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Abstract: The reverse magnetization behavior for bulk composite alloys containing Mn-Al-C and
α-Fe nanoparticles (NPs) has been investigated by hysteresis loops, recoil, and first-order reversal
curves (FORC) analysis. The effect of adding different percentages of α-Fe (5, 10, 15, and 20 wt. %) on
the magnetic properties and demagnetization behavior of Mn-Al-C nanostructured bulk magnets
was investigated. The fabricated nanocomposites were characterized by XRD and VSM for structural
analysis and magnetic behavior investigations, respectively. The demagnetization curve of the sample
Mn-Al-C-5wt. % α-Fe showed a single hard magnetic behavior and showed the highest increase
in remanence magnetization compared to the sample without α-Fe, and therefore this combination
was selected as the optimal composition for FORC analysis. Magnetic properties for Mn-Al-C-
5 wt. % α-Fe nanocomposite were obtained as Ms = 75 emu/g, Mr = 46 emu/g, Hc = 3.3 kOe, and
(BH)max = 1.6 MGOe, indicating a much higher (BH)max than the sample with no α-Fe. FORC analysis
was performed to identify exchange coupling for the Mn-Al-C-0.05α-Fe nanocomposite sample. The
results of this analysis showed the presence of two soft and hard ferromagnetic components. Further,
it showed that the reverse magnetization process in the composite sample containing 5 wt. % α-Fe is
the domain rotation model.

Keywords: reverse magnetization; recoil curve; FORC analysis; Henkel plot; MnAlC

1. Introduction

Magnetic nanocomposites are one of the most promising ways to achieve a new
generation of permanent magnets. In the last few decades, magnetic nanocomposites
have attracted a lot of attention due to their high coercivity and improved remanence on a
single domain scale. So far, Nd2Fe14B/α-Fe, SmCo/α-Fe, etc., alloys have been extensively
studied due to their high coercivity [1–6].

In the early 1990s, Kneller and Hawig [7], and subsequently Skomski and Coey [8],
re-examined the experimental work of Coehoorn et al. [9,10]. They showed that at the
nanoscale, the soft ferromagnetic phase (high magnetism) with the hard ferromagnet (high
coercivity) can produce magnetic composite materials with a further improvement of
(BH)max. In this case, interphase magnetic exchange coupling is created in a composite
system that takes advantage of the best characteristics of the constructive phases. Hard
magnetic phases provide high anisotropy with high coercivity field, whereas soft magnetic
phases provide high saturation.

The use of low-cost and plentiful elements is effective in reducing the cost of magnet
production, which is very important for the development of permanent magnets in some ap-
plications. However, their magnetic properties are still much lower than those of Nd2Fe14B
magnets. L10MnAlC-(α-Fe) nanocomposite is one of the promising systems without rare
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earth elements that may be a good candidate for spring exchange magnet [11,12]. Mn-Al-C
alloys have large exchange lengths and wide domain walls [13,14].

Therefore, it is important to find a way to increase the coercivity and remanence and
to understand the mechanisms of reverse magnetization in the Mn-Al-C-(α-Fe) nanocom-
posite. There are numerous reports of increased coercivity by milling MnAl and MnAlC
alloys fabricated by different methods [15–20].

Mechanical milling increases coercivity by decreasing grain size and increasing defects,
but often the saturation magnetism and remanence decrease due to phase decomposition,
formation of defects, and reduction in chemical order. However, using annealing, its
magnetism can be restored due to an increased chemical order and reduced defects [21–24].

Studies that report on the reverse magnetization behavior of Mn-Al-C-(α-Fe) nanocom-
posites prepared by mechanical milling are very limited [14,22,25]. According to reports,
the (BH)max of Mn-Al-C systems is typically below 1MGOe.

In this paper, we report the effect of Fe addition on the magnetic properties and re-
verse magnetization behavior of Mn-Al-C-(α-Fe) alloy composites prepared by mechanical
milling method using FORC analysis. To the best of our knowledge, no studies on FORC
analysis of Mn-Al alloys have been published. We were able to obtain a high (BH)max
(1.6 MGOe) and thus take an important step in improving the magnetic properties of hard
magnets without rare earth elements.

2. Experimental
2.1. Materials and Instrumentation

In this study, the impact of adding different amounts ofα-Fe on the magnetic properties
and demagnetization (reverse magnetization) behavior of Mn-Al-C nanostructured bulk
magnets was investigated. For this purpose, α-Fe powders (purchased from US Research
Nanomaterials, Inc., Houston, TX, USA) with a particle size of 35–45 nm were used. Further,
a cyclohexane medium was used for experiments to prevent oxidation.

The actual composition of the cast alloys was determined by inductivity coupled
plasma-optical emission spectroscopy (ICP-OES, Varian 730-ES, Palo Alto, Santa Clara, CA,
USA) and the amount of carbon was measured using the LECO CS-244 carbon determinator
(ASTM E1019). A high-energy planetary ball mill (Fritsch Pulverisette, model 6) with
hardened chrome steel balls was used to grind the cast ingots. The phase analysis of
the final nanocomposite samples was investigated using an x-ray diffractometer (XRD,
Rigaku-Dmax 2500, Rigaku Corporation, Tokyo, Japan) with Cu-Kα radiation (λ = 1.54

.
A)

and 2θ range from 10◦ to 100◦. Reverse magnetization behavior and FORC analysis of
composite alloys were investigated by a vibrating sample magnetometer (VSM, Meghnatis
Daghigh Kavir Co.; Kashan Kavir; Iran) at room temperature with maximum applied field
of 15 kOe.

