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Abstract: This paper presents the results of AC electrical measurements of Zn-SiO2/Si nanocompos-
ites obtained by ion implantation. Implantation of Zn ions was carried out into thermally oxidized
p-type silicon substrates with energy of 150 keV and fluence of 7.5 × 1016 ion·cm−2 at a temperature
of 773 K, and is thus called implantation in “hot” conditions. The samples were annealed in ambient
air for 60 min at 973 K. Electrical measurements of Zn-SiO2/Si nanocomposites were carried out
before and after annealing. Measurements were performed in the temperature range from 20 K to
375 K. The measurement parameters were the resistance Rp, the capacitance Cp, the phase shift angle
θ and the tangent of loss angle tanδ, as a function of the frequency in the range from 50 Hz to 5 MHz.
Based on the characteristics σ(f ) and the Jonscher power law before and after sample annealing, the
values of the exponent s were calculated depending on the measurement temperature. Based on this,
the conductivity models were matched. Additionally, the real and imaginary parts of the dielectric
permittivity were determined, and on their basis, the polarization mechanisms in the tested material
were also determined.

Keywords: nanocomposite; ion implantation; impedance spectroscopy; charge transport

1. Introduction

Ion implantation is one of the most flexible methods of producing nanocomposites
with metallic and semiconductor nanoparticles in the SiO2 matrix due to high purity of the
process, precise control of the implanted ions’ fluence, the spatial distribution of implanted
atoms, etc. [1–4]. However, the main advantage of this method is its full compatibility
with modern silicon microelectronics. At high implantation fluences, the concentration
of incorporated impurities in the matrix significantly exceeds the limit of equilibrium
solubility, and the formation of nanoparticles occurs.

Compared to other techniques, such as chemical vapor deposition (CVD) [5], molec-
ular beam epitaxy (MBE) [6], sol–gel synthesis [7] and pulsed laser deposition [8], ion
implantation has several important advantages, including no synthesis-related impuri-
ties and precise control of the introduced metal ions and their depth distribution in the
dielectric matrix [9]. Accordingly, nanoparticles of metals and metal oxides, such as copper
(Cu) [10], gold (Au), nickel (Ni) [11], silver (Ag) [12], cobalt (Co) [13], etc., were synthesized
by ion implantation in dielectrics such as SiO2 [14], Al2O3 [15], and even in MgO [16,17] or
CeO2 [13]. According to the literature sources, in the SiO2 matrix, the implanted ions form
spherical nanoparticles with a random distribution [14]. In particular, zinc (Zn) and zinc
oxide (ZnO) nanoparticles produced in SiO2 by ion implantation are popular due to their
present and possible applications in high-performance optoelectronics [18–20].

The dielectric properties of nanomaterials are important characteristics for their poten-
tial applications in capacitors, sensors and memory devices. The influence of frequency on
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the dielectric behavior and AC conductivity of nanomaterials provides key information on
the conductive phenomena in these materials [21,22]. It should be noted that the dielectric
properties and electric transport of nanomaterials are different from the properties of mate-
rials on a micro- or macrometric scale, mainly due to an increase in the number of atoms or
ions between phases, and also due to the fact that many structural defects are introduced
in or near the grain boundaries. AC measurements of nanocomposites’ electrical proper-
ties have been extensively conducted for granular metal–dielectric nanocomposites, with
SiO2 [23], Al2O3 [24,25], CaF2 [26,27] and PZT [27–29] dielectrics used as matrix materials,
and CoFeZr ferromagnetic alloy [24–29] and copper [23,30] used as nanofiller.

In this work, impedance spectroscopy was used to characterize and compare the
electrical properties of a nanocomposite with the silicon oxide matrix in which metallic
zinc nanograins (nanoclusters) were formed by ion implantation. As a result, it gives an
opportunity to determine mechanisms of electric charge transfer in this material and to
study other phenomena conditioned by these mechanisms.

