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Abstract: The utilization of CO2 attracts much research attention because of global warming. The
CO2/epoxide cycloaddition reaction is one technique of CO2 utilization. However, homogeneous
catalysts with both Lewis acidic and basic and toxic solvents, such as DMF, are needed in the
CO2/epoxide cycloaddition reaction. As a result, this study focuses on the development of heteroge-
neous catalysts with both Lewis acidic and basic sites for the CO2 utilization of the CO2/epoxide
cycloaddition reactions without the addition of a DMF toxic solvent. For the first time, the Zr–Mg
mixed oxide aerogels with Lewis acidic and basic sites are synthesized for the CO2/propylene oxide
(PO) cycloaddition reactions. To further increase the basic sites, 3-Aminopropyl trimethoxysilane
(APTMS) with -NH2 functional group is successfully grafted on the Zr–Mg mixed oxide aerogels. The
results indicate that the highest yield of propylene carbonate (PC) is 93.1% using the as-developed
APTMS-modified Zr–Mg mixed oxide aerogels. The as-prepared APTMS-modified Zr–Mg mixed
oxide aerogels are great potential in industrial plants for CO2 reduction in the future.

Keywords: carbon dioxide; Zr–Mg mixed oxide aerogel; cycloaddition reaction; Lewis acid; Lewis base

1. Introduction

Recently, the amount of CO2 in the atmosphere has significantly increased since the
industrial revolution due to the combustion of huge amounts of fossil fuels. Carbon
dioxide (CO2) as the major greenhouse gas has raised a great deal of attention due to its
effect on global warming and climate change [1–3]. Without action toward stemming CO2
emissions, global warming could pose a massive threat to our life. In order to alleviate
the potential threat, there are increasing demands to find new strategies to reduce carbon
dioxide and prevent future global problems. In the past, carbon dioxide capture and
storage were considered essential strategies for CO2 emission reduction targets [4–8].
However, the storage technology poses security concerns and also consumes additional
energy during the transportation process. As a result, CO2 utilization has drawn much
research interest in recent years. Carbon dioxide is not only reduced but also can serve as a
nontoxic, low-cost, and renewable C1 raw material, replacing other toxic organic solvents
and chemical materials for synthesizing fine chemicals and fuels, such as urea, salicylic
acid, cyclic carbonates, and polypropylene carbonate [9–11]. Out of much CO2 utilization,
the most promising reaction schemes of CO2 currently being studied is the coupling of
CO2 and epoxides for five-member cyclic carbonates synthesis (Scheme 1) [12–16]. In
addition, cyclic carbonates are widely applied as electrolytes in lithium-ion batteries, polar
aprotic solvents used extensively as intermediates in the production of fine chemicals,
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such as plastics, and pharmaceutical materials [17–19]. Furthermore, cyclic carbonates
are important precursors for polymerization. These five-member cyclic carbonates were
conventionally manufactured via a corrosive, poisonous, and hazardous route involving
glycol and phosgene [20]. So, we shifted to production based on the cycloaddition of CO2 to
the epoxide, which is less toxic and easier to handle nowadays. Polycarbonates are highly
valuable polymeric materials (engineering plastics) that possess outstanding properties,
including impact resistance, electrical insulation, and optical properties [21].
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However, it is not easy to activate such a thermodynamically stable material (CO2).
Therefore, catalysts play a significant role in the transformation of carbon dioxide into cyclic
carbonates. Thus far, various heterogeneous and homogeneous catalysts have been devel-
oped for CO2/epoxide cycloaddition reactions. Quaternary ammonium and phosphonium
salts [22,23], ionic liquids [24–27], transition metal complexes [28,29], salen complex [30,31],
and alkali metal salts [32,33] have been extensively studied as homogeneous catalysts. Nor-
mally, homogeneous catalysts show higher catalytic activity than heterogeneous catalysts
in the presence of cocatalysts, but the separation and purification of the homogeneous
catalysts from the products are greatly difficult, restricting their wide applications. Hence,
the research in CO2 cycloaddition reactions has been mostly devoted to the development
of highly efficient heterogeneous catalysts, such as metal oxide [34] and metal organic
frameworks [35–42], which are easily separated by centrifugation or filtration and can be
reused during the CO2 cycloaddition reactions.

