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Abstract: Severe plastic deformation (SPD) is an effective route for the nanocrystallization of multi-
principal element alloys (MPEAs). The stability of the refined microstructure is important, considering
the high temperature applications of these materials. In the present study, the effect of SPD on the
stability of a body-centered cubic (bcc) HfNbTiZr MPEA was investigated. SPD was performed using
a high-pressure torsion (HPT) technique by varying the number of turns between 1

2 and 10. The
evolution of phase composition and microstructure was studied near the disk centers and edges
where the imposed strain values were the lowest and highest, respectively. Thus, the shear strain
caused by HPT varies between 3 ( 1

2 turn, near the center) and 340 (10 turns, near the edge). It
was found that during annealing up to 1000 K, the bcc HfNbTiZr alloy decomposed into two bcc
phases with different lattice constants at 740 K. In addition, at high strains a hexagonal close packed
(hcp) phase was formed above 890 K. An inhomogeneous elemental distribution was developed
at temperatures higher than 890 K due to the phase decomposition. The scale of the chemical
heterogeneities decreased from about 10 µm to 30 nm where the shear strain increased from 3 to 340,
which is similar to the magnitude of grain refinement. Anneal-induced hardening was observed in
the MPEA after HPT for both low and high strains at 740 K, i.e., the hardness of the HPT-processed
samples increased due to heat treatment. At low strain, the hardness remained practically unchanged
between 740 and 1000 K, while for the alloy receiving high strains there was a softening in this
temperature range.

Keywords: HfNbTiZr multi-principal element alloy; severe plastic deformation; annealing;
dislocations; hardness

1. Introduction

Multi-principal element alloys (MPEAs), which include high-entropy alloys (HEAs),
are materials that comprise several constituents with similar fractions [1]. These emerging
materials are rapidly gaining attention from the science community [2], partly due to the
realization of the vast number of new alloys, but also owing to the superior properties
possessed by these novel materials. It has been reported that MPEAs exhibit excellent
mechanical properties, such as high hardness [3–5], good fatigue, wear and corrosion
resistance [6–8], etc. Among them, refractory MPEAs are typically well-suited for high tem-
perature applications, thanks to the high melting points of the refractory elements (above
1875 ◦C). While many refractory MPEAs display high strength even at high temperatures,
typically they are also brittle at room temperature [9], limiting the range of application.
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An equimolar refractory HfNbTiZr MPEA was reported to demonstrate not only good
hardness even at high temperatures, but also good ductility at ambient temperatures [10].

Other than selecting the chemical composition of the material, tailoring the microstruc-
ture is a well-known approach for obtaining the desired mechanical properties. MPEAs
are usually produced via a melting method, yielding coarse-grained materials [11–15]. The
strength of such materials can be enhanced by severe plastic deformation (SPD), which
increases the amount of defects (e.g., dislocations) and decreases grain size. Among the
SPD methods, high-pressure torsion (HPT) is capable of producing the highest imposed
strain [5,16–18]. In particular, applying 10 HPT turns to an HfNbTiZr MPEA has been
shown to refine the microstructure from a coarse-grained state to the nanocrystalline regime,
while the hardness increased by 70% from 2630 MPa to 4450 MPa [19].

Investigating the thermal responses of MPEAs is not only beneficial when designing
suitable heat-treatment processes for tailoring the microstructure, but also critical for high-
temperature applications. The thermal stability of MPEAs depends on both the chemical
composition and the microstructure. For example, an as-cast single phase HfNbTiZr
MPEA was stable at 673 K for 100 h, while precipitates appeared after 200 h at the same
temperature, and after 700 h the material consisted of two bcc phases and an additional
hcp phase [20]. Cao et al. [21] performed annealing for 100 h at different temperatures on
the same MPEA, confirming that at 673 K elemental segregation occurs, but there was no
formation of extra crystalline phases. On the other hand, precipitations were observed by
electron microscopy at 773, 873 and 1023 K. At 1173 K, the MPEA became single phase
again without elemental partition [21]. By contrast, in an HfNbTiZr MPEA cold-rolled to a
cross-sectional area reduction of 80%, bcc and hcp precipitates were formed at 723 K even
after 10 h of aging; however, if the rolled microstructure was intentionally recrystallized,
precipitation occurred only after 200 h at 723 K [22]. In our prior paper [5], it was also
demonstrated that a nanocrystalline HfNbTiZr processed by HPT for 10 turns decomposed
into two bcc phases when annealed up to 740 K at a heating rate of 40 K/min, and an
additional hcp phase appeared at 890 K.

In this paper, the effect of the strain imposed during HPT on the thermal stability of
an HfNbTiZr MPEA is investigated. This work is an extension of our former study [5],
where microstructure and phase-composition changes were investigated at the edge of a
nanocrystalline HfNbTiZr MPEA disk processed for 10 HPT turns followed by heating up
to temperatures of 740, 890 and 1000 K. These temperatures were selected on the basis of a
differential scanning calorimetry (DSC) measurement. It was found that at 740 K two bcc
phases were formed in the sample, while at 890 K an additional hcp phase also appeared.
Moreover, a recovery occurred in the bcc phases during annealing. At 1000 K, there was
further recovery and recrystallization, as well as an increase in the hcp phase fraction.
The microstructure evolution during annealing is shown schematically in Figure 1. In the
current work, our former study focusing on one position per HPT disk is extended to two
locations of the disk center and edge as well as to other HPT turns, namely 1

2 , 1, 5 and
10 HPT turns. Due to the extension, the measurement locations in the alloy involve shear
strain in a wide range, between ~3 and ~340. Our goal is to reveal the effect of SPD on
the thermal stability of HfNbTiZr MPEA by systematically evaluating the microstructural
changes at the locations with different shear strains. For the sample preparation, all
processed samples are annealed at the same temperatures applied in our previous work [5].
Investigation of the phase composition and microstructure of the annealed specimens was
conducted, and the relation with the measured hardness is discussed in this report.
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Figure 1. Schematic showing the evolution of microstructure at the edge of a nanocrystalline
HfNbTiZr MPEA disk processed by 10 HPT turns (a) followed by heating up to the temperatures of
740 (b), 890 (c) and 1000 K (d), which is adapted from the experimental results presented in [5]. The
blue and yellow hexagons indicate grains with bcc and hcp structures. The inverted “T” represents
dislocations inside the grains. The larger the size of inverted “T”, the higher the dislocation density.