2.2. Mn52Al45.7C2.3 Nano Powder Fabrication

The alloy with nominal composition Mn52Al45.7C2.3 (at. %) was prepared by a vacuum
induction melting process and was cast into a copper mold. Before the melting, due to the
high vapor pressure of Mn, an extra 3 wt. % Mn was added. The re-melting process was
performed twice under a controlled atmosphere (Ar) to ensure the homogeneity of the cast
alloy and also to adjust the composition of the main alloy. Then, the resultant ingot was
homogenized in a vacuum furnace (P = 1 ∗ 10−4 Torr) at 1000 ◦C for 5 h. Afterward, it was
cooled in air to obtain the ferromagnetic τ phase. Finally, Mn52Al45.7C2.3 ingot was milled
by high-energy planetary milling in a hardened-steel chamber (volume 100 cc) and ball size
5 mm in cyclohexane medium as a surfactant with a ball-to-powder weight ratio of 20:1 for
5 h. The Mn52Al45.7C2.3 nano powder with an average particle size of 100 nm was obtained
(see Supplementary Materials, Figure S1).
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2.3. Processing of Nanostructured Bulk Magnets

Mn52Al45.7C2.3 nano powders were mixed with different weight ratios of α-Fe powder
(0–20 wt. %). The mixture was mechanically milled in a cyclohexane medium for 1 h to
obtain a completely homogeneous composite powder. The composite powder was placed
in a tungsten carbide mold with a diameter of 5 mm and pressed under a constant uniaxial
pressure of 5.1 GPa. Afterward, the obtained bulk sample was annealed in a vacuum tube
furnace at 400 ◦C for 30 min in order to achieve optimal magnetic properties. The samples
with different weight percentages of α-Fe NPs are listed in Table 1.

Table 1. Alloy samples with different α-Fe content.

Sample Composition

F0 Mn-Al-C

F5 Mn-Al-C-0.05α-Fe

F10 Mn-Al-C-0.1α-Fe

F15 Mn-Al-C-0.15α-Fe

F20 Mn-Al-C-0.2α-Fe

3. Results and Discussions
3.1. Structural Analysis

The XRD patterns of Mn-Al-C alloy and Fe NPs as well as Mn-Al-C-(X wt. % α-Fe)
magnetic composite NPs with X = 0 to X = 20 are shown in Figure 1. The Mn-Al-C alloy is
homogenized at 1000 ◦C for 5 h and then cooled in the air to room temperature. The pure
τ phase was identified according to the diffraction pattern of this alloy. The XRD pattern
of Mn-Al-C and α-Fe NPs is in good agreement with the JCPDS card no. 00-037-1073 and
00-006-0696, respectively.
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Figure 1. XRD patterns of Fe NPs, Mn-Al-C alloy, and magnetic composite samples.

It can be seen that all XRD patterns of magnetic composite samples show a hard
magnetic phase (L10 tetragonal P4/mmm space group (#123)) and a soft magnetic phase of
α-Fe (space group Im-3m (229)). The τ-MnAlC phases are metastable and after two millings,
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some low intensity peaks with non-magnetic phases of β-Mn3Al2 (cubic space group p4132
(213), JCPDS card no. 00-048-1568) and γ2-Al8Mn5 (rhombohedral space group R3m (160),
JCPDS card no. 00-032-0021) were observed. Further, in the XRD pattern of composite NPs,
the peak 2θ = 44.67◦ corresponding to the plane (1 1 0) of the BCC phase has increased with
increasing α-Fe concentration.

Moreso, the addition of α-Fe NPs had no effect on the phase structure in these alloys
and no mechanical alloying occurred.

3.2. Magnetic Properties
3.2.1. Hysteresis Loops Investigation

Magnetic measurements were performed at room temperature by VSM with a mag-
netic field of 15 kOe. Figure 2 shows the hysteresis loops of ferromagnetic Mn-Al-C alloy,
Mn-Al-C-α-Fe nanocomposite alloys with 5–20 wt.% α-Fe (annealed at 400 ◦C for 30 min),
and α-Fe. 
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Figure 2. (a) Hysteresis loops of Mn-Al-C alloy, Mn-Al-C-α-Fe nanocomposite alloys with different
amounts of α-Fe annealed at 400 ◦C for 30 min; (b) hysteresis loops of α-Fe and Mn-Al-C alloy
without annealing.

According to Figure 2, the M(H) demagnetization curve of the F5 sample in the second
quarter, between Mr and M = 0, is convex similar to that of the Mn-Al-C single-phase
permanent magnet. This indicates that the demagnetization curve of the Mn-Al-C-0.05α-Fe
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alloy has a single hard magnetic behavior. It means the hard magnetic phase is uniformly
under the reversed external magnetic field and indicates the hard and soft magnetic phases
have good exchange coupling.