Several types of heterogeneous catalysts, including metal oxides, have been applied
for the CO2 cycloaddition reaction. The first example of polycarbonate synthesis via CO2
cycloaddition reaction was discovered by Yano et al. [43]. They showed that MgO could
catalyze CO2 with propylene oxide (PO) to obtain cyclic carbonates. For this reaction,
the MgO catalyst gave a poor product yield because of low activity. Bhanage et al. [44]
employed several metal oxide catalysts, such as MgO, CaO, and ZrO2, for the synthesis
of propylene carbonate (PC). The yield and selectivity of the as-synthesized carbonates
using different catalysts are also compared. The effects of the Lewis acid/base sites of
the catalysts on the cycloaddition reaction are also discussed in detail. Among the metal
oxides, ZrO2 with acidic catalytic sites gives only 21% conversion and low selectivity of
50%. Shortly later, ternary metal oxides were proposed by Yamaguchi et al. [45]. They
found that the Mg–Al mixed oxides obtained by the calcination of the hydrotalcites showed
high performance for CO2 cycloaddition reactions to form the corresponding five-member
cyclic carbonates. The results showed that the optimization condition (88% of product
yield) for CO2 cycloaddition reaction had the Mg/Al ratio of five calcine at 400 ◦C in the
presence of toxic DMF cosolvent. Based on the catalyst characterization results, the O and
Al atoms involved in Mg–O–Al bonds act as basic and acidic sites, which can cooperatively
activate epoxide molecules. In addition, doping with Mg will attract more CO2 molecules
to react with the epoxide. As a result, the heterogeneous catalysts which possess acid–base
bifunctional properties are very crucial for CO2 cycloaddition reactions.

Unfortunately, conventional heterogeneous catalysts such as nanoparticles are some-
times less active because of aggregation, resulting in a small specific surface area. Therefore,
nanoporous materials have attracted much research attention owing to their high specific
surface area. Aerogels containing approximately 99% volume of air with large surface
areas were first discovered by Kistler in the 1930s [46]. Aerogels are a class of porous
materials composed of three-dimensional network structures, having unique physicochem-
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ical properties, such as high porosity, large specific surface area, and known to possess
lower density properties, which allow potential applications in the field of separation
and catalysis [47–49]. Apart from the conventional aerogels, several types of aerogel have
recently been developed based on different types of precursors, such as inorganic, organic,
and carbon. The usual route for aerogel preparation is the sol–gel technique, generally
accompanied by supercritical drying technology to afford highly porous structures [50–52].
This allows the liquid to be slowly dried off without causing the solid network in the gel to
collapse from capillary action. Another method (the epoxide-assisted sol–gel route) for the
synthesis of gels was first proposed by Gash et al. [53–55]. This method can adjust the pH
value of the solution and also promote the hydrolysis and condensation reactions of the
hydrate metal salt precursor in water or another solvent to form a gel. This method has been
proven successful and environmentally friendly for the synthesis of metal oxide aerogels.
Zirconia (ZrO2) has been widely used as an advanced material in various applications,
including electronics, catalysis, and high-temperature structural engineering because of its
superior acidic catalytic characteristics, redox properties, electrical properties, and high
thermal and chemical stability [56,57].

In this work, for the first time, we use zirconium oxychloride octahydrate and mag-
nesium nitrate hexahydrate as precursors, epoxide as the irreversible proton scavenger
and gelation agent in combination with supercritical drying approaches to prepare Zr–Mg
mixed oxide aerogels with high specific surface areas and porosities. The as-prepared
Zr–Mg mixed oxide aerogels with acid–base functionalities have great potential as an
excellent heterogeneous catalyst for CO2/epoxide cycloaddition reactions. Furthermore,
we also discuss the effect of different reaction parameters, including temperature, CO2
pressure, and reaction time, on the catalytic performance of the CO2/epoxide cycloaddition
reactions. We plot a schematic diagram (Scheme 2) and hope that the as-developed Zr–Mg
mixed oxide aerogels can improve not only the performance of catalytic efficiency in the
absence of any cocatalysts and solvents but also achieve the vision of CO2 reduction and
the perspectives of green chemistry in industrial plants.
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2. Experimental
2.1. Synthesis of Zr–Mg Mixed Oxide Aerogels

Zr–Mg mixed oxide precursor gels were synthesized by the epoxide-assisted sol–gel
route. Zirconium (IV) oxychloride octahydrate (ZrOCl2·8H2O), magnesium nitrate hexahy-
drate (Mg(NO3)2·6H2O), ethanol (CH3CH2OH), propylene oxide (PO), and HNO3 (65 wt%)
were used as reactants for the preparation of Zr–Mg mixed oxide aerogels, as shown in
Scheme 3. According to different Zr/Mg molar ratios, ZrOCl2·8H2O, Mg(NO3)2·6H2O, and
HNO3 were added into ethanol solution. The above solution was stirred until the particles
were dissolved. After that, PO was added to the resulting solution. The total molar ratio of
the precursor, HNO3, and PO was kept at a constant ratio of 1:1:16; the precursor contained
ZrOCl2·8H2O and Mg(NO3)2·6H2O. The solution was shaken for a while and sat for 24 h
to form a gel. For the aging process, the gel was washed with ethanol every 24 h for 2 days
to ensure the solvents in the gel were replaced by ethanol. Then the gel was dried in an
autoclave with supercritical carbon dioxide solvents. The pressure was set at 1200 psi, and
the temperature was set at 75 ◦C. After 4 h drying, the Zr–Mg mixed oxide aerogel was
successfully obtained. For the surface modification of Zr–Mg mixed oxide aerogels, the
aged gels were immersed into 15 wt% 3-Aminopropyl trimethoxysilane (APTMS)/EtOH
solution and refreshed the 15 wt% APTMS/EtOH solution every 24 h for 1, 2, 3, 4, 5 times.
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2.2. Carbon Dioxide/Epoxide Cycloaddition Catalytic Reactions