2. Materials and Methods
2.1. Processing of MPEA and Annealing Conditions

A refractory Hf25Nb25Ti25Zr25 MPEA was synthesized via magnetic levitation melting,
using a mixture of four pure components (purity > 99.9 wt%). The process is followed
by a heat treatment at 1290 ◦C for 24 h in order to homogenize the material. Afterward,
cylindrical billets with a diameter of 10 mm were machined from the cast material, which
were then subsequently sliced into 1-mm-thick disks using electric discharge machining
(EDM). A series of mechanical grindings was applied to achieve disks with a final thickness
of ~0.85 mm. The HPT process was performed using a conventional HPT facility with
quasi-constrained set-up [23]. The numbers of HPT turns were 1

2 , 1, 5 and 10, conducted at
a rotational speed of 1 rpm under a pressure of 6.0 GPa at room temperature.

In order to study the annealing effect on the material, a Perkin Elmer (DSC2) calorime-
ter (manufacturer: Perkin Elmer, Waltham, MA, USA) was employed to perform the
heat-treatment process. The targeted temperatures were selected as in our prior paper [5],
namely 740, 890 and 1000 K. Individual specimens were heated up to the chosen tem-
peratures with a 40 K/min heating rate and immediately quenched with a 300 K/min
quenching rate to room temperature for microstructure investigation.

2.2. Study of Phase Composition by X-ray Diffraction

The microstructure and phase composition were investigated by X-ray diffraction
(XRD) at two different distances from the disc center of each HPT-processed sample. Small
pieces near the center and edge of the disks were cut using a diamond saw. Due to the need
to prepare multiple samples from each disk to anneal at different temperatures, it was not
possible to have a specimen at exactly the center of the HPT disks. Therefore, the middle of
the “center” and “edge” samples were located at ~0.75 mm and ~4.35 mm from the actual
disk center, respectively. The widths of the specimens were ~1.1 mm and ~1.3 mm for the
“center” and “edge” samples, respectively, and both of them had a height of ~3 mm (the
dimension of the cut-pieces perpendicular to the radial direction of the HPT-processed
disks). Even though these locations are about 0.65–0.75 mm away from the true center and
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edge of the HPT disks, these specimens will be referred to as “center” and “edge” samples
in this paper.

Before the XRD measurements, the surfaces of the specimens were treated with me-
chanical and electropolishing. The mechanical polish was performed using a series of SiC
papers with a grit of 800, 1200, 2400 and 4000, and afterward with a colloidal alumina
suspension having 1 µm particle size. The samples are then etched using a solution of
45 mL distilled water, 5 mL HF and 2 mL nitric acid for ~30 s to remove the outmost surface
layer distorted by mechanical polishing.

A Smartlab powder diffractometer (manufacturer: Rigaku, Tokyo, Japan) with CuKα

radiation having a wavelength of λ = 0.15418 nm was utilized for the investigation of the
phase composition of the HPT-processed and the annealed HfNbTiZr MPEA samples. The
diffractometer was used in Bragg–Brentano geometry. In all annealed samples, two bcc
phases with overlapping peaks were observed, and some samples had an additional hcp
phase. The overlapping peaks of the different phases were separated by their fitting with a
sum of Lorentzian functions. The fraction of each phase was estimated as the fraction of
the sum of the intensity of the corresponding peaks over all measurable peaks on the XRD
pattern. The lattice constant was calculated from the diffraction peak position by utilizing
the Nelson–Riley method [24].

2.3. Investigation of the Microstructure by X-ray Line Profile Analysis

X-ray line-profile analysis (XLPA) was applied for the characterization of the mi-
crostructure of the MPEA samples. A diffractometer with a rotating anode (type: RA-
MultiMax9, manufacturer: Rigaku, Tokyo, Japan) with two-dimensional imaging-plate
detectors was employed for the XLPA measurement, using a CuKα1 radiation with a
wavelength of λ = 0.15406 nm. The convolutional multiple whole profile (CMWP) fitting
method [25] was used to analyze the line profiles. This procedure considers the measured
diffraction pattern as a sum of a background spline and the theoretical peaks obtained as
the convolution of the profiles associated with the diffraction domain size and the dislo-
cation density. The fitting was performed using a gradient descend method to minimize
the sum of the squared residuals between the measured and theoretical patterns. Due to
the presence of dislocations in the SPD-deformed microstructure, the diffraction peaks
exhibited strain anisotropy, i.e., their breadth depended significantly on the indices of
reflections, which can be expressed with the dislocation contrast factors [25]. The contrast
factors for the bcc HfNbTiZr MPEA depend on two parameters, namely Ch00, which has
a value of ~0.31 for both edge and screw dislocations, and q, which has values of 1.5 and
2.7 for edge and screw dislocations, respectively [19]. The hcp phase of the MPEA was
not evaluated with XLPA due to its low intensity. Figure 2 demonstrates a fitting using
the CMWP method on the edge part of the sample processed by 1 turn of HPT without
any annealing.

The in-depth homogeneity of the microstructure of the MPEA after HPT was checked
by XLPA using synchrotron X-ray diffraction, carried out at the Swedish Materials Science
beam line (P21.2) at the Deutsches Elektronen Synchrotron (DESY). A beam focused to
a size of 2.2 × 7 µm2 with a beam energy of 82.5 keV (wavelength: λ = 0.01503 nm) was
utilized. Disk centers and edges after HPT for 1

2 and 10 turns were measured through the
full thickness of the HPT disks with a step size of 10 µm. During the collection of each
diffraction profile, the sample was moved perpendicularly to the beam and parallel to the
disk diameter by ±100 µm to increase the scattering volume and obtain better statistics.
The calibration of the distance between the sample and detector (995 mm) was carried
out with a standard LaB6 powder (NIST SRM660c) and the recording of the patterns was
conducted with a flat panel detector with 430 × 430 mm2 active area and 150 × 150 µm2

pixel size (type: Varex XRD 4343CT, manufacturer: Varex Imaging, Salt Lake City, UT, USA).
The 2-dimensional intensity distribution recorded by the detector were integrated along
the Debye–Scherrer rings to obtain the usual (intensity vs. diffraction angle) pattern using
pyFAI software package (version 0.18, ESRF, Grenoble, France) [26].
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fitted diffractograms, respectively, while the difference between them is indicated as a line at the
bottom of each plot. The indices of reflections are also shown. The inset shows reflection 211 with a
higher magnification.