However, for samples F10, F15, and F20 the demagnetization curve is concave. In
both hard and soft magnetic nanocomposites, a constricted loop is obtained if there is no
exchange coupling. In this case, a kink is created in the curve [7].

According to Figure 2, it can be inferred that the optimal magnetic properties belong
to the sample containing 5 wt.% α-Fe, because in this sample there is the highest increase in
remanence magnetization compared to the sample without α-Fe. In addition, the maximum
energy product is (BH)max = 1.6 MGOe, which is an increase of 60% compared to the Mn-
Al-C sample. Increasing the saturation magnetization (Ms), the remanence magnetization
(Mr), and the squareness (Mr/Ms), and thus the increase in (BH)max for 5 wt% α-Fe sample
compared to the sample without α-Fe can be due to the uniform distribution of soft and
hard phases, and the uniform NPs size of Mn-Al-C and α-Fe phases. It can also be a sign of a
strong exchange coupling effect. The obtained magnetic properties for Mn-Al-C-(0.05α-Fe)
alloy are more improved properties compared to the properties reported in the literature. A
comprehensive comparison of the properties reported on the Mn-Al alloy with the present
work is also given in Table 2. Since there is an exchange coupling between the hard phase
and the soft phase, crystallographic coherency between the two phases is required. This
means that the easy magnetization axis directions in the hard and soft phases are parallel.
Therefore, the remanence magnetization for the soft phase (Mrs) and for the hard phase
(Mrh) are aligned [7,26,27].

Table 2. Properties reported on the Mn-Al alloy, and comparison with the present work.

Composition Ms
(emu/g)

Mr
(emu/g)

Hc
(kOe)

(BH)max
(MGOe) Method Ref.

Mn52Al45.7C2.3 + 5 wt.% Fe 76 46 3.3 1.6 VIM + HEBM + mix HEBM +
HT

This
work

Mn55Al45 75–65 35 3.5 PFC + CR [21]

Mn53Al45C2 58 ~1.9 * AM and IM + HD [28]

Mn53.35Al43.65V3 75.8 35 2.13 AM + SRMS + HT [29]

Mn54Al46 125 ~35 2.04 1.42 IM + RMS + HT + BM + SPS [30]

B-N-doped MnAl 79 40 ~3.9 * IM + HPT [31]

(Mn0.54Al0.46) 99.8Tb0.2 ~31 ~14 5.43 AM + MSHT + HEBM [32]

79.7 19 12.3 ED + HT [33]

Mn54Al46 0–55 25–5 3–4.2 GA + SABM [23]

Mn:Al:C = 54:46:2.44 ~91 ~39 ~2.8–3.4 * IM + HT + P [34]

70.01 wt. %Mn, 29.48 wt. %Al
and 0.51 wt. %C 93 2.7 7 IM + E+HT [35]

Mn53.3Al45C1.7/FeCo
(95/5 wt. %) 76.43 32.71 ~2.77 * 0.7 MS and AM + BM + P and S [36]

Mn55Al45 118.2 ~45 1.5 IM + SRMS [37]

Mn55Al45C2 108 20 0.7 IM + A [38]

(Mn0.54Al0.46) 100-xCx, x = 3 86.7 ~35 3.26 AM + HEBM [39]

MnAl/Co-2 52 43 2.752 3.38 [40]

Mn54.2Al43.8C2 111.78 50 1.8 7.8 HEBM + A+aged [41]

Mn54Al46Cx, x = 2 ~125 ~42 ~2.3 * IM + CR [42]
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Table 2. Cont.

Composition Ms
(emu/g)

Mr
(emu/g)

Hc
(kOe)

(BH)max
(MGOe) Method Ref.

Mn54Al46 ~55 ~28 ~2.5 GA + SABM + A [43]

Mn54Al46 (MnAlSi0.5) 70.3 33 ~4.5 * IM + SAHEBM [44]

Mn48Al52 96 ~77 ~3 MAS + A [45]

(Mn57Al43) 100C1.19 80 36.70 1.47 GA + mixpolymer + E [46]

(Mn0·54Al0.46) 98C2 80 ~46 1.47 VAM + MS [47]

Mn54.3Al44C1.7 88 ~37 1.6 0.66 AM + cryomilled HEBM+ [25]

Mn1.1Al0.9C0.02 99 29 1.6 Cryomilled + Flash heat [48]

Mn55Al45 ~71 ~14 2 AM + MS [49]

Mn0.55Al0.45C0.02 85 ~43 ~1.5 * 0.78 MA + A [50]

Mn54Al46C2.44 ~60 ~28 ~2.9 * IM + MS + A + P [51]

MnAlC (70.03 wt.% Mn,
29.28 wt.% Al and 0.69 wt.% C) 95 ~40 ~2.2 * SSR + A + HT + HP [14]

Mn56Al44 63.9 ~24 2.8 IM + SC + G [52]

Mn54Al46 ~10–43 ~5–25 3–4 GA + SABM + A [19]

