then, 1 mL of PBS was added.
The cuvette was then fixed in the fixating clamp. Lastly, the WE was carefully inserted
into the cuvette and connected with the clip. The device remained undisturbed during
measurement.

2.7.2. ECIS Measurement

ECIS was used to detect surface changes on the electrode by using a low-voltage alter-
nating signal applied at different frequencies [35,36]. By performing an ECIS measurement,
changes in the electrode surface and electrolyte conductivity can be assessed, which may
indicate any changes in cells adhered to the surface (proliferation, cell spreading, and cell
adhesion) when exposed to increasing concentrations of chemicals [37].

ECIS was carried out using a potentiostat/galvanostat (Palmsens4, the Netherlands)
in a frequency range of 0.1–100 kHz with an AC amplitude of 10 mV with a potential
set toward a pre-measured open-circuit potential (OCP) to determine that the assembled
devices were operational. The measurement was performed using a three-electrode setup
(as mentioned above). Before each measurement, the OCP was calibrated to confirm that the
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assembled device connection is stable. The WE was replaced between each measurement.
A new device was constructed using the new CE and RE for different groups of WE samples
(treated with different concentrations of ZnCl2) to prevent cross-contamination, which
could have an impact on measurements. Concentrations selected for ECIS measurement
of the biosensoricsresponse of A549 lung cells were selected at 9, 40, and 200 µg/mL. In
addition, each experiment for a separate sample was repeated 3 times.

2.8. Statistical Analysis

The data from cytotoxicity and fluorescence experiments were statistically analyzed by
unpaired t-test for multiple comparisons. A p-value lower than 0.05 was considered statistically
significant. All statistical analyses were performed using GraphPad Prism 6 software.

3. Results
3.1. Cytotoxicity of ZnCl2

To determine the toxicity of Zn2+ ions on A549 cells, cell metabolic activity and
lysosomal integrity were measured by resazurin assay and neutral red uptake (NRU) assay.
As shown in Figure 1a, the metabolic activity of the A549 cells exposed to 10 µg/mL of
ZnCl2 was unaffected, while a significant decrease in metabolic activity was observed in the
groups treated with higher ZnCl2 concentrations. The metabolic activity of the A549 cells
exposed to 320 µg/mL of ZnCl2 dropped below 50% in comparison to control cells. The
NRU assay detects a small but statistically significant change in the lysosomal integrity of
the ZnCl2-treated A549 cells already at 10 µg/mL (Figure 1b).

3.2. Optical Microscopy Imaging

As depicted in Figure 2a, the untreated A549 cells retained their common shape
and tightly covered the entire surface. Furthermore, the fully cell-covered surfaces were
treated with ZnCl2 for 2 days to figure out the effect of Zn2+ ions on the A549 cells seeded
on steel surfaces. There is a decreasing trend in the number of cells from the lowest
concentration to the highest concentration compared to the control group; the ZnCl2-treated
cells were detached from the surfaces in a dose-responsive manner. The surface treated
with 320 µg/mL ZnCl2 was almost without cells after two days, as shown in Figure 2d.
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Figure 2. Optical microscopy images of A549 cells seeded in 12-well plates after 48 h treatment with
different concentrations of ZnCl2. Control cells formed a complete monolayer; cells treated with
10 µg/mL of ZnCl2 are still covering the entire surface, but, in higher ZnCl2 concentrations, the
majority of cells were detached. (a) Untreated A549 cells and (b–d) cells treated with 10, 40, and
320 µg/mL of ZnCl2, respectively.

3.3. Cell Viability Evaluation

For cell viability evaluation, live/dead fluorescent staining and microscopic observa-
tion were applied. Stainless-steel surfaces covered by cells were stained with propidium
iodide (PI) and Hoechst 33342 after two days of exposure to ZnCl2, and the results were
interpreted qualitatively and quantitatively.

Figure 3 describes how dead and living cells covered the surface. In the lower con-
centrations, almost all cells covering the surface are live (blue nuclei), while, in the highest
concentration, almost all attached cells are dead (red nuclei). The number of attached cells
on the control (non-treated A549 sample) is significantly higher in comparison with the
number of attached cells on the treated samples after 48 h. The total number of cells present
on the surface, whether live or dead, decreased significantly in a dose-dependent manner.