2.4. Microstructure Study by Electron Microscopy

In order to investigate the influence of plastic deformation on the thermal responses
of the HfNbTiZr MPEA, an examination of the microstructure with electron microscopy
was conducted for the specimens with the lowest and highest imposed strains, i.e., for the
center of the disk processed by 1

2 HPT turn and the edge of the sample deformed by 10 HPT
turns. For the center part of the disk after a half HPT turn and its annealed counterparts,
the microstructure characterization was carried out via electron backscatter diffraction
(EBSD). For this inspection, an FEI Quanta 3D scanning electron microscope (SEM) was
utilized (manufacturer: Thermo Fisher Scientific, Waltham, MA, USA). In order to prepare
the surface for the EBSD measurement, a SEMPrep (SC-1000) device from Technoorg Linda
(Budapest, Hungary) was used for conducting ion milling for ~30 min, applying an Ar ion
beam and starting with an acceleration voltage of 10 keV which was then reduced to 1 keV.
The EBSD images are taken using step sizes between 0.5 and 2 µm depending on the fineness
of the microstructure, and were analyzed using Orientation Imaging Microscopy (OIM)
software (manufacturer: TexSem Laboratories, Provo, UT, USA). For the examination of the
spatial elemental distribution, energy-dispersive X-ray spectroscopy (EDS) measurement
was conducted using the same SEM facility.

For the specimen taken from the edge of the disk processed by 10 HPT turns leading to
true nano-scale grain size and high defect density, transmission electron microscopy (TEM)
and EDS were exploited for the microstructure characterization of both the HPT-processed
and annealed samples. In order to prepare thin TEM-lamellae from the bulk samples, the
focused ion beam (FIB) technique was used with the help of Ga+ ions. The specimens were
first mounted onto a Cu stub for mechanical grinding and polishing using a special glue
at 100 ◦C for not more than 1 min. Afterward, an ion beam with an acceleration voltage
of 7 keV and a current of 2 nA was employed for thinning the lamellae with a starting
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thickness of 50 µm, and then a reduced voltage of 3 keV, and lastly 1 keV were applied
on both sides of the lamellae to eliminate the damages on the surfaces. After the lamella
preparation, the TEM investigation was carried out using a Titan Themis G2 200 scanning
transmission electron microscope (STEM), equipped with a four-segment Super-X EDS
detector (manufacturer: Thermo Fisher Scientific, Waltham, MA, USA). The imaging part
was corrected for the spherical aberration (Cs), while no probe-correction was applied. The
images were recorded with a Fishione high-angle annular dark-field (HAADF) detector
(manufacturer: Thermo Fisher Scientific, Waltham, MA, USA), with the image resolution
of 0.16 nm in STEM Z-contrast imaging mode, and with a 4 k × 4 k CETA 16 M indirect
detection CMOS camera (Thermo Fisher Scientific, Waltham, MA, USA) in both bright-field
(BF) and dark-field (DF) modes. The EDS data of the studied MPEA was recorded in
spectrum-image mode (together with the HAADF signal). The average grain size was
determined by counting about 40–180 grains for each sample using the DF images, since
these are more suitable for the identification of the individual grains compared to the BF
micrographs. In practice, the numbers of the measured grains were between 34 and 183 for
the different HPT-processed and annealed samples.

2.5. Hardness Test

A surface treatment was conducted before the hardness test, similar to the process
performed before the XRD measurement (see Section 2.2). The indentation was performed
using a Zwick Roell ZHµ hardness tester with a Vickers indenter (manufacturer: Kennesaw,
GA, USA). The load and the dwell time were 500 g and 10 s, respectively, for all samples
after HPT and annealing. For each sample, 10 measurements were carried out, and the
average was used as the final microhardness value.

3. Results
3.1. Microstructure Evolution with Increasing Straining during HPT

Figure 3a,b show the crystallite size and the dislocation density measured by XLPA
at both center and edge of the samples after 1

2 , 1, 5 and 10 HPT turns. For a half turn, the
crystallite size at the center is about 50 nm which decreased to ~20 nm at the edge. When
the number of turns increased to one, the crystallite size decreased to ~20 and ~15 nm at
the disk center and edge, respectively. For 5 and 10 turns, the crystallite sizes were about
15 nm for both locations at the center and periphery. Regarding the dislocation density,
it increased from ~36 × 1014 m−2 to ~166 × 1014 m−2 from the disk center to the edge,
respectively, after a half turn. The dislocation density increased to ~182 × 1014 m−2 at the
disk center after one turn, while at the edge it reached a value of about 200 × 1014 m−2.
After 5 and 10 turns, the dislocation density saturated at ~220 × 1014 m−2 in both the center
and edge parts of the disks. Figure 4a,b show the crystallite size and the dislocation density
vs. the shear strain (γ) evolved during HPT, which can be determined as:

γ =
2πrn

t
, (1)

where n is the number of turns, r is the distance from the disk center and t is the thickness
of the specimen [27]. This study uses t ≈ 0.8 mm for all numbers of turns, and r = 0.75
and 4.35 for the center and edge positions, respectively, examined for the disks. Based on
Equation (1), the lowest and the highest shear-strain values in the present study were ~3
and ~340, respectively, which are characteristic at the disk center for 1