The amount of 0.2 g of the as-prepared catalyst, 1.16 g of PO, and a stirring bar were
added in a high-pressure reactor. After all screws were locked, the high-pressure reactor
was pressured to 10 kgW/cm2 with CO2. Until the temperature of the high-pressure reactor
was heated to the desired value (100, 120, 150, 180, and 200 ◦C in this case) using the heating
tapes and controlled the magnetic stirrer at 200 rpm for the cycloaddition reaction. After the
reaction, the high-pressure reactor was put into the ice bath to cool down. The solid–liquid
mixture with the liquid products of propylene carbonate (PC) and the powder catalysts of
the APTMS-modified Zr–Mg–O aerogels are observed in the reactor. Both can be separated
by the centrifugation process with the rotating speed of 3000 rpm for 3 min. The liquid
products are further detected by Nuclear Magnetic Resonance Spectroscopy (NMR) to
measure the conversion, selectivity, and yield of the CO2/PO cycloaddition reaction.

2.3. Characterization

The structures and morphologies of aerogel samples with different Zr/Mg molar
ratios were investigated using field emission scanning electron microscopy (FESEM, S-4800,
Hitachi Inc., Chiyoda City, Japan). The elemental composition of the as-prepared sam-
ples was performed by an energy dispersive spectrometer (EDX, Horiba Model 7021H,
Hitachi Inc., Chiyoda City, Japan), an accessory of FESEM. The pore size distribution
and the specific surface area of the as-prepared aerogels were measured using nitrogen
adsorption/desorption isotherms (BET, ASAP 2020, Micromeritics Inc., Norcross, GA,
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USA), following the Brunauer–Emmett–Teller (BET) theory. The thermal stability of the
as-prepared samples was studied by thermogravimetric analysis (TG analysis, TA-Q50,
DuPont Inc., Hayward, CA, USA). Furthermore, the functional groups of the samples
with different times of APTMS modification were studied by Fourier transform infrared
spectroscopy (FTIR, Tensor 27, Bruker Inc., Billerica, MA, USA). The conversion, selectivity,
and yield of the CO2/PO cycloaddition reaction were measured by NMR (AVIII-400(B662),
Bruker Inc., Billerica, MA, USA).

3. Results and Discussion
3.1. The Synthesis of Zr–Mg Mixed Oxide Aerogels

The surface morphologies of the as-prepared Zr–Mg mixed oxide aerogels using the
addition epoxide method were first investigated by FESEM. Figure 1 shows the FESEM
images of the as-prepared Zr–Mg mixed oxide aerogels with 10:0 (Figure 1a), 9:1 (Figure 1b),
8:2 (Figure 1c), 7:3 (Figure 1d), and 6:4 (Figure 1e) molar ratio of Zr to Mg, respectively.
The FESEM pictures show that the large clusters were observed for the as-prepared Zr–Mg
mixed oxide aerogels with a 6:4 molar ratio of Zr to Mg, which indicates the aggregation
of the particles as the Mg molar proportion increased. The Zr, Mg, and O EDS elemental
mapping images of the Zr–Mg mixed oxide aerogels with a 7:3 molar ratio of Zr to Mg
are shown in Figure 2. The Zr, Mg, and O atoms were dispersive very well from the
EDS elemental images, implying Zr, Mg, and O atoms are distributed uniformly in the
as-prepared Zr–Mg mixed oxide aerogels.