Mn54Al46 22.6 12.9 4.9 GA + MM + A [18]

MnAl thin film/FeCO (8 nm) ~90 ~81 ~3.4 4.7 DC MAS + Post A [53]

Mn53Al45C2 ~87 72 ~2.85 * 3.0 IM + CW + R [24]

Mn54Al46 105 ~20 ~1.2 * high-frequency VIM + A [54]

Mn51Al46C3 ~44 32 22.83 AM + SABM + A [55]

MnAlCo 15.1 ~5 0.85 [56]

(Mn, Fe) Al 77 ~54 3.8 2.0 UHV-MAS + A [57]

Mn54Al46 50.8 24 ~2.8 * AM + MS + cryomilled
HEBM [58]

Mn57Al43 ~62 ~35 5.3 AM + MS + A+BM [15]

(Mn0.55Al0.45) 100C2 83 34 2.8 IM + G + HEBM [59]

Mn54Al46 ~29 16 1.8 AM + HEBM + A [60]

Mn53Al45C2 98 72 ~1.6 * IM + HE [61]

Mn54Al46 108 73 ~3.7 3.1 AM + SRMS + A [16]

Mn54Al46 39.8 ~23 4.2 GA + ε-phase + MM + ECAE [17]

Mn54Al46 60 ~32 3.62 GA + MM + HT [62]

70 ~62 ~8.1 4.44 MBES + A [63]

Mn54Al46 + 10 wt%Fe ~16 ~6 ~3.3 * IM + mix + HSV BM + A [14]

98.3 4.7 M + Q(ε-phase) + A [64]

Mn68.8Al29.98Ni0.78C0.44 48 ~35 1.5 DC MAS [65]

70.7Mn 28.2Al 1.1 C 85 39 3.4 1.29 MA(HEBM) + CC + HT [66]

Mn1.074 Al0.871 C0.055 84 2.8 5.5 WE [67]

71.5 Mn, 27.9Al, 0.6 C 73 0.32 1.32 Alloy + Q + HT [68]

Mn55Al45 83 49 2.14 1.6 M + rapid Q(ε-phase) + HT [69]

Mn (56at. %) Al (44at. %) 28 ~12 2.44 MA + SPS + Rapid thermal
A [70]

Mn53.3Al45C1.7 ~80 54.8 ~2.8 ~2 AM + HEBM + A [71]
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Table 2. Cont.

Composition Ms
(emu/g)

Mr
(emu/g)

Hc
(kOe)

(BH)max
(MGOe) Method Ref.

Mn54Al44C2 84 48 ~1.8 IM + MS + M + SPS [72]

Mn–30 wt.% Al ~60 41.2 3.1 1.59 IM + GA(ε-phase) + BM +
HT [73]

(Mn20Al80) 0.95C0.05 8.8 5.6 MA + PAD + HT [74]

Mn54Al46 89 45 4.8 AM + HEBM + A [75]

Mn54Al44C2 92 52 1.7 1.5 VIM + SRMS [76]

Mn54Al46 87 ~38 4.8 AM + HEBM + A [77]

Mn-29%Al-0.5%C-0.5%Ni 60 1.95 1.43 AM + HEBM + HT [78]

~40 24 2.3 MA(HEBM) + HT [79]

Mn53.5Al44.5C2 82 50 2.2 1.8 AM + HEBM + HT + HD [80]

Mn54Al44C2 86 41 ~1.7 * M + MS + cryogenic MM +
SPS [81]

~75 32 2 IM + HD [82]

Mn54Al46 ~75 ~41 ~3.7 * AM + VibrationM + post A [83]

Mn55Al44 + 2.0 wt.% MWCNT 82.3 45.6 3.64 2.26 AM + mix + HEBM + SPS [84]

Al-55at.%Mn 72.2 ~30 ~1.5 * IM + Q (ε-phase) + IFHT [85]

Mn53.5Al44.5C2 83 51 2.2 1.8 AM + HD [86]

Mn54Al46 ~5 ~3 ~2.4 MA(HEBM) + SPS [87]

Mn (56 at. %) and Al (44 at. %) 40.3 ~19 2.3 MA + mix + HEBM + SPS [88]

Mn54Al43C3 ~59 ~40 3.6 AM + MS(ε phase) + HEBM
+ HT [89]

Mn54Al44C2 ~90 ~46 ~1.9 * IM + MS + A [90]

Mn0.53 Al 0.46 C0.01 81 28 2.2 MA + M + HT + AA [91]

50%Mn-50%Al 52 ~21 2.6 MA(HEBM) + two-step HT [92]

~110 ~36 1.95 mix (HEBM) + M+ vibration
M + HPS [93]

Mn54Al44C2 60.34 37.36 3.8 MS + HEBM + A [94]

Mn0.53Al0.46C0.01 72 37 1.9 0.6 MA(HEBM) + A [95]

Mn53.3Al45C1.7 127 46 1.54 1.53 AM + SRMS [96]

70.5 wt.%Mn-29.5 wt.%A1,
0.8 wt.% C 43 1.5 1.2 IM + Q (ε-phase) + BM + A +

CC + S [97]