2. Experimental

The initial SiO2/p-type Si samples 2 cm × 2 cm in size with an electrical resistivity of
10 Ω·cm for a silicon wafer were cut from thermally oxidized Si substrates. The thickness of
the SiO2 layer, as measured by transmission electron microscopy in cross-section geometry
by an analytical electron microscope Hitachi H-800 operating at 200 keV, was about 600
nm. These samples were implanted at the temperature of 773 K with 150 keV-Zn ions to
the fluence of 7.5 × 1016 ion·cm−2. Therefore, this regime is called implantation in “hot”
conditions. Afterwards, the samples were annealed at 973 K for 60 min in ambient air. Zn
concentration depth distributions of the implanted and annealed samples were analyzed
by Rutherford backscattering spectrometry (RBS) using 1.4 MeV He ions with a registration
angle of 170 degrees. Information on depth distribution of Zn atoms’ concentration was
obtained by processing the RBS spectra using the SIMNRA software package [31].

The measured samples consisted of the p-type silicon substrate on which the 600 nm
SiO2 layers were formed by oxidation in dry ambient O2. After this process, the Zn+ ion
implantation was performed and a part of the samples was annealed.

A thin layer of silver paste was applied to the tested nanocomposite samples in
order to avoid the negative impact of point contact during the measurements. Electrical
measurements of Zn-SiO2/Si nanocomposites were carried out through the sample (in
a capacitor system), so the contacts were placed on both sides of the sample, leaving a
distance of approx. 1 mm from its edge.

It should also be mentioned that a part of implanted atoms can penetrate the SiO2/Si
interface due to radiation-enhanced diffusion in the process of ion implantation and sample
annealing. However, a concentration of such Zn atoms in the tail part of depth distributions
in Figure 1 is under the mentioned resolution of the RBS method (about 5 × 1018 at/cm3).
Such a level of silicon dioxide doping can, to a significant degree, change the conductivity
properties of this deep part of implanted oxide, as well.

Liquid helium cooling was applied using a cryostat. This made it possible to conduct
measurements with temperature regulation with an accuracy of 0.002 K. Additionally, a
vacuum chamber was used, in which the samples were mounted. It helped stabilize the
temperature and prevent the samples from damping. Thus, the measurements were carried
out in a vacuum at the level of 0.2 atm. The temperature in the chamber was cooled in a
closed circuit using a helium compressor. The temperature control in the chamber was
ensured by a silicon sensor, a LakeShore 335 temperature controller, and a heater located
in the cryostat head connected to the controller. Measurements were performed in the
temperature range from 20 K to 375 K, with the step of 2 K in the range of 20–40 K, with the
step of 3 K in the range of 40–151 K and with the step of 7 K in the range of 151–375 K.
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Figure 1. Simulated (SRIM-2013) (curve 1) and calculated from RBS spectra depth profiles of impurity
concentration in SiO2 after Zn+ implantation (150 keV, 7.5 × 1016 cm−2) (curve 2) and subsequent
annealing at 973 K (700 ◦C) for 60 min (curve 3).

Measurements of electrical parameters were carried out using HIOKI impedance
meters. The measurement parameters were the resistance Rp, capacitance Cp, the phase
shift angle θ and the tangent of the loss angle tanδ, as a function of the frequency in the
range of 50 Hz to 5 MHz. The test stand is controlled by a computer to which the meters and
a temperature controller are connected. The measured results are saved on the computer′s
hard disk in xls format [32].

3. Results and Discussion

Figure 1 shows the simulated (SRIM’13 [33]) depth distribution profile of implanted
Zn atoms and the profiles calculated from experimental RBS spectra. Computer simulation
gave a Gaussian-type Zn concentration depth profile with a peak concentration of about
12 at % at the depth of ~113 nm in the oxide matrix (Figure 1, curve 1). “Hot” implanta-
tion into SiO2 (Figure 1, curve 2) leads to a 1.3-fold reduction in the maximum impurity
concentration in comparison with the computer simulation data. The impurity loss during
ion implantation amounts to 38%. Annealing (973 K, 60 min) results in an insignificant
diffusion of implanted impurity to the sample surface (Figure 1, curve 3).