2 turn and edge for
10 turns. Figure 4 reveals that the crystallite size decreased while the dislocation density
increased with increasing the shear strain and both quantities saturated at the strain of
about 30 with the values of about 15 nm and ~220 × 1014 m−2, respectively. It should
be noted that the crystallite (or coherently scattering domain) size obtained by XLPA is
smaller than the grain size determined by either TEM or EBSD, as will be shown in the next
section. This phenomenon is usual for SPD-processed metallic materials and caused by the
fact that even very small misorientations can break the coherency of X-rays scattered from
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the material [28]. Therefore, for hierarchical refined microstructures obtained by SPD, the
crystallite size determined by XLPA corresponds to the dimension of dislocation cells or
subgrains rather than the grain size [29,30].
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It is worth noting that laboratory XRD investigated only an about 10-µm-thick sur-
face layer of the HPT-processed disks. The question arises whether the microstructural
parameters measured on the surface describe the whole disk well, since there may be het-
erogeneous structural changes along the through-thickness direction during HPT. To clarify
this question for the bcc MPEA, a through-thickness characterization of the microstructure
was carried out by synchrotron XRD. Namely, 1-mm-thick lamellas were cut parallel to the
disk diameter and XRD patterns were measured in transmission diffraction configuration
on the cross-section of the disks as a function of the distance from the top surface. These
experiments were performed on the samples involving the lowest and highest strains, i.e.,
at the center of the disk processed for 1

2 turn and the edge of the sample after 10 turns.
As an example, Figure 5a,b show the full width at half maximum (FWHM) of 110 and
332 diffraction peaks, respectively, as a function of the distance from the top surface of
the disks. Reflections 110 and 332 are the 1st and the 11th peaks of the bcc phase, respec-
tively, i.e., they were taken from the beginning and at the end of the diffraction patterns.
There was no strong variation in the peak breadth vs. the distance from the top surfaces,
especially for the edge after 10 turns. Thus, it can be concluded that the microstructure
was reasonably homogeneous along the thickness of the HPT disks for both the lowest
and highest strains, implying that the quantitative results (i.e., the crystallite size and the
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dislocation density) obtained on a surface layer by laboratory XRD also characterize the
material inside the disks.
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Figure 5. The full width at half maximum (FWHM) of 110 (a) and 332 (b) diffraction peaks as a
function of the distance from the top surface of the disks processed for 1

2 and 10 turns.

3.2. Effect of Heat Treatment on the Phase Composition Revealed by XRD

Figure 6 shows the evolution of a part of the XRD pattern between the diffraction
angles of 62 and 72◦ for the disk center processed for different HPT turns and annealed
at various temperatures. For the lowest number of turns (1/2), the bcc peak with the
indices 211 was separated to two profiles at 740 K. This peak splitting was most probably
caused by the development of chemical heterogeneities, i.e., the decomposition of the
single bcc phase into two bcc structures with different lattice constants. The bcc phases
related to the diffraction peaks at lower and higher angles are denoted as bccL and bccH,
respectively. The edge parts of the disks also demonstrated the decomposition of the bcc
phase to bccL and bccH phases at 740 K as shown in Figure 7. It is noted that the peak
splitting was observed for all XRD reflections. The lattice constant of the bccL phase is
higher, while that for the bccH phase is lower, than the average lattice parameter of the
HPT-processed, more homogeneous structure. For instance, in the case of the edge of the
disk processed for 10 turns and then annealed to 740 K, the lattice constants of the bccL
and bccH phases are 0.3485 ± 0.0007 and 0.3427 ± 0.0001 nm, respectively, in comparison
with the value of 0.3438 ± 0.0003 nm determined immediately after HPT. The different
lattice parameters of the bccL and bccH phases could have resulted in the difference in
their chemical compositions. Indeed, Hf and Zr have similar and high atomic radii (about
155 pm) compared to the other two elements of the studied alloy. In fact, the radii of Nb
and Ti are 7% and 11% smaller than those for Hf or Zr. Therefore, the XRD peak positions
suggest that the bccL phase is enriched in Hf and/or Zr while the bccH phase has an
elevated concentration of Nb and/or Ti. The EDS results on the chemical composition will
be presented later.
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The fractions of the bccL and bccH phases were determined from the integrated
intensities of their diffraction peaks in the angle range between 30 and 150◦. As an example,
Figure 8a illustrates the separation of the peaks of bccL and bccH phases by fitting a
measured profile with the sum of two Lorentzian functions for the disk center after HPT
for a half turn followed by annealing up to 1000 K. This fitting was performed for all
experimental peaks in the patterns. Then, the areas under the peaks for each phase were
summed up and the phase fractions were determined from these integrated intensities. At
740 K, as shown in Figures 6 and 7, bccH is the major phase with a fraction of 70–80% for
both the center and edge of the disks, irrespectively of the number of turns.
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Figure 8. Illustration of the separation of the overlapping XRD peaks of bccL and bccH phases by
fitting a measured profile with the sum of two Lorentzian functions (a). This method was used in the
determination of the phase fractions from the peak areas. When three phases (bccL, bccH and hcp)
coexist, the separation of their peaks using the Lorentzian fitting is illustrated in (b).

With increasing temperature from 740 K to 890 K, the peak position of the bccH phase
only marginally changed. On the other hand, the peaks of the bccL phase were shifted to
higher angles, indicating the decrease in lattice constant compared to the value measured
at 740 K. These observations are valid for both the center and edge parts of the disks for
all numbers of turns. For instance, at the edge of the disk processed for 10 turns, a large
decrease in the lattice parameter of the bccL phase is observed from 0.3485 ± 0.0007 to
0.3443 ± 0.0002 nm, while the lattice constant of the bccH phase only slightly changed from
0.3427 ± 0.0001 to 0.3435 ± 0.0001 nm, with a temperature change from 740 to 890 K.

Contrary to the lattice parameters, the phase fractions at 890 K depend strongly on the
degree of SPD straining. Namely, for low strains (e.g., at the disk center after a half HPT
turn) the bccL phase became the main phase with a fraction of about 80% (see Figure 6a).
With increasing numbers of turns at the center, the fraction of the bccL phase decreased
and an additional hcp phase was formed as shown in Figure 6. Figure 7 reveals that at the
disk edges, the peaks of the hcp phase appeared in the alloy processed for all numbers of
turns. The fraction of the bccL phase decreased to about 40% for the sample having the
highest strain, i.e., at the edge of the disk processed for 10 turns. When the three phases
(bccL, bccH and hcp) coexist, the separation of their peaks using the Lorentzian fitting
is illustrated in Figure 8b. The evolution of the hcp phase fraction vs. the shear strain is
plotted for annealing at 890 and 1000 K in Figure 9. At 890 K, the fraction of the hcp phase
increased monotonously up to a strain of ~20 and saturated to the fraction of ~5%.
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Figure 9. Evolution of the hcp phase fraction vs. the shear strain due to annealing at 890 (open
triangles) and 1000 K (solid circles). The dashed curves are just a guide for the eyes.