57 1.83 2.1 IM + SRMS + HT [98]

* Unit conversion from T to MGOe according to 1T = 0.01 MGOe. Abbreviations: M = melt; AM = arc melt;
VAM = vacuum arc melting; IM = induction melt; VIM = vacuum induction melt; HD = hot-deformation;
SRMS = single-roller melt-spinning; RMS = roller melt-spinning; MS = melt-spinning; HT = heat treatment;
HEBM = high energy ball milling; SABM = surfactant-assisted ball milled; BM = ball milling; SPS = spark
plasma sintering; HPT = high pressure torsion; HPS = high-pressure synthesis; HP= high press; P = press;
ED = electrodeposite; GA = Gas-atomized; HE= hot extruded; WE = warm extruded; E = extruded; A = aged;
MA = mechanical alloying; MM= Mechanical milling; S = sinter; A = annealing; CR = cold rolling; CC = cold
compact; CW = cold worked; SAHEBM = salt-assisted high-energy ball milling; MAS = magnetron sputtering;
SSR = solid-state reaction; SC = strip casting; G = grind; R = recovered; ECAE = equal channel angular extrusion;
MBES = molecular-beam epitaxy system; HSV BM = high-speed vibration ball mill; Q = quench; PAD = plasma
arc discharge; IFHT = In-field heat treatment; AA = ambient aging; PFC = planar flow casting.

One of the reasons for the increase in squareness Mr/Ms is the existence of exchange
couplings between particles. Based on the model proposed by Kneller [7], exchange
coupling of soft phase (with cubic structure) and hard phase (with tetragonal/hexagonal
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structure) in polycrystalline samples containing independent magnetic grains with random
magnetic orientation occurs when the easy magnetization axis directions in the soft and
hard phases are perfectly aligned, and in this case the relative residual is reported to be
mr = Mr/Ms ≥ 0.68. According to our results, its value for F5 sample is 0.61, which indicates
that the easy magnetization axis direction in many soft phases is aligned with the easy
direction in hard phases. For other samples containing more than 5 wt. % α-Fe, this value
is much less than 0.5. The decrease in Mr and Hc is due to the increase in the soft phase;
and due to the occurrence of soft/hard biphases, it is clearly visible in the hysteresis loops
of Figure 2 in the form of kinks. This low value of squareness can be attributed to the high
content of soft phase NPs in the composite and possibly the agglomeration of soft phase
particles, which prevents the exchange coupling with the hard phase and increases the
magnetostatic interaction, thus weakening the exchange interactions. According to Coey’s
theory of magnetic exchange couplings [8], the size of soft phase should not be more than
twice the wall thickness of hard phase, which is usually about a few tens of nanometers.
According to the calculations of Luo et al. [13], the Mn-Al domain wall thickness was
announced as 10.9 nm. Coey and Skomski [8] stated that fine particles of soft phase retain
their coercivity, and as the particle size increases, the coercivity decreases by 1/D2 due to
the presence of heterogeneous magnetostatic fields.

In 2013, Skomski et al. [99] performed a simulation on soft nanostructures and con-
cluded that the presence of a soft phase in the hard phase matrix is relatively better than the
hard geometry in a soft one, and embedded soft phase particles are better than sandwiched
soft layers, and the nucleation field is a function of the soft phase size. The embedded soft
spherical particles have the highest coercivity. For very small soft particles, the nucleation
field is close to the anisotropic field of the hard phase.

According to Figure 2, by adding α-Fe, the coercivity and squareness remained con-
stant whereas the saturation and remanence magnetization increased, and with increasing
the amount of α-Fe soft phase, the values of coercivity, squareness, and remanence mag-
netization decreased. The saturation magnetization of the F20 sample is almost identical
to the saturation magnetization of the α-Fe soft phase. Therefore, the main challenge is
the uniform distribution of the soft phase in the hard phase in order to maintain Hc and
achieve a high (BH)max.

3.2.2. Switching Field Distribution Curves Investigation

Magnetic exchange coupling can be proved by a kink-free smooth hysteresis loop. The
smoothness of the hysteresis loop can be evaluated by the hysteresis derivative (dM/dH)
vs. H curve known as the switching field distribution curve (Figure 3). The switching field
distribution is known as the phase-exchange property and indicates the particles coercivity
distribution in the samples [100–102].

According to Figure 3, two peaks are observed for samples F10, F15, and F20 that
confirm the biphase magnetic behavior. A peak appears near the zero field (H = 0), which
has grown as the amount of soft magnetic phase in the nanocomposites increases. This
means that the α-Fe phase is not associated with a good exchange coupling. According
to Figure 3, the second peak is a wide peak that indicates the coercivity of hard magnetic
NPs. The presence of a single peak for F5 composite NPs is similar to the behavior of
hard magnetic single phase Mn-Al-C, indicating reverse magnetization in one stage and
hard/soft phase exchange coupling. The switching field distribution curve peak of the F5
sample is located in the 3.3 kOe field, whereas this peak for the Mn-Al-C sample is in the
2.9 kOe field.
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Figure 3. Switching field distribution curves of samples.