Figure 2 shows the XTEM and HRTEM images (insets) of Zn nanoparticles embedded
in the SiO2 matrix. “Hot” implantation leads to the formation of small clusters just after
zinc implantation (see Figure 2a). The absence of any nanoclusters in the subsurface region
(up to 40 nm) of the SiO2 layers proves the minor zinc atoms’ diffusion to the surface at
elevated temperatures up to 973 K. Underneath the cluster-free region, the layer with small
clusters (2–15 nm) is located in the depth range of 40–200 nm.

The bigger clusters 10–15 nm in size are concentrated at the depth of 100–110 nm
(nearly Rp; Rp is the projected range of implanted atoms). The crystalline nature of the pre-
cipitates is proved by the presence of Moiré contrast in the HRTEM images (see Figure 2a,b,
insets). The interplanar spacing 2.12 Å measured for dark contrast precipitate (Figure 2a,
inset) is in agreement with the tabulated value of 2.09 Å for the (101) planes of the hexago-
nal Zn. Heat treatment at 973 K for 60 min (Figure 2b) results in a substantial structural
transformation of the implanted layer. One can see two spatial separated layers. The small
Zn nanoparticles surrounded by the oxide shells (see Figure 2b, inset) at the depth range of
30–100 nm should be noted. The calculated value of the interplanar spacing of the oxide
shells is 1.91 Å. It corresponds to the distance between (102) planes of the hexagonal ZnO
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phase. In addition, the formation of voids is observed at the “Zn nanocluster–SiO2 matrix”
interface (Figure 2b, shown by arrows).
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Figure 2. XTEM images of SiO2 (600 nm)/Si samples implanted with Zn+ (150 keV, 7.5 × 1016 ions/cm2):
(a) as-implanted sample, and the samples after annealing at 973 K for (b) 60 min. The insets depict
the HRTEM nanoparticle images.

Figure 3 shows the temperature–frequency dependence of the Zn-SiO2/Si nanocom-
posite conductivity immediately after implantation at the temperature Timpl = 773 K with
150 keV-Zn ions to the fluence of 7.5 × 1016 ion/cm2. In the range of lower frequencies, a
weak conductivity dependence on frequency can be seen, corresponding to the DC con-
ductivity σdc. In this frequency range, a strong temperature dependence characteristic is
observed for dielectric conductivity. At the same time, as the temperature rises, the plateau
of DC conductivity extends to higher frequencies. With a further increase in frequency, the
conductivity increases significantly (almost 5–6 orders of magnitude), but shows a poor
temperature dependence. Such a conductivity behavior with frequency may indicate a
hopping mechanism of charge transfer in the tested material [34–36]. The increase in AC
conductivity with frequency is due to the relaxation of moving electrons. As the frequency
increases, the charge carriers are forced to jump between the located states, which causes a
decrease in activation energy.

Figure 4 shows the Arrhenius dependence for conductivity determined at the fre-
quency f = 100 Hz. The diagram presents three ranges of change in conductivity with
temperature, which may indicate at least two ways of the charge transporting in the tested
material. In the range of low temperatures, to approx. 35 K, the conductivity is practically
constant and does not show an activating character. It is related to the carrier hopping
near the Fermi level EF. In the range from 35 K to about 135 K, conductivity changes are
non-linear and it is difficult to determine the electron activation energy on the basis of the
Arrhenius law. In the range of high temperatures, a linear change in conductivity with
temperature is visible, which fulfills the Arrhenius law, making it possible to calculate
the activation energy of the conductivity. Its value is approximately ∆E1 ≈ 0.037 eV. This
confirms the presence of a thermally activated hopping conductivity [22,23].
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Figure 4. The Arrhenius dependence of the conductivity σ for the Zn-SiO2/Si nanocomposite
immediately after preparation under “hot” implantation conditions (150 keV, 7.5 × 1016 ion/cm2,
Timpl = 773 K).