At 1000 K, except for the centers of the disks processed for one-half and one turn, an
hcp phase was detected at all studied locations (see Figures 6 and 7). The hcp fraction after
annealing at 1000 K vs. the shear strain is plotted in Figure 9. Although the relationship
between the hcp fraction and the strain is scattered, it is evident that the highest hcp fraction
was greater (~15%) than for 890 K (~5%). Regarding the two bcc phases, the fraction of
bccH was higher (about 60–80%) than the bccL phase for both low and high strains. On the
other hand, the position and shape of the whole measured peak profile consisting of the
bccL and bccH reflections were very different for low and high strains (see Figures 6 and 7).
Indeed, for low strains (i.e., for the centers of the disks processed for one-half and one turn)
the peak of the bccH phase dominates and the contribution of the bccL phase is marginal.
The position of the bccH peak at 1000 K is close to that detected immediately after HPT
processing. The peak profile is relatively broad, despite annealing at high temperatures.
For high strains (e.g., in the edge part of the disk processed for 10 turns), the bcc peak
profile consists of a narrow bccL peak and a very broad bccH reflection (see Figure 7d).
The position of the peak of the narrow bccL phase is close to that of the reflection detected
after HPT. On the other hand, the broad bccH peak has a higher diffraction angle than the
HPT-processed sample. This observation suggests a relatively small lattice parameter of
the bccH phase, which may be caused by an enrichment in small elements such as Nb or Ti.
For instance, for the bccH phase at the edge of the disk processed for 10 HPT turns and
then annealed at 1000 K, the lattice constant was 0.3416 ± 0.0003 nm.

3.3. Microstructure Evolution during Annealing Obtained by XLPA

The XLPA evaluation of the XRD peaks can provide information about the change in
the dislocation density and the crystallite size during heat treatment of the samples. On
the other hand, a careful application of XLPA is suggested, since annealing may cause
decomposition, and the chemical heterogeneities can also cause an XRD peak broadening,
similar to dislocations [29]. Therefore, the density of dislocations and the crystallite size
were determined by CMWP fitting only for those annealed bcc phases which do not show
a significant increase in the peak breadth during the heat treatment. The increase in the
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dislocation density during the annealing of the SPD-processed metallic materials is not
expected; therefore, peak broadening for the heat-treated alloy is most probably caused by
chemical heterogeneities. Figure 10 shows the FWHM vs. the magnitude of the diffraction
vector (g) for the materials with the lowest and highest SPD strains applied in this study,
i.e., for the center and edge regions after 1

2 and 10 HPT turns, respectively. Comparing
Figure 10a,b, it is evident for both samples with the lowest and highest applied strains that
annealing at 740 K caused peak broadening for the bccL phase. Therefore, the patterns for
this phase were not evaluated. On the other hand, the heat treatment at 740 K resulted
in a significant decrease in the peak breadth for the bccH phase at the center and edge
areas of the disks after 1

2 and 10 turns, respectively. Therefore, the patterns of this phase
were evaluated by CMWP fitting and the results (crystallite size and dislocation density)
vs. the shear strain are plotted in Figure 11. Comparing this figure with Figure 4, it is
evident that the crystallite size is higher with a factor of two to three for the bccH phase
after the heat treatment at 740 K than the condition immediately after HPT. In addition,
the dislocation density is lower in bccH annealed at 740 K as compared to the HPT disks,
especially for high strain values where the reduction is about sixfold from ~220 × 1014 m−2

to ~35 × 1014 m−2. These changes in the microstructure suggest recovery at 740 K. Similar
to the HPT-processed state, the microstructural parameters of the crystallite size and the
dislocation density in the bccH phase at 740 K saturated with the values of ~25 nm and
~35 × 1014 m−2, respectively, at the shear strain at ~20.
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Figure 10. The full width at half maximum (FWHM) as a function of the length of the diffraction
vector (g) for the bcc phases at the lowest and highest SPD strains applied in this study, i.e., for the
disk centers and edges processed by HPT for 1

2 and 10 turns, respectively. (a) Immediately after HPT,
(b) at 740 K, (c) at 890 K and (d) at 1000 K.
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Figure 11. The crystallite size (a) and the dislocation density (b) vs. the shear strain for the bccH
phase after annealing to 740 K. The dashed curves are just a guide for the eyes.

At 890 K, the bccH phase showed a reduced dislocation density with a value below
~3 × 1014 m−2, while the crystallite size values were between 30 and 60 nm. For the bccL
phase at 890 K, the peak breadth at the center of the disk processed by a half turn was very
similar to that obtained immediately after HPT (compare Figure 10a,c). Since recovery is
expected at 890 K, which must yield a decrease in the peak breadth, the unchanged FWHM
is most probably the result of a chemical inhomogeneity which enhanced peak broadening,
thereby compensating the effect of recovery. Therefore, the microstructural evaluation by
CMWP fitting of the peak profiles was not conducted for the bccL phase at 890 K.

After heating up to 1000 K, for the sample having low strains (e.g., in the center
of the disk processed by a half turn) the main bccH phase exhibited considerable strain
broadening of the XRD peak profiles as suggested by the WH plot in Figure 10d, since
the peak breadth increased with the increasing length of the diffraction vector (g). The
CMWP evaluation gave a significant value of dislocation density of ~5 × 1014 m−2 and the
crystallite size was about 48 nm. On the other hand, for high strains, the peaks consisted of
a narrow bccL and a very broad bccH profiles. The FWHM for bccH at 1000 K was similar
to that observed for bccL at 890 K, as revealed by the comparison of Figure 10c,d. The
peaks of the latter phase were not evaluated by XLPA, since most probably the chemical
inhomogeneities caused a significant portion of broadening, as discussed in the previous
paragraph; therefore, a similar effect can be expected for bccH at 1000 K, and thus the
dislocation density was not determined from their peak profiles. On the other hand, the
narrow XRD reflections of the bccL phase at 1000 K were evaluated by the CMWP method,
and ~52 nm was obtained for the crystallite size, while the dislocation density was under
the detection limit of XLPA (0.1 × 1014 m−2). This result is in accordance with the WH
plot shown in Figure 10d, where strain broadening was not observed for the bccL phase at
1000 K. It can be concluded that recovery occurred only at the sample location involving
low HPT strains followed by annealing at 1000 K, since the dislocation density was in the
order of 1014 m−2, while at high strains at least a part of the material (namely the bccL
phase) recrystallized.