Figure 4a,b discuss the above-explained data quantitatively. In concentrations of
10 µg/mL of ZnCl2, 2 ± 1% of the attached cells were dead, and surfaces were mostly
covered with live cells. The number of dead cells increased when the concentration of
ZnCl2 was increased. At the concentration of 40 µg/mL, more than 55% of cells were
already detached from the surface, and the majority of the attached cells were dead. In the
concentration of 320 µg/mL, 92 ± 9 of the attached cells were dead. (Figure 4a,b).
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Fluorescence microscopy results reveal that a higher concentration of Zn2+ ions de-
creases the total number of attached cells and also increases the number of dead attached
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cells. Eventually, in the highest concentration, the majority of the cells were detached, and
the majority of the remaining ones on the surface were dead.

3.4. Shape and Attachment Pattern of Cells

After the preparation of the working electrodes, the treated stainless-steel surfaces
with the Zn2+ ions were fixated through a fixation procedure and were imaged randomly
with the SEM to examine the changes in the cell attachments, surface coverages, and
morphologies of the samples.

The status of viability and behavior of the cells attached to the surface is essential
to act as sensing elements. It is important to determine whether the cells are dying or
will be dead and detached so that they can change the surface features and be readily
detected by ECIS [18]. As shown in Figure 5a, the control (untreated A549 cells) covered
the stainless-steel surfaces considerably, whereas a slight decline in the number of attached
cells was observed in the samples treated with 10 µg/mL of ZnCl2. At the concentration of
40 µg/mL, the number of cells on the surface is greatly decreased. Significant changes in
cell morphology can be seen in this concentration. In the highest concentration, almost all
cells are detached from the surface.

As shown in Figure 6, an average of 81 ± 4 surface coverage was obtained for the
control group. Surfaces covered by the A549 cells and treated with 10 µg/mL of ZnCl2
showed a reduction in cell coverage (70 ± 3) on the surface of stainless steel. From the
concentration of 40 µg/mL, a significant decrease in surface coverage can be seen, and this
trend gradually continued to the concentration of 320 µg/mL, where only 6 ± 1% of the
surface was covered by cells.
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A change in morphology after the ZnCl2 treatment was also observed in the samples
treated with different concentrations of ZnCl2. As depicted in Figure 7, the treated samples,
especially at higher concentrations of ZnCl2, showed significantly different morphologies
in comparison with the control. Visibly, the outer cell membranes of the non-treated cells in
the control group were covered with microvilli, which can be interpreted as a higher cellular
interaction with the surface and normal cell growth. Although most of the non-treated
human lung A549 cells on the stainless-steel surfaces were highly flat and elongated with
nearly smooth-edged and pleomorphic microvilli attached firmly to the cells, a gradual
squeezing behavior was observed in the treated samples. At the lowest concentration of
ZnCl2 (10 µg/mL), the cells were growing normally, but they gradually began to squeeze
themselves with elevation of the ZnCl2 concentration. In the 40µg/mL-treated samples,
the cell membrane became rough and perforated. Moreover, the cytoplasm loss, plasma
membrane blebbing, and cell lysis were visualized. There were also apoptotic cells, which
were detached from the surface and the neighboring cells. A few attached cells were
observed in the highest concentration, but all were shrunken and circular.