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 18 
 

 

was performed by an energy dispersive spectrometer (EDX, Horiba Model 7021H, Hitachi 
Inc., Chiyoda City, Japan), an accessory of FESEM. The pore size distribution and the spe-
cific surface area of the as-prepared aerogels were measured using nitrogen adsorp-
tion/desorption isotherms (BET, ASAP 2020, Micromeritics Inc., Norcross, GA, U.S.A.), 
following the Brunauer–Emmett–Teller (BET) theory. The thermal stability of the as-pre-
pared samples was studied by thermogravimetric analysis (TG analysis, TA-Q50, DuPont 
Inc., Hayward, CA, U.S.A.). Furthermore, the functional groups of the samples with dif-
ferent times of APTMS modification were studied by Fourier transform infrared spectros-
copy (FTIR, Tensor 27, Bruker Inc., Billerica, MA, U.S.A.). The conversion, selectivity, and 
yield of the CO2/PO cycloaddition reaction were measured by NMR (AVIII-400(B662), 
Bruker Inc., Billerica, MA, U.S.A.). 

3. Results and Discussion 
3.1. The Synthesis of Zr–Mg Mixed Oxide Aerogels 

The surface morphologies of the as-prepared Zr–Mg mixed oxide aerogels using the 
addition epoxide method were first investigated by FESEM. Figure 1 shows the FESEM 
images of the as-prepared Zr–Mg mixed oxide aerogels with 10:0 (Figure 1a), 9:1 (Figure 
1b), 8:2 (Figure 1c), 7:3 (Figure 1d), and 6:4 (Figure 1e) molar ratio of Zr to Mg, respectively. 
The FESEM pictures show that the large clusters were observed for the as-prepared Zr–
Mg mixed oxide aerogels with a 6:4 molar ratio of Zr to Mg, which indicates the aggrega-
tion of the particles as the Mg molar proportion increased. The Zr, Mg, and O EDS ele-
mental mapping images of the Zr–Mg mixed oxide aerogels with a 7:3 molar ratio of Zr 
to Mg are shown in Figure 2. The Zr, Mg, and O atoms were dispersive very well from the 
EDS elemental images, implying Zr, Mg, and O atoms are distributed uniformly in the as-
prepared Zr–Mg mixed oxide aerogels. 

 
Figure 1. The FESEM images of Zr–Mg mixed oxide aerogels with Zr/Mg molar ratio of (a) 10/0, (b) 
9/1, (c) 8/2, (d) 7/3, and (e) 6/4. 

 

Figure 1. The FESEM images of Zr–Mg mixed oxide aerogels with Zr/Mg molar ratio of (a) 10/0,
(b) 9/1, (c) 8/2, (d) 7/3, and (e) 6/4.

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 18 
 

 

was performed by an energy dispersive spectrometer (EDX, Horiba Model 7021H, Hitachi 
Inc., Chiyoda City, Japan), an accessory of FESEM. The pore size distribution and the spe-
cific surface area of the as-prepared aerogels were measured using nitrogen adsorp-
tion/desorption isotherms (BET, ASAP 2020, Micromeritics Inc., Norcross, GA, U.S.A.), 
following the Brunauer–Emmett–Teller (BET) theory. The thermal stability of the as-pre-
pared samples was studied by thermogravimetric analysis (TG analysis, TA-Q50, DuPont 
Inc., Hayward, CA, U.S.A.). Furthermore, the functional groups of the samples with dif-
ferent times of APTMS modification were studied by Fourier transform infrared spectros-
copy (FTIR, Tensor 27, Bruker Inc., Billerica, MA, U.S.A.). The conversion, selectivity, and 
yield of the CO2/PO cycloaddition reaction were measured by NMR (AVIII-400(B662), 
Bruker Inc., Billerica, MA, U.S.A.). 

3. Results and Discussion 
3.1. The Synthesis of Zr–Mg Mixed Oxide Aerogels 

The surface morphologies of the as-prepared Zr–Mg mixed oxide aerogels using the 
addition epoxide method were first investigated by FESEM. Figure 1 shows the FESEM 
images of the as-prepared Zr–Mg mixed oxide aerogels with 10:0 (Figure 1a), 9:1 (Figure 
1b), 8:2 (Figure 1c), 7:3 (Figure 1d), and 6:4 (Figure 1e) molar ratio of Zr to Mg, respectively. 
The FESEM pictures show that the large clusters were observed for the as-prepared Zr–
Mg mixed oxide aerogels with a 6:4 molar ratio of Zr to Mg, which indicates the aggrega-
tion of the particles as the Mg molar proportion increased. The Zr, Mg, and O EDS ele-
mental mapping images of the Zr–Mg mixed oxide aerogels with a 7:3 molar ratio of Zr 
to Mg are shown in Figure 2. The Zr, Mg, and O atoms were dispersive very well from the 
EDS elemental images, implying Zr, Mg, and O atoms are distributed uniformly in the as-
prepared Zr–Mg mixed oxide aerogels. 

 
Figure 1. The FESEM images of Zr–Mg mixed oxide aerogels with Zr/Mg molar ratio of (a) 10/0, (b) 
9/1, (c) 8/2, (d) 7/3, and (e) 6/4. 