3.4. Electron Microscopy Study for Examining the Heat-Treatment Effect on the Microstructure
Processed by HPT for Low and High Strains

For completing the XLPA study of the microstructure, electron microscopy investiga-
tions were performed on the alloys deformed by HPT for the lowest and highest applied
strains (i.e., for the centers and the edges of the disk samples after 1

2 and 10 HPT turns,
respectively). Figure 12 shows the EBSD IPF maps obtained of the microstructure at the
center of the disk processed by a half turn and subsequently annealed at 740, 890 and
1000 K. In Figure 12a,b,e,f, the areas studied are 1 × 1 mm2 with a step size of 2 µm, and
the left and right ends of the images correspond to the distances from the exact disk center
of ~0.25 and ~1.25 mm, respectively. The investigation of such a large area was necessary
for the lowest strain due to the relatively large initial grain size before HPT processing
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(~640 µm as shown in [19]). The boundaries of the initial large grains are still visible in the
image taken immediately after one half turn of HPT (see Figure 12a). However, additional
finer elongated grains were formed inside the initial grains. The grain size obtained from
this EBSD image was 32 ± 10 µm. It is noticed that the grain size determined by EBSD
is much larger than the crystallite size obtained by XLPA (about 50 nm) which is a usual
tendency for SPD-processed metallic materials [28]. The explanation for this difference is
given in Section 3.1. It is also noted that the error of the average grain sizes was determined
as the ratio of the standard deviation and the square root of the number of studied grains.
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Figure 12. EBSD IPF maps obtained of the microstructure at the center of the disk processed by
1
2 turn (a) and subsequently annealed at 740 (b–d), 890 (e) and 1000 K (f). A part of the image in
(b)—indicated by the black square—is magnified in (c) without changing the scan step size (2 µm).
The same area is shown in (d) with a smaller step size of 0.5 µm.

Annealing at 740 K resulted in a reduction in grain size to 15 ± 2 µm. Indeed, the initial
grains are more fragmented in Figure 12b than in Figure 12a. The reduced grain size during
the heat treatment at 740 K will be discussed in Section 4. In the EBSD image taken at the
center of the sample annealed at 740 K, there are poorly indexed regions where the color
code indicating the orientation changes from pixel to pixel. These regions were excluded
in the determination of the grain size. Uncertain indexing may occur when the step size
of the EBSD scan is not small enough for revealing the details of a fine microstructure.
A part of the image in Figure 12b is magnified in Figure 12c without changing the scan
step size (2 µm). The same area is shown in Figure 12d with a smaller step size of 0.5 µm,
and this EBSD image unfolds a very fine lamellar microstructure. Indeed, the thickness
of the almost vertical long lamellas is about 4 µm, and there are also transversal thinner
lamellas with a thickness of ~1 µm. At 890 and 1000 K of annealing, the grain sizes of the
disk centers were 15 ± 1 and 22 ± 4 µm, respectively, as determined from Figure 12e,f.
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The evolution of grain size during annealing was studied by TEM for the highest
strain, i.e., for the disk edge after HPT processing for 10 turns. Examples of the TEM images
can be seen in Figure 13, where for each state of the HPT-processed and annealed samples a
pair of BF and DF micrographs are shown. Immediately after HPT, the grain size was about
33 ± 1 nm, which remained practically unchanged after annealing at 740 K (38 ± 2 nm).
The heat treatment at 890 K resulted in an increase in the grain size to 81 ± 10 nm, while
further rise of the temperature to 1000 K caused the grain size to remain unchanged
(87 ± 9 nm).
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Figure 13. TEM BF (a,c,e,g) and DF (b,d,f,h) micrographs on the nanostructure obtained for the
highest studied strain, i.e., for the edge of the disk processed by 10 turns of HPT. (a,b) immediately
after HPT, (c,d) at 740 K, (e,f) at 890 K and (g,h) at 1000 K.

The splitting of the XRD peaks of the HfNbTiZr phase into two profiles during anneal-
ing suggests a decomposition of the single bcc phase into bccL and bccH phases, which may
be associated with the development of chemical heterogeneities. Therefore, the elemental
distribution of the four constituents was measured along a line using EDS after the heat
treatments. Significant chemical inhomogeneities were found only for 890 and 1000 K;
therefore, the elemental distributions for these two temperatures are shown in Figure 14.
Although the bcc-phase decomposition started as early as at 740 K, considerable chemical
heterogeneities were not observed by the EDS line scan. This effect can be explained by
the fourfold lower fraction of the bccL phase compared to the bccH phase at 740 K, where
the probe line may overlook the former phase. It is suggested from Figure 14a,b that
the chemical composition is not strictly equimolar. From numerous SEM-EDS analyses,
the average atomic concentrations of Hf, Nb, Ti and Zr were 28 ± 2, 23 ± 2, 24 ± 2 and
25 ± 2%, respectively. In addition to the statistical error, an uncertainty of the constituent
concentrations can emerge from the optional selection of lines K or L in the EDS spectrum.
The absolute value of this uncertainty is about ±3 at.% in the average element concen-
trations. In the present EDS studies performed by SEM and TEM, line K was used for Ti
while for the other three elements line L was evaluated for the determination of the atomic
concentrations. Nevertheless, the detection of the chemical heterogeneities of the spatial
elemental distribution was not influenced by the selection of the EDS spectrum lines.
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Figure 14. Elemental distributions of the four constituents measured along a line using EDS after the
heat treatments at 890 and 1000 K for (a,b) the center of the disk processed for 1