3.5. Results of Electrochemical Cell-Based Impedance Spectroscopy (ECIS)

As the ECIS measurement progressed, it can be seen in the Nyquist plots (Figure S1)
that there are certain differences between the tested samples and that there is a steadily
increasing response. Certain anomalies were observed during the highest concentration
(200 µg/mL), wherein the highest concentration has a slightly different response compared
to the blank stainless-steel sample. In the Bode plot, the Z value remains relatively similar
with minor differences, while the phase has certain changes. This anomaly can be seen at
the highest concentration. The Nyquist diagrams are more or less straightforward; it can be
observed that with the increasing concentration, the resistance parameter (Z’) drops, and
the angle of the curve decreases. This, however, is not completely the case in the highest
concentration, where the curve does decrease, but the resistance is close to concentration
40 µg/mL, and the capacitance factor (Z”) is closer to the samples which are not treated
with ZnCl2 (control).
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During ECIS, the investigation focused on two areas: low and high frequency. In
the low-frequency region (100–1 Hz), both the plain steel surface and the negative control
have been shown to have lower Z values compared to the samples exposed to ZnCl2. This
might be due to the potential corrosion activity of Cl- ions, which suggests that it would be
difficult to determine a change in cell adhesion using solely the resistance measurement. In
the higher frequency region (10–100 kHz), the Z values are lower, which suggests that the
selected phosphate buffer has good conductivity; however, the Z values for the samples
with 9 µg/mL and 40 µg/mL in this range are higher than both the negative control and
the blank steel sample. Even at increased concentrations (200 µg/mL), the signal becomes
distorted since it is possible that the Zn2+ ion solution at higher concentrations begins to in-
teract with the steel surface. Nevertheless, the data can still be clearly interpreted as a valid
response of the cells that are exposed to Zn2+ ions. The Nyquist diagrams are presented in
Figure 8, while the Bode diagram is presented in the supporting information (Figure S1).

Much more can be seen when investigating the Bode phase values, where the high-
frequency samples exposed to ZnCl2 have lower phase values (20–0◦), and, in lower
frequencies of 1–10 Hz, it can be seen that the phase is slowly decreasing. Here, it can also
be seen that the responses vary between each sample. For the cell-covered samples, it can
be seen that with an increased concentration of ZnCl2, the phase shifts to lower values.
The phase angle data collected at 1 Hz were compared between the samples, and it was
observed that over the course of the data, the angle increases when comparing an electrode
with untreated cells (control) with an electrode without cells (blank). With the exception
of the measurement at a low concentration (9 µg/mL), the data suggest that the phase
angle’s increase at low frequencies may be a valid form of identification if the biological
material has changed its properties. These data were compared to previously published
measurements [38], in which measurements completed in combination with HepG2 liver
cells show similar results with an increase in the phase angle at lower frequencies when
exposed to different hepatotoxins.
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The data presented in the table suggest that the concentration of 9 µg/mL of ZnCl2 is
insufficient to reliably detect the effect of Zn2+ ions on cells, while the higher concentrations
have negative phase angles much closer to the measurement, and the electrode had no
present cells. In addition, it can be observed that a similar response can be observed
in measurements performed with different types of cells and substances, in which the
measurement with an added substance has a negative phase angle and a value quite close
to that of the measurement taken with an electrode with no present cells. This is, of course,
in accordance with the Nyquist diagrams, where it can be seen that with the increasing
concentration, the plots seem to shift toward a measurement where no cells are present on
the surface.

For the control group (which can be set as an example), it can be observed that the
phase is significantly lower than the rest of the measurement. Finally, the measurement
at the maximum concentration reveals that, at lower frequencies, the signal is changed
compared to the lower concentration samples, which could be due to side reactions
of the steel with the ZnCl2 salt. The Bode diagrams are shown in Figure 8, while the
phase angle changes are shown in Table 1. The ECIS data correlate with other measure-
ments, confirming that there are changes in the surface of the electrode with an increased
ZnCl2 concentration [39].

Table 1. Comparison of negative phase angle change between electrode response with control group,
treated group, and blank for all measurements. The values were taken at a frequency of 1 Hz.

Cell Type, Substance Phase Angle for
Untreated (- ◦)

Concentration-Phase
Angle (- ◦)

Phase Angle for
Cells Removed (- ◦)

A549, ZnCl2 66.801
9 µg/mL—67.065
40 µg/mL—62.15

200 µg/mL—59.493
56.45

HepG2, Aflatoxin B1 * 54.61 250 µM—47.67 46.911

HepG2, Isoniazid * 55.63 250 mM—50.927 52.378
* Marked data were obtained from one of the authors (Ref. [38]) and processed in the same way as the data
obtained for this work.
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4. Discussion

This study shows a proof of concept for a cell-based biosensor, composed of A549
cells attached to a stainless-steel surface, to electrically quantify the toxicity of metal
ions in the liquid medium using low-frequency impedance spectroscopy. Our biosensor
setup used steel foil electrodes that are produced on a large scale [25], thus ensuring their
availability as an inexpensive electrode material [26]. We choose A549 cells that are able
to form a monolayer of relatively evenly distributed cells that cover the stainless-steel
surface (in comparison to other types of cells) [29]. The ZnCl2 solution was used as a
test chemical in different concentrations to provoke toxicity. Conventional cytotoxicity
methods and microscopy were used in parallel to confirm the information provided by
the ECIS measurement.