 

Figure 2. The EDS elemental mapping of (a) Zr, (b) Mg, and (c) O distribution of the Zr–Mg mixed
oxide aerogels with Zr/Mg molar ratio of 7/3.



Nanomaterials 2022, 12, 3442 6 of 17

The specific surface areas and pore size distribution of the as-prepared Zr–Mg mixed
oxide aerogels with different Zr/Mg molar ratios were measured using nitrogen adsorp-
tion/desorption isotherms, as shown in Figures 3 and 4. Type IV N2 adsorption/desorption
isotherms were observed for all Zr–Mg mixed oxide aerogel samples, indicating the exis-
tence of mesopores in the mixed oxide aerogels. This is in good agreement with the average
pore size between 2–5 nm for all Zr–Mg mixed oxide aerogel samples, as shown in Table 1.
The pore size distributions of the Zr–Mg mixed oxide aerogel samples are narrow and
concentrated between 2–10 nm, as shown in Figure 4. The specific surface areas of Zr–Mg
mixed oxide aerogel samples shown in Table 1 are 465 (Zr/Mg of 10/0), 283 (Zr/Mg of
9/1), 365 (Zr/Mg of 8/2), 371 (Zr/Mg of 7/3), and 261 (Zr/Mg of 6/4) m2/g, respectively.
The specific surface areas of the Zr–Mg mixed oxide aerogels decrease from 465 m2/g to
261 m2/g when the Mg molar ratios of the aerogels increase. This is probably because
the addition of Mg destroys the gel structures and causes the pores to collapse. Although
the specific surface area of Zr–Mg mixed oxide aerogels is less than that of the pristine
ZrO2 aerogels, the specific surface area of Zr–Mg mixed oxide aerogels with Zr/Mg molar
ratio of 7/3 still reaches the value of 371 m2/g, which is much higher than that of other
composite metal oxides.
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Table 1. The average pore diameter and specific surface area of the as-prepared Zr–Mg mixed oxide
aerogels with different Zr/Mg molar ratios.

Molar Ratio of
Zr:Mg

Average Pore Diameter
(nm)

BET S.S.A
(m2/g)