2 turn (SEM-EDS),
and (c,d) the edge of the sample deformed by HPT for 10 turns (TEM-EDS). The EDS distributions
presented in (a–d) were obtained along the white straight lines shown in (e–h), respectively. For TEM-
EDS, in each point the chemical composition was obtained by averaging the values perpendicular to
the straight line inside the white dashed rectangle shown in (g,h).
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Figure 14a,b show that for the sample that received the lowest strain (i.e., at the disk
center after a half HPT turn) the heat treatment at 890 and 1000 K caused only slight
chemical inhomogeneities. Namely, the local change in the atomic concentrations was less
than 3%. For Ti, the concentration fluctuations were negligible, while the variation in the
Hf content was complementary to the change in elements Nb and Zr. On the other hand,
for the highest strain (i.e., at the edge of the disk processed by 10 turns) after annealing
at 890 and 1000 K, the element pair Zr-Hf varied in an opposite way to the pair Nb-Ti. In
addition, the magnitude of the concentration change was much larger for the sample with
higher strain, such as 10–20 at.% differences at some locations as revealed in Figure 14c,d.
The length scale of the concentration variation was about 10 µm for the center of the disk
after a half turn. On the other hand, for the highest strain, the length scale of the chemical
inhomogeneities was only 20–40 nm, i.e., three orders of magnitude smaller than that for
the lowest studied strain.

3.5. Evolution of Hardness Attributed to Heat Treatment after HPT Straining

Figure 15a,b show the evolution of hardness as a function of the annealing temperature
for the different sample locations, centers and edges, after different numbers of HPT turns.
For a half turn, the hardness considerably increased after heating up to 740 K at both the
disk center and edge after HPT. Although annealing at 740 K led to a hardness enhancement
for all other numbers of turns at both the center and edge regions, for some samples this
change was not significant if the errors of the hardness values are considered. Between 740
and 890 K, the hardness decreased, except for the center of the disk processed for a half
turn. For all specimens, no or negligible variation in the hardness was detected when the
temperature increased from 890 to 1000 K. Changes in hardness as a function of imposed
shear strain is plotted in Figure 16 for the HPT-processed and the annealed samples. The
samples immediately after HPT as well as the processed samples after being annealed at
740 K showed increased hardness with increasing strain, and was then saturated at shear
strains of 20–30. On the other hand, at 890 and 1000 K, there was no significant variations in
hardness vs. shear strain. Figure 16 also reveals that annealing at 740 K caused hardening
above a strain of 20–30, while the further increase in the temperature to 890 K resulted in a
softening, and between 890 and 1000 K only a negligible change occurred.
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4. Discussion
4.1. Influence of SPD-Straining on the Annealing-Induced Changes in the Phase Composition
and Microstructure

In this study, the thermal stability of an HfNbTiZr MPEA processed by HPT for a
broad range of shear strain between ~3 and ~340 was investigated. For all studied strains,
an initial single-phase bcc structure decomposed into two separate bcc phases having
lower and higher values of lattice constant, which is more dominant with increasing
annealing temperature. In the sample with high strains, an additional hcp phase was also
developed during annealing. The decomposition of the single bcc phase is consistent with
former Calphad thermodynamic calculation performed on a similar MPEA composition
(HfNbTaTiZr) [31]. The earlier study predicted a two-phase microstructure with a Zr/Hf/Ti-
rich hcp main phase with the coexistence of a Nb/Ta-rich bcc structure below a temperature
of about 970 K. Above 970 K, the hcp phase was gradually substituted with a Ti/Zr/Hf-rich
bcc structure in the HfNbTaTiZr MPEA. Similar to the HfNbTaTiZr HEA, the presently
studied single-phase bcc HfNbTiZr alloy immediately after HPT was most probably far
from equilibrium. In addition, the HPT samples contained a high number of lattice defects,
such as dislocations and grain boundaries. Therefore, both phase transformation and
recovery/recrystallization were expected to occur when the atomic mobility increased due
to annealing. It should be noted, however, that the heat treatments in the present study
were relatively short, since the samples were warmed up to the desired temperature at
a heating rate of 40 K/min and then immediately quenched to RT. Therefore, the phase
composition after annealing may be far from equilibrium even at the highest applied
temperature (1000 K). Indeed, for low strains (e.g., for the center of the disk processed by a
half turn) an hcp phase was not formed, and only the single bcc phase decomposed into
bccL and bccH structures.

At the lowest selected temperature (740 K), the fraction of the bccL phase was low
(20–30%). On the other hand, at 890 K the fractions of the two bcc phases became compara-
ble; therefore, this decomposition is also reflected in the spatial distribution of the chemical
composition. Indeed, Figure 14a reveals compositional fluctuations, where the local in-
crease in Hf content was accompanied by a reduction in the concentrations of Zr and Nb.
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The Ti content fluctuation is not significant. The concentration variation in the two largest
elements of Hf and Zr are complementary and their sizes are similar, while Nb is small;
thus, the regions with elevated Hf concentrations have an increased lattice constant, i.e.,
they most probably correspond to a bccL phase. At 1000 K, the concentration fluctuations
became higher and a significant variation was observed for Ti. Namely, Ti changed in a
similar way as Hf. Since Ti is a small element, similar to Nb, the complementary variation
in the element pairs Hf-Ti and Zr-Nb should reduce the lattice constant differences in the
material. This is in accordance with the change in the XRD peak shape for the center of
the disk processed for a half turn when the annealing temperature increased from 890 to
1000 K (see Figure 6a). Indeed, the double peak at 890 K became almost a single reflection
at 1000 K, although a weak peak for bccL phase still existed.