The SEM microscopy revealed changes in the cell morphologies and the patterns of
cell spreading and attaching to the surface on a nanoscale, even in the lowest Zn2+ ion
exposure concentrations, in which there were no significant changes in the number of
viable cells. However, at the highest Zn2+ ion exposure concentration, the surfaces were
barely covered with cells, and the remaining cells were mostly dead and already detached.
It can be seen that increasing the concentration of Zn2+ ions result in a significant change
in the cell morphology, leading to the death and detachment of cells from the surface and,
eventually, decreasing the surface coverage. This shrinkage and detachment of the dying
cells from the electrodes was also detected as a change in the impedimetric signal.

The results were in line with the literature data, which describes that cell death on
the electrode surfaces of the biosensors at cytotoxic concentrations changes the measured
impedance [15,16,37,40,41]. The SEM revealed changes in the pattern of cell spreading,
which is also detected as a significant change in the impedance magnitude in the special
frequency range and pronounces a phase shift [16,37] and changes in the impedance sig-
nal [37,42]. An evident change in the ECIS signal for the groups exposed to Zn2+ ions was ob-
served, compared to the control group, which confirms the effect of Zn2+ ions on the change
in cell morphology and attachment [43]. The impedance spectroscopy data suggest that it
is possible to detect the effect of Zn2+ ions in concentrations as low as 9 µg/mL of ZnCl2.

This study shows that the described stainless-steel A549 cell-based biosensor does
not require a wide-frequency impedance measurement and can use only low-frequency
ECIS instruments, which are usually less expensive than typical ECIS sensors. By focusing
on a limited low-frequency range, the obtained data provide the same conclusions as the
fully measured spectra. Although there are commercially available ECIS sensors that allow
real-time cell analysis of adherent cells [44] and measure the cell impedance, reflecting cell
growth, death, adhesion, and morphology [45,46], they are expensive and limited only to
laboratory use [47,48]. An additional strength of the approach presented here is that it can
detect the effects of ions and a mixture of ions and nano- or other particles, including their
antagonistic or synergistic effects, which is not possible via other conventional approaches,
such as in vitro cytotoxicity testing of individual substances.

5. Conclusions

A stainless-steel A549 cell-based biosensor has been successfully developed to detect
the effect of Zn2+ ions as a reference testing chemical in a liquid medium using low-
frequency impedance spectroscopy. The results showed that the presented biosensor can
evaluate the cytotoxic response of cells, which makes it suitable for a broad range of
sensing applications. The presented biosensor revealed a remarkable sensitivity to Zn2+

and has established repeatable, predictable, measurable responses between different ZnCl2
concentrations and impedance readings, along with microscopy observations. It was
observed that the difference between the treated and control cells was clearly measurable.
The cytotoxic effect of Zn2+ ions was observed as a significant resistance decrease. This
impedance spectroscopy technique can be used to detect a signal in a low-frequency
region or measure resistance in a direct current setting. The method presented here is
an inexpensive way to detect the effects of different compounds and their mixtures as
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well as nano- or other particles, which are harmful to selected types of cells, and may
point to their antagonistic or synergistic effects. It is, in particular, useful in detecting the
effects of nanoparticles that dissolve. In such a case, both the dissolution dynamics and
the concentration of ions are responsible for the effect. This would present an interesting
and low-cost alternative to the already present commercial solutions for the detection of
the hazardous potential of pollutants in a liquid medium before other more sophisticated
methods are selected.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12193493/s1. Figure S1: Bode diagram: A simultaneous
representation of both total impedance (circles) and phase response (triangles) is shown. The color
selection is the same as for Figure 7. The data for different concentrations of 9 µg/mL (red label)
40 µg/mL (green label), 200 µg/mL (blue label) are presented as well as for negative sample (black
label) and blank stainless-steel sample that counts as the positive control (grey label); Table S1: Shows
surface coverage and morphology of cells in the presence of a different concentration of ZnCl2 as a
chemical using SEM.
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