Figures 5–7 show the dielectric properties of the tested Zn-SiO2/Si nanocomposite,
which were measured in the frequency range from 50 Hz to 5 MHz at temperatures from
20 K to 375 K. The real dielectric component εr shows a sharp decrease with frequency in
the low and high frequencies. In the range of intermediate frequencies, εr decreases slightly
or is practically constant. Accordingly, the imaginary part of the dielectric permittivity ε”
in the low- and intermediate-frequency ranges rapidly decreases with increasing frequency,
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reaching a Debye-like relaxation peak at angular frequencies of about 4 × 106 rad/s. The
low-frequency section of the ε” relationship is related to the DC conductivity. The tangent
of the dielectric loss angle tanδ is high, with a temperature-dependent minimum ranging
from 6× 10−3 to 2× 10−2 at a frequency of about 104 Hz. εr and ε” frequency dependencies
are used later in this work to determine the Cole–Cole relationship.
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Figures 8 and 9 show the frequency–temperature dependences of the capacitance Cp
and the phase shift angle θ. On their basis, it can be concluded that the material has a
capacitive character because the Cp dependence is practically independent of frequency
and temperature. Moreover, the phase shift angle in the entire measuring range is negative.
Additionally, the angle θ in the range of low frequencies decreases, reaching a value close
to −90◦, which is characteristic of the parallel RC circuit.
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Figure 9. Temperature dependence of the phase shift angle θ for the Zn-SiO2/Si nanocomposite
immediately after preparation under “hot” implantation conditions (150 keV, 7.5 × 1016 ion/cm2,
Timpl = 773 K).

The situation changes significantly after annealing. Figure 10 shows a graph of the
temperature–frequency dependence of the conductivity for the Zn-SiO2/Si sample obtained
in the “hot” implantation conditions subjected to annealing at 974 K in ambient air for
60 min. The increase in conductivity with a frequency of up to 6 orders of magnitude is
clearly visible. However, in the low- and medium-frequency range, the conductivity does
not show an orderly dependence on temperature. This can be seen in the Arrhenius graphs
of conductivity shown in Figure 11. Only in the high-frequency range, the conductivity
increases with temperature, showing dielectric conduction behavior.
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At high frequencies (Figure 11), three ranges of conductivity change with temperature
can be distinguished. The first one is up to approx. 200 K, where the conductivity does not
depend on the measurement temperature and is related to the hopping of carriers near the
Fermi level EF. The second one is at temperatures up to approx. 280 K, where changes in
conductivity are non-linear. The third region of high temperatures is above 280 K, where
there is a linear change according to the Arrhenius law. In this temperature range, it
was possible to determine the thermal activation energy of electrons, and it amounts to
∆E2 ≈ 0.060 eV.

This theory is confirmed by the temperature–frequency dependencies of the dielectric
parameters shown in Figures 12–16. The tangent of the dielectric loss angle tanδ (Figure 12)
changes parabolically with the frequency, which indicates a relaxation loss mechanism.

Figure 13 shows the frequency–temperature dependence of the real εr (Figure 13a)
and the imaginary ε” (Figure 13b) components of dielectric permittivity. The analysis of
these graphs proves the hopping charge transfer between the closest neighbors, creating
electric dipoles.