For high strains (e.g., at the disk edge after HPT for 10 turns), an hcp phase was
also formed and its quantity increased with increasing annealing temperature. For both
890 and 1000 K, the hcp phase fraction reached its saturation value at a shear strain of
about 20–30. Grain boundaries are usually preferred sites for the nucleation of new phases;
therefore, the introduced nanocrystalline microstructure at high HPT strains promoted the
thermodynamically more stable hcp phase. This is the reason why this phase appeared
only at sample conditions involving high shear strains. A former study [5] on the HfNbTiZr
alloy revealed that the hcp phase is enriched by Zr and Hf, which is consistent with the
Calphad estimation [31]. Simultaneously, the Ti and Nb content decreased in the hcp
phase. The low amount of Nb in the hcp phase is reasonable, since Nb plays the role
of bcc stabilizer (the other three elements form hcp phase in pure form). Accordingly,
in the elemental distribution as shown in Figure 14c,d the concentrations of element
pairs of Hf-Zr and Nb-Ti change in a complementary way. This behavior is significantly
different from that observed for low strains, where the complementary element pairs
were Hf-Ti and Zr-Nb (see Figure 14a,b). In the case of low strains, the grain size was
large (about 20–30 µm), i.e., the number of grain boundaries was relatively low for all
testing temperatures. Therefore, nucleation of the Hf/Zr-rich hcp phase is difficult during
the applied short heat treatments, but instead only a chemical decomposition occurred,
yielding two bcc phases with different lattice constants. When this decomposition took
place, the lattice distortion at the boundaries separating the two bcc phases was moderated
if the lattice constants of the bccL and bccH phases were not very different. Accordingly,
the increase in the concentration of a large element (e.g., Zr) was accompanied by the
enhancement of the concentration of a small element (e.g., Nb) in the same region. With
increasing the temperature from 890 to 1000 K, the lattice constants of the two bcc phases
became closer, as suggested by the change in the shape of the XRD peak in Figure 6.

The high number of grain boundaries in the nanocrystalline samples processed for
high HPT strains facilitated not only the development of the hcp phase but also the re-
crystallization of the bcc phase. Indeed, at the edge of the disk deformed for 10 turns, the
dislocation density in the bccL phase at 1000 K was below the detection limit of XLPA
(~0.1 × 1014 m−2), which suggests the occurrence of recrystallization. On the other hand,
significant dislocation density was detected at the center of the sample processed for a
half turn.

4.2. Effect of the HPT Strain on the Hardness Change through Heat Treatment

Annealing at 740 K resulted in an 8–20% increase in hardness as shown in Figure 15.
For some samples, this hardness change is uncertain due to the experimental error (about
5%); however, such a hardness increase was observed for all studied samples with various
strains, suggesting that the hardening at 740 K is real. Former studies [32–43] have also
revealed annealing-induced hardening of SPD-processed metallic materials if the heat
treatment is short (not longer than 1 h) and the temperature is between 0.3 and 0.4 × Tm,
where Tm is the melting point. Since the melting temperature of the HfNbTiZr MPEA is
about 2058 K, the expected temperature range of anneal hardening is 620–820 K, that is,
in accordance with the observed hardness increase at 740 K in the present study. There
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may be different reasons for this phenomenon, such as (i) the annihilation of mobile
dislocations; (ii) the clustering of the remaining dislocations into boundaries, thereby
refining the microstructure; (iii) the relaxation of SPD-processed non-equilibrium grain
boundaries and (iv) the segregation of solute atoms from the solid solution phase at grain
boundaries [43]. The latter two effects contribute to a more difficult dislocation emission
from grain boundaries, thereby leading to hardening. In the present case, at low strains
only the effects of (i) and (ii) may be the origins of hardening at 740 K, since the other two
phenomena cannot play a significant role due to the coarse-grained microstructure. Former
studies have shown that the strengthening effect of a clustered dislocation arrangement
is higher than that for a uniformly distributed dislocation population [44,45]. For high
strains (e.g., at the edge of the disk processed for 10 turns), due to the nanocrystalline
microstructure, the grain boundary relaxation most probably plays a significant role for
anneal hardening.

When the temperature of heat treatment changed from 740 to 890 K, additional sig-
nificant hardening was not observed at the center of the disk deformed for a half turn
in accordance with the unchanged grain size. On the other hand, considerable softening
occurred for the other samples with increasing temperature from 740 to 890 K. The de-
tailed microstructure analysis at the disk edge after 10 HPT turns revealed a coarsening
of the nanostructure, since the grain size increased from ~38 to ~81 nm. This effect and
the decrease in the dislocation density inside the grains can cause the observed softening.
Between 890 and 1000 K, only a slight reduction or no change in hardness was observed for
both low and high strains. This can be explained by the unchanged or slightly increased
grain size at 1000 K as compared to the microstructure at 890 K.

5. Conclusions

Experiments were conducted to study the effect of SPD straining on the evolution of
microstructure, phase composition and hardness of an HfNbTiZr MPEA processed by HPT.
The following conclusions were obtained in this study:

1. With increasing shear strain by HPT, the dislocation density and crystallite size
increased and decreased, respectively, which then are saturated at a shear strain of
~30 with values of about 15 nm and 220 × 1014 m−2, respectively. XRD synchrotron
experiments suggested an in-depth homogeneity of the microstructure in the HPT-
processed disks for both low and high strains. When the shear strain increased from
~3 to ~340, the grain size decreased from about 20 µm to 30 nm.

2. A single bcc phase in the HfNbTiZr MPEA decomposed into two bcc phases even after
the lowest annealing temperature of 740 K. Above 890 K, an hcp phase also appeared
at the sample location having high strains. The hcp fraction increased with increasing
strain at both 890 and 1000 K, and saturated at a shear strain of about 20 with values
of 5 and 13%, respectively.

3. Significant chemical heterogeneities were observed in the samples with both low and
high strains followed by annealing at 890 and 1000 K. These inhomogeneities are most
probably related to the phase decomposition. With increasing SPD strain, the scale
of the heterogeneities varied in a similar way as the grain size. Namely, it decreased
from about 10 µm to 30 nm when the shear strain increased from ~3 to ~340.

4. Anneal-induced hardening was observed after heat treatment at 740 K. The maximum
hardness was achieved at the edge of the disk processed by 10 turns of HPT (which
corresponds to a shear strain of about 340) and annealed at 740 K (~4600 MPa).
The relative hardening was in the range of 8–18% for the shear strains between ~3
and ~340. The anneal hardening can be attributed to the annihilation of mobile
dislocations and their arrangement into boundaries. For low strain, the hardness
remained practically unchanged between 740 and 1000 K. On the other hand, for high
strains there was a reduction in hardness between 740 and 890 K due to the coarsening
of the microstructure.
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