As can be seen in Figure 3, the coercivity distribution of sample F5 is wider than
the Mn-Al-C (i.e., wider peak), which is a sign of weakness in exchange coupling. The
peak of sample F5 extends from both sides of the lower and higher coercivity fields and is
elongated. One of the main reasons for the expansion to the lower fields is the presence of a
soft phase, and given that Ks < Kh, in the lower applied field it seeks to rotate. Although the
hard phase acts as a barrier and prevents the rotation of the soft-phase magnetic domains
in the low field, due to the size of the α-Fe soft phase NPs being larger than the critical size,
some domains in the lower field have switched to the applied field.

Additionally, the presence of soft phases in the hard phase matrix reduces the antifer-
romagnetic coupling between the Mn–Mn pair at the interphase boundaries and leads to
an increase in the coercivity of the hard NPs; hence, the switching field distribution has
elongated to the higher fields. In addition, in samples F10, F15, and F20, the switching field
distribution is extended to higher coercivity fields, but due to the formation of biphase
magnetic particles, the coercivity in the samples has decreased.

3.2.3. Henkel Plots Investigation

To study and determine the mechanism of interaction between magnetic composite
NPs and to confirm the interparticle exchange coupling, the samples were investigated by
the Henkel plot (δM—H curve). The δM—H curve provides qualitative information about
the interactions of magnetic NPs with the following equation [53,103–105]:

δM = Md (H) − [1 − 2Mr (H)] (1)

where Md(H) is the normalized demagnetization remanence, Mr(H) is the normalized
isothermal remanent magnetization, and H is the applied magnetic field.

Mr(H) was measured by gradually increasing and removing the magnetic field (H > 0),
and this was repeated until saturation magnetization (H = Hsat). Md(H) was also measured
after saturation of the sample and removal of Hsat, by applying and removing a negative
magnetic field (H < 0) and finally normalized by Mr(Hsat).

According to Wohlfarth’s analysis, δM > 0 indicates a ferromagnetic exchange coupling
between the hard and soft phases in the system, whereas δM < 0 is due to the bipolar
interactions (magnetostatic interactions).

Figure 4 shows the Henkel plots of the samples. As shown in Figure 4, for the Mn-
Al-C sample, δM is negative, indicating the predomination of interparticle magnetostatic
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interactions and no magnetic exchange coupling in the sample. In the F5 curve, there is a
peak in the positive region of δM, which indicates the dominance of exchange coupling
interactions. A slight negative peak can also be seen in the 3.5 kOe–5.5 kOe field, indicating
a weak magnetostatic interaction in the sample, which has caused the switching field
distribution to expand. With an increasing soft phase, the negative δM peak becomes more
pronounced and the positive peak height decreases, which indicates a decrease in magnetic
exchange coupling and the predominance of strong interparticle magnetostatic interactions,
leading to the destruction of magnetic properties. The maximum positive peak height of
δM is for the F5 sample, which confirms that the strongest interparticle exchange coupling
is obtained for this sample, leading to optimal magnetic properties.
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Figure 4. Henkel plots of the samples.

3.2.4. Recoil Curves Investigation

The recoil demagnetization curves are plotted in Figure 5 to better understand the
reverse magnetization behavior of the samples. For this purpose, a 12 kOe magnetic field
was applied and then reduced to zero to obtain Mr. The reversed field (Hd) was then applied
and then reduced to zero. Magnetization under zero field after applying Hd (Md(H)) was
measured and this method was repeated until Hd = 12 kOe. As shown in the Figure 5a,b,
the recoil curves of the Mn-Al-C and F5 samples are very similar.

The magnets with highly reversible magnetic behaviors are called exchange-spring
magnets [7,106,107]. By increasing the soft phase in composite, the reversibility increases
and a high remanent reversible score in the sub-coercive fields can be seen for the F20
sample, but because Mr/Ms < 0.5, they cannot be considered as exchange-spring magnets.
With increasing in the amount of soft phase, the curves in Figure 5 change from convex
to concave. It indicates that the size of NPs in the soft phase is close to the critical size
(bs ≈ bcs) in the F5 sample. Therefore, this sample has an optimal microstructure, and
increasing the number of soft phases and their accumulation together causes to overaged
microstructure. Therefore, the demagnetization curve is concave. The curves of F10 and
F15 samples are slightly convex, which indicates that there is some exchange coupling in
these magnets as well. This is consistent with the Henkel plots results of these samples.
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Figure 5. (a–e) Recoil demagnetization curves, (f–j) magnetization curves M(H) and dc demagnetiza-
tion remanence Md(H) vs applied reversal field.