10:0 3.41 464.48
9:1 2.12 283.04
8:2 4.4 364.45
7:3 3.04 370.67
6:4 3.68 260.77

Since the carbon dioxide cycloaddition reaction requires a heating process to energize
the environment, thermogravimetric analysis is used to analyze the thermal stability of the
Zr–Mg mixed oxide aerogels with Zr/Mg molar ratio of 7/3, which is the catalyst with
highest PC yield of CO2/PO cycloaddition reaction. Figure 5 is the picture of TG analysis of
the Zr–Mg mixed oxide aerogels with a Zr/Mg molar ratio of 7/3. It shows that the weight
loss before 200 ◦C is inferred to be the surface water (-OH functional group) removal of
the aerogels. This phenomenon may cause the aerogel structures to collapse and affect the
activity of the catalysts during the cycloaddition reaction, resulting in poor reactivity of
the catalyst.
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The bonding configurations of Zr (3d) (Figure 6a), O (1s) (Figure 6b), and Mg (1s)
(Figure 6c) atoms in the pristine ZrO2 aerogel and Zr–Mg mixed oxide aerogels with Zr/Mg
molar ratio of 7/3 were examined using X-ray photoelectron spectroscopy (XPS), as shown
in Figure 6. Zr 3d curves (Figure 6a) are fitted to two peaks corresponding to 3d5/2 and
3d3/2 lines, respectively. Zr 3d5/2 and Zr 3d3/2 peaks are located at 182.1 eV and 184.5 eV
for the pristine ZrO2 aerogel, as shown in Figure 6(i) of Figure 6a. The distance between
two satellites of Zr 3d5/2 and Zr 3d3/2 for the pristine ZrO2 aerogel is 2.4 eV, which is in
good agreement with the reference ZrO2 satellite peaks of Zr 3d5/2 and Zr 3d3/2. This
means ZrO2 aerogels are successfully synthesized in this work. On the other hand, the
position of Zr (3d) peaks in the Zr–Mg mixed oxide aerogels with Zr/Mg molar ratio of
7/3 (Figure 6(ii) of Figure 6a) are chemically shifted toward larger binding energy values of
183.6 eV for Zr 3d5/2 peak and 185.9 eV for Zr 3d3/2 peak compared with the peaks in the
pristine ZrO2 aerogels. This indicates that the chemical properties of Zr4+ species in the
as-prepared Zr–Mg mixed oxide aerogels with a Zr/Mg molar ratio of 7/3 are different
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from those in pure ZrO2 aerogels. As for the O 1s peak (Figure 6b), ZrO2 aerogel (Figure 6(i)
of Figure 6b) shows the peak centered at a binding energy of 530.9 eV, which corresponds
well with the reference ZrO2 satellite peak of O 1s. However, the position for O 1s in the
as-prepared Zr–Mg mixed oxide aerogels with Zr/Mg molar ratio of 7/3 is chemically
shifted to a large binding energy value of 532.3 eV. The results of the Zr 3d and O 1s curves
for the ZrO2 and Zr–Mg mixed oxide aerogels indicate that there is another atom to bond
with Zr–O bonds to form the solid solution. Furthermore, the Mg 1s peak (Figure 6c) shifted
to a higher binding energy value of 1305.6 eV compared with the reference Mg 1s peak of
Mg and MgO. The result indicates that Mg is successfully doped into the ZrO2 aerogel for
the Zr–Mg mixed oxide aerogels with a Zr/Mg molar ratio of 7/3.
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Figure 7 shows the PC yields of the CO2/PO cycloaddition reactions with different
Zr/Mg molar ratios of Zr–Mg mixed oxide aerogels (10/0, 9/1, 8/2, 7/3, and 6/4) under
reaction temperature of 150 ◦C, the pressure of 10 kgW/cm2, and reaction time of 15 h.
More clearly, the yield of PC significantly enhanced with the increase in Mg amount for
the as-prepared Zr–Mg mixed oxide aerogels. The detailed data of the PO conversion,
selectivity, and PC yield are given in Table 2. Zr–Mg mixed oxide aerogels with Zr/Mg
molar ratio of 10/0 and the pristine ZrO2 aerogel have large PO conversion of 91% and
low PC selectivity of 9.4% because of rich Lewis acidic and fewer Lewis basic sites of the
pristine ZrO2 aerogels. When the amount of Mg is increased for the Zr–Mg mixed oxide
aerogels, the PO conversions are slightly increased; however, the PC selectivity is greatly
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enhanced from 9.4 to approximately 65%. This is because the Lewis basic sites for the
Zr–Mg mixed oxide aerogels are successfully increased with the addition of Mg into the
aerogels. It can be found that the molar ratio with the Zr/Mg molar ratio of 7/3 gives the
highest PC yield (63.6%), but PC yield decreases even if the basic species of Mg amount is
increased to the Zr/Mg molar ratio of 6/4. This is because the specific surface area for the
Zr–Mg mixed oxide aerogels with a Zr/Mg molar ratio of 6/4 (260.77 m2/g) is lower than
that with Zr/Mg molar ratio of 7/3 (370.67 m2/g).
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Table 2. The PO conversion, PC selectivity, and PC yield using the Zr–Mg mixed oxide aerogels with
different Zr/Mg molar ratios.

Molar Ratio of
Zr:Mg

Conversion
(%)

Selectivity
(%)

Yield
(%)

10:0 91.0 9.4 8.5
9:1 92.9 62.9 58.5
8:2 94.7 63.2 59.8
7:3 97.6 65.2 63.6
6:4 98.4 63.4 62.4

3.2. Mg–Zr Mixed Oxide Aerogels with Amino Functional Group Modification

As mentioned, the PC yield rises with the increase in the Mg incorporation into ZrO2
aerogels to enhance the Lewis basic sites. However, the obtained PC yield of 63.6% using
Zr–Mg mixed oxide aerogel catalysts with the Zr/Mg molar ratio of 7/3 is still not large
enough. In order to increase the Lewis basic sites of the as-prepared aerogel surfaces,
APTMS with an amino functional group is grafted on the surface of Zr–Mg mixed oxide
aerogels with the Zr/Mg molar ratio of 7/3 for the enhancement of Lewis basic sites of the
aerogel surfaces. The relevant catalytic performance using APTMS-modified Zr–Mg mixed
oxide aerogels with the Zr/Mg molar ratio of 7/3 will be investigated and discussed later.