First, there is a characteristic maximum in the graph ε”(f ) in the frequency range above
105 Hz. Second, the frequency at which the peak occurs has the same value as the inflection
frequency of the descending curve εr(f ), as shown in Figure 13a. Additionally, in the range
of low frequencies, the permeability ε” shows another polarization mechanism, which is
especially visible for the lowest temperatures. A second relaxation peak appears which, at
higher temperatures, is likely to occur at lower frequencies than the measuring range. In
the case of the annealed sample, the decrease in εr with frequency is not related to the DC
conductivity (as in the case of a nonannealed sample), because the characteristic σ(f ) shows
a strong frequency dependence also in the lowest range. It is more likely that there is a
space charge polarization according to the Maxwell–Wagner model at the metal–dielectric
interface for larger metallic nanoparticles and at the dielectric–silicon substrate interface.
Relaxation according to this mechanism requires higher activation energies and a longer
time (i.e., low frequency). A comparison of the real and imaginary dielectric permeability
as a function of frequency measured at Tp = 333 K is shown in Figure 14.
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Figure 13. Temperature–frequency dependence of the real (a) and imaginary (b) part of dielectric
permittivity for the Zn-SiO2/Si nanocomposite prepared under “hot” implantation conditions (150
keV, 7.5 × 1016 ion/cm2, Timpl = 773 K) after annealing.
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Figure 16. Temperature–frequency dependence of phase shift angle θ(f, Tp) for the Zn-SiO2/Si
nanocomposite prepared under “hot” implantation conditions (150 keV, 7.5 × 1016 ion/cm2,
Timpl = 773 K) after annealing.

This phenomenon is clearly visible in the Cole–Cole diagrams presented in Figure 15.
For the entire temperature range, characteristic semi-circles corresponding to the electric
dipoles’ creation due to hopping charge transfer between the closest neighbors are visible,
and in the lower frequency range, fragments of the semi-circle can be seen, confirming the
Maxwell–Wagner model occurring at low frequencies. At the lowest temperatures, two
characteristic semicircles are visible, corresponding to the peaks in the graph ε”(f ).

The analysis of the tested sample is complemented by information about its capacitive
behavior, as shown in Figures 16 and 17. In the diagram of the frequency–temperature
dependence of the capacitance (Figure 17), the capacitance at the lowest frequencies de-
creases sharply, and then its value decreases gently, and then decreases again abruptly.
This is related to the previously described mechanisms of polarization in the material.
Additionally, the phase shift angle presented in Figure 16 shows negative values over the
entire measuring range, which proves the capacitive nature of the material.
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4. Conclusions

A series of Zn-SiO2 nanocomposites produced by the implantation of Zn ions into
the SiO2/Si substrate was selected for analysis, which was carried out with ion energy
of 150 keV and fluence of 7.5 × 1016 ion·cm−2 at a temperature of Timpl = 773 K. Due to
the high temperature of the process, it was described as implantation in “hot” conditions.
The samples were annealed in ambient air for 60 min at a temperature of 973 K. The AC
measurements were carried out in the temperature range from 20 K to 373 K and in the
frequency range from 50 Hz to 1 MHz.

Before annealing, the conductivity increases with increasing frequency by almost 6
orders of magnitude. Based on this, the conductivity model was matched. According to the
model, dipoles are formed, which change their orientation under the influence of further
electron hops. The analysis of Arrhenius plots of conductivity for the frequency of 100 Hz
showed that at temperatures below 35 K, electron hopping takes place near the Fermi level.
In the temperature range above 200 K, the conductivity increases linearly with increasing
temperature. This is evidence of thermally activated electron hopping.

The annealing of the Zn-SiO2/Si nanocomposite sample at the temperature of 973 K
caused significant changes in the nature of the σ(f ) dependence. Three ranges for the
change in the slope of the almost rectilinear portions of the σ(f ) curve are visible.

The nature of the tangent of the dielectric loss angle as a function of the frequency of
the nanocomposite sample, both before and after annealing, confirms the occurrence of the
relaxation loss mechanisms in the tested material. The analysis of frequency–temperature
diagrams of the real εr and imaginary ε” component of dielectric permittivity proves the
hopping model of charge transfer. It is related to the hopping charge transfer between
the closest neighbors’ potential wells and the creation of electric dipoles. In the case of an
annealed sample, there is an additional low-frequency space charge polarization at the
metal–dielectric interface for larger metallic precipitates and at the dielectric–silicon sub-
strate interface according to the Maxwell–Wagner model. The Zn-SiO2/Si nanocomposite
obtained in the conditions of “hot” implantation in the entire temperature and frequency
range shows a capacitive nature.
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