According to Kneller and Hawig’s micromagnetic models [7], single-phase magnets
always have a closed recoil loop due to reversible behavior, which can simultaneously
indicate reverse magnetization and stronger exchange coupling. Meanwhile, according
to the micromagnetic finite element model calculated by Zheng [108], the reduction in
the recoil loop area can occur by reducing the soft magnetic phase. Recoil loop area
in nanocomposite magnets is generally interpreted as failure in interparticle exchange
coupling and is attributed to the reverse magnetization behavior in grain boundaries
or uncoupled soft magnetic regions, where magnetic moments are unstable due to high
exchange energy, and a distribution is observed in the hard magnetic anisotropy constant
K [109]. However, in the SmCo/α-Fe and τ-MnAlC systems, it has been reported that
the presence of an open recoil loop may not be due to failure in interphase exchange
coupling [30,110]. The presence of open loops is not only due to the addition of soft
magnetic single-phase in nanocomposite magnets, but also by the grain boundaries, grain
size reduction, and distribution in the hard magnetic phase anisotropy constant K.

The magnetic phase of Mn-Al-C is a single-phase alloy with no soft magnetic phase,
and has an open recoil loop, which near Hc, the loop area reaches a maximum. Hence,
changes in the hard magnetic particle anisotropy and a decrease in particle size could be
responsible for the open recoil loop. If some Mn atoms are coupled antiferromagnetically
(due to the high concentration of Mn with the formation of the Mn-rich τ-phase and also
the presence of defects in the lattice), it is possible that the recoil loop has an area.

To better understanding of the interparticle coupling, the diagrams of Md(H) and
M(H) are plotted as a function of the applied reversal field for samples Mn-Al-C and F5
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(Figure 5f–n). Hr is the dc remanence coercivity of which is determined by Md(Hr) = 0 and
Hc is the intrinsic coercivity which is determined by M(Hc) = 0 condition [7,111,112]. The
Hr/Hc ratio for Mn-Al-C and F5 samples is 1.15 which is close to the theoretical value
predicted by Wohlfarth, i.e., Hr/Hc = 1.09, whereas this ratio is much higher for other
alloys [7,111]. These results show that the F5 alloy, like the Mn-Al-C, has a good single
hard magnetic behavior.

According to the Stoner–Wohlfarth model for ideal single-domain grains, Hc is equal
to anisotropy field Ha. In real magnets, Hc is much lower than Ha, and this is due to the
less energy to reverse magnetism in the defects and the distribution of constant anisotropy.
Ha or K is basically related to the magnetization reversal stability in the grains. Grains with
higher Ha can resist a stronger magnetizing field. Therefore, reversing the magnetization
in defective areas (grains with less Ha) can help to reverse the magnetization of grains
with higher Ha under less field and cause a sharp decrease in Hc. On the other hand, the
reversal of magnetization in the areas with accumulated α-Fe particles (less Ha), could
help to reverse the magnetization of τ-Mn-Al-C particles with higher Ha under the lower
field and cause a sharp decrease in Hc. Therefore, the Hrc/Hc ratio is closely related to the
reversal of magnetization and the resistance of the domains to rotation or domain wall
movement due to the applied magnetic field.

Hard single-phase ferromagnetics generally have a low reversible magnetism. To
prove this property, recoil curves are used, and magnetic reversibility and irreversibility
curves are plotted in Figures 6 and 7. The magnetization is expected to be reversible in the
presence of exchange coupling. The reversible process is associated with the rotation of the
magnetism or the displacement of the domain wall in a single potential well [30]. Here the
recoil curve used to determine critical parameters is shown in Figure 6a. Reversible mag-
netization changes (Md(Hint) −M(Hint)) were investigated by removing reverse magnetic
field. Figure 6b shows the normalized recovered magnetization [Md(Hint) −M(Hint)]/Md(0)
as a function of the applied reverse field (Hreversal) for samples F0 and F5. The difference in
magnetization in Figure 6 can be due to the interparticle exchange spring coupling behavior.
According to Figure 6, the value obtained for sample F5 is 0.61, which is higher than 0.54
for sample Mn-Al-C. This indicates that there is a stronger spring exchange behavior in the
F5 sample in comparison with the iron-free sample. Therefore, by adding 5% of the soft
phase, the magnetic recovery is increased.
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Figure 6. (a) Recoil curves showing critical parameters, and (b) comparison of reversible magnetiza-
tion as a function of applied reversal field for Mn-Al-C and F5 samples.
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Figure 7. Irreversible magnetization vs applied reversal field for Mn-Al-C and F5 samples.

Irreversible changes are related to energy loss through the movement of the domain
wall or the switching of magnetization in a single domain particle [113–115]. The ir-
reversible part is described by the dc field demagnetization remanence (Md(H)), which
remanence after saturation is in one direction and the dc field is in the opposite direc-
tion. The irreversible changes in the reverse magnetization process for the hard magnetic
single-phase alloy Mn-Al-C and the hard/soft magnetic NPs Mn-AL-C/Fe as D(H) = [Mr −
Md(H)]/2Mr ≈ − ∆Mirr(H)/2Mr were plotted versus H (Figure 7). It should be noted that the
D(H) vs. H curve is measured in the optimum state of the alloy (isotropic grains) according
to the one-dimensional purely inhomogeneous magnetization rotation model [7].

The total irreversible change in magnetization is as follows:

∆Mirr = 2Mr

∫ ϑ1

0
cosθ.dθ = 2Mr sin θ (2)

θ is the angle between the field
→
H and the easy axis of particles magnetization rotation,

and 0 ≤ θ ≤ 90o (with assumption of equal probabilities of all angles in the easy axis plane

between the field
→
H and the easy axis of magnetization rotation).