The EDS elemental mapping of APTMS-modified Zr–Mg mixed oxide aerogels is
measured as shown in Figure 8. Figure 8a–d is the EDS mapping image of Zr (Figure 8a),
Mg (Figure 8b), O (Figure 8c), and N (Figure 8d) elements, respectively. We can clearly
observe that N signals were well-distributed on the surface of APTMS-modified Zr–Mg
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mixed oxide aerogels, indicating APTMS agents are successfully grafted on the aerogel
surface. To further prove the APTMS successful grafting, FT-IR spectra of the APTMS-
modified Zr–Mg mixed oxide aerogels with zero to five times modifications were shown in
Figure 9. The peak intensities of the -OH functional group (3250–3500 cm−1) decrease with
increased APTMS modifications. In contrast, the peak intensities of the -NH2 functional
group show the opposite trend, decreasing with the increased APTMS modifications. This
indicates the -Si-(O-CH3)3 group of APTMS agents are bonded to the Mg-O-Zr-OH group
of the Zr–Mg mixed oxide aerogels to form CH3OH and -Si-O-Zr-O-Mg bonds, leading to
the decrease in the intensities of -OH functional groups. It also proves that the APTMS
agents are successfully modified on the aerogel surfaces. Figure 10 is the TG analysis of
the APTMS-modified Zr–Mg mixed oxide aerogels. It shows that the APTMS-modified
Zr–Mg mixed oxide aerogel has better thermal stability than the pristine Zr–Mg mixed
oxide aerogel without APTMS modifications between 0 and 250 ◦C. This proves that the
APTMS modification effectively removes the attached surface water of the pristine aerogel
surfaces, and APTMS modification is beneficial to the enhancement of the thermal stability
of the aerogel catalysts.
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Figure 11 and Table 3 show the catalytic results of the CO2/PO cycloaddition reactions
using Zr–Mg mixed oxide aerogels with a Zr/Mg molar ratio of 7/3 under different APTMS
modification times. The PC selectivity rises from 65.2% to 95.2% with the increased APTMS
modifications from zero to four times, resulting from the effective enhancement of the
Lewis basic sites on the surface of APTMS-modified Zr–Mg mixed oxide aerogels with
Zr/Mg molar ratio of 7/3. Consequently, the PC yield with four APTMS modification times
also reaches the largest value of 93.1% with CO2 conversion of 97.7% and PC selectivity
of 95.2%. However, the PC selectivity decreases to 91%, leading to the decline of the PC
yield (89.5%) when the APTMS modification increases to five times. This is because larger
grafted APTMS agents on the aerogel surface have hindered the surface of Zr–Mg mixed
oxide aerogels in their effort to catalyze CO2/PO cycloaddition reactions.
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Table 3. The PO conversion, PC selectivity, and PC yield using the APTMS-modified Zr–Mg mixed
oxide aerogels with Zr/Mg molar ratio of 7/3 under different modification times at a reaction
temperature of 150 ◦C.

Times of APTMS
Modified

Conversion
(%)

Selectivity
(%)

Yield
(%)

Zero 97.6 65.2 63.6
One 98.3 71.8 70.6
Two 97.9 78.1 76.4

Three >99.9 82.4 82.4
Four 97.7 95.2 93.1
Five 98.3 91 89.5

Figure 12 and Table 4 exhibit the results of PO conversion, PC selectivity, and PC yield
using APTMS-modified Zr–Mg mixed oxide aerogels at the different reaction temperatures
of 100, 120, 150, 180, and 200 ◦C, respectively. PC selectivity and yield slightly enhance
with the increased reaction temperature from 100 to 150 ◦C and reach the largest PC yield
of 93.1% at a reaction temperature of 150 ◦C. However, when the reaction temperature
still goes up to 180 and 200 ◦C, the PC yield and selectivity both go down to 67.2% rather
than increase the value. It means there is an optimal reaction temperature (150 ◦C) for this
CO2/PO cycloaddition reaction. Kongpanna et al. [58] claimed the enthalpy (∆H) of this
CO2/PO cycloaddition reaction is −0.808 kJ/mol, the so-called exothermic reaction, which
makes the reaction likely favors low temperature and high pressure to synthesize the main
product (PC) instead of the side products (PPO).
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Figure 12. The histograms of the PC yield for CO2/PO cycloaddition reactions using the APTMS-modified
Zr–Mg mixed oxide aerogels with Zr/Mg molar ratio of 7/3 under different reaction temperatures.

Table 4. The PO conversion, PC selectivity, and PC yield using the APTMS-modified Zr–Mg mixed
oxide aerogels with Zr/Mg molar ratio of 7/3 under four APTMS modifications at different reac-
tion temperatures.

Temperature
(◦C)

Conversion
(%)

Selectivity
(%)

Yield
(%)

100 90.9 74.1 67.4
120 98.9 79.6 78.7
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Table 4. Cont.

Temperature
(◦C)

Conversion
(%)

Selectivity
(%)

Yield
(%)

150 97.9 95.2 93.1
180 >99.9 85.1 85.1
200 >99.9 67.2 67.2

The results of PO conversion, PC selectivity, and PC yield using APTMS-modified
Zr–Mg mixed oxide aerogels at the different reaction times of 6, 9, 12, 15, and 24 h are
shown in Figure 13 and Table 5. The PC yield at the reaction time of 6 h (83.9%) is lower
than that of 15 h (93.1%), as shown in Figure 13 and Table 5. It means there is enough
effective catalytic interaction between reactants (CO2 and PO) and APTMS-modified Zr–Mg
mixed oxide aerogel catalyst. However, if the reaction time still increases to 24 h, PC yield
decreases rapidly to 40.6% because of the tendency to form PPO by-products. As a result,
the optimal reaction time is 15 h to obtain the largest PC yield using APTMS-modified
Zr–Mg mixed oxide aerogel catalysts.
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Table 5. The PO conversion, PC selectivity, and PC yield using the APTMS-modified Zr–Mg mixed
oxide aerogels with Zr/Mg molar ratio of 7/3 under four APTMS modifications and reaction temper-
ature of 150 ◦C at different reaction times.

Reaction Time
(h)

Conversion
(%)

Selectivity
(%)

Yield
(%)

6 99.4 84.4 83.9
9 98.5 85.4 84.1
15 97.7 95.2 93.1
24 >99.9 40.6 40.6

The catalytic performance of PC yield using APTMS-modified Zr–Mg mixed oxide
aerogels were also compared with other studies, as shown in Table 6. For metal oxide
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catalysts, the addition of a cocatalyst or solvent is necessary to enhance their efficiencies
of cycloaddition reactions. However, the catalytic efficiency using metal oxide catalysts
is still quite low. As a result, some literature focus on the preparation of nonsolvent and
cocatalyst-free MOF catalysts for cycloaddition reactions. In this study, we successfully
designed the APTMS-modified Zr–Mg mixed oxide aerogel nanoarchitectonics for the
CO2/PO cycloaddition reactions. Table 6 shows that PC yields using APTMS-modified
Zr–Mg mixed oxide aerogels in this work reach 93.1%, which is comparable with some
MOF catalysts. As a result, the as-prepared APTMS-modified Zr–Mg mixed oxide aerogels
show great potential in industrial plants for CO2 reduction in the future.

Table 6. The literature comparison of the PC yield using different heterogeneous catalysts and the
APTMS-modified Zr–Mg mixed oxide aerogels.

Catalyst PO
(mmol)

Cat. Amount
(g)

Temp.
(◦C)

PCO2
(kg/cm2)

Time
(h)

Co-Catalyst/
Solvent

PC
Yield
(%)

Ref.

MgO 25 0.5 150 80 4 DMF 32.1 [44]
ZrO2 25 0.5 150 80 4 DMF 10.9 [44]
Al2O3 25 0.5 150 80 4 DMF 6.6 [44]

Al-Mg-O 4 0.5 100 5 24 DMF 88 [45]
MOF-5 20 0.1 50 60 4 - 0.1 [59]
MOF-5 20 0.1 50 60 4 n-Bu4NBr 97.6 [59]
ZIF-8 85 0.1 120 10 12 - 52.5 [60]
ZIF-67 25 0.03 120 7 4 - 95 [37]
ZIF-78 20 0.1 150 10 15 - 50.7 [61]

Zr-Mg-O Aerogel 20 0.2 150 10 15 - 63.6 This work
APTMS-modified
Al-Mg-O Aerogel 20 0.2 150 10 15 - 93.1 This work

4. Conclusions

For the first time, Zr–Mg mixed oxide aerogels were successfully synthesized by
doping Mg into ZrO2 aerogels via the epoxide-assisted sol–gel route. The as-prepared
Zr–Mg mixed oxide aerogels were also used for the CO2/PO cycloaddition reactions to
investigate the PO conversion, PC selectivity, and PC yields. Compared with pristine
ZrO2 aerogels, Zr–Mg mixed oxide aerogels can effectively enhance the Lewis basic sites
of the aerogel surfaces, leading to an increase in the PC selectivity and PC yields. The
highest PC selectivity and PC yields are 65.2% and 63.6% for the Zr–Mg mixed oxide
aerogels with a Zr/Mg molar ratio of 7/3. However, the PC selectivity of 65.2% is still
not large enough, resulting from the lack of Lewis basic sites of the Zr–Mg mixed oxide
aerogels with a Zr/Mg molar ratio of 7/3. To increase the Lewis basic sites of the aerogel
surfaces, APTMS with amino functional groups were grafted on the surface of the Zr–Mg
mixed oxide aerogels with a Zr/Mg molar ratio of 7/3. The largest PC yield of 93.1%
was observed using Zr–Mg mixed oxide aerogels with a Zr/Mg molar ratio of 7/3 under
four-time APTMS modification, resulting from the increase in the Lewis basic sites after
APTMS modifications. The as-prepared APTMS-modified Zr–Mg mixed oxide aerogels
have great potential in future CO2/PO cycloaddition reactions.
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