The negative applied external field required to destabilize the initial magnetization
and initiate the reversal of the magnetization is defined as nucleation field Hn [7]. When the
reverse field H increases from H = 0 in the opposite direction, reverse magnetization does
not occur irreversibly until H < Hn. When H increases to H1 = Hn/cos θ, all particles reverse
their magnetization by their easy magnetization axis at an angle θ relative to the applied
field H. Equation (2) was written as a math function in the Origin software and fitting was
done using the nonlinear curve fit option and the nucleation field was obtained. Curves
fitting indicated that nucleation (switching) fields for Mn-Al-C hard single-phase magnetic
alloy and F5 sample are 2.8 kOe and 3.3 kOe, respectively. Therefore, Hn for sample F5 is
higher than Mn-Al-C. The antiferromagnetic coupling of Mn–Mn may occur less at the
phase boundaries and therefore the nucleation field may increase. The nucleation field
close to the coercivity field (Hn/Hc ≈ 1) for sample F5 indicates the presence of effective
exchange coupling in this sample, whereas Hn is smaller than Hc for Mn-Al-C, which
indicates the presence of magnetostatic interactions.

3.2.5. First Order Reversal Curves (FORC) Analysis

In order to investigate the coercivity mechanism (demagnetization behavior) of F5
sample and identify the existing interaction field, FORC measurements were performed
on this nanocomposite. Using FORC analysis, quantitative information can be obtained
about the distribution of the coercivity field (Hc) of each magnetic component and the
dipolar and magnetic exchange interactions (Hu) between magnetic compounds [116–118].
A large number of partial hysteresis loops (hysterons), called first-order reversal curves,
were obtained for the L10-MnAlC/α-Fe nanocomposite, as shown in Figure 8a. For this
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purpose, the sample was exposed to the maximum possible external magnetic field (10 kOe)
until the sample reached saturated magnetization and then the field was reduced to the
reversal field Hr. Magnetization was measured from this reversal field to the maximum
external magnetic field and the FORC was created. A set of FORCs was measured using
this method for a series of decreasing reversal fields.
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Figure 8. The calculated FORC analysis for sample F5 (milled and annealed at 400 ◦C); (a) a set of
FORC measurements; (b–d) 3D and 2D diagrams calculated according to part a; (e) Day plot diagram;
(f) cross section of the fork diagram with the maximum coercivity distribution (along the axis Hc = 0);
(g,h) cross section of maximum interaction distribution along the axis Hu = 0 and Hu = 3.5 kOe.

The magnetization in the FORC in the applied H field for the reversal field Hr is shown
with M (Hr, H), where H ≥ Hr [119–122]. The FORC distribution can be defined by the
following equation.

ρ(Hr, H) = −1
2

∂ 2M (Hr, H)

∂ Hr ∂ H
(3)

It is known that the FORC distribution becomes non-zero when there is irreversible
switching in the magnetization reversal. In addition, the zero FORC distribution is at-
tributed to the occurrence of reversible switching [123,124].

To better illustrate FORC, defining a new set of coordinates can be helpful. For this
purpose, the FORC diagram can be rotated from the plane (Hr, H) to the plane (Hc, Hu) at
an angle of 45◦.

Hu =
Hr + H

2
, Hc =

Hr − H
2

(4)

If each magnetic phase is independently reversed, it is predicted that two peaks corre-
sponding to each of the hard and soft magnetic phases will appear in the FORC diagram.
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Conversely, when an exchange coupling occurs between the hard and soft magnetic phases,
a single peak (two peaks combine at the same peak) must be observed [4,125]. In the
FORC diagram, closed lines are usually considered as single-domain particle fingerprints,
whereas open lines that diverge toward the Hu axis are fingerprints for multi-domain
behavior [126,127].

2D and 3D FORC diagrams of composite NPs as well as its vertical and horizontal
profiles and Day plot of single domain are presented in Figure 8. Figure 8b–d shows the
FORC contour diagram for F5 nanocomposite. According to Figure 8f, the horizontal
profile of F5 sample shows a single peak at Hc (3.5 kOe) which is close to the coercivity
of the F5 alloy. The smooth surface of this peak indicates the strong coupling interaction
that governs its magnetic behavior. There is a distribution of interaction field Hu (vertical
axis) and switching field Hc (horizontal axis), which the former is due to interparticle
interactions, and the latter is due to the switching of different particles at different applied
field. Peaks in FORC distributions tend to negative interaction fields Hu, a property
that is usually associated with the exchange interaction that occurs between magnetic
particles [119,124,128]. Figure 8g,h show the interaction field distribution Hu = 0 and
Hu = 3.5 kOe which the maximum FORC distribution is concentrated near Hu = −300 Oe
and tends to negative Hu field.

The FORC distribution in the Figure 8d is elongated along the central horizontal axis
of Hc (horizontally elongated rings), a teardrop-like feature observed in the contour line
pattern. Another point is the closed contour lines. These two properties are characteristic
of the single-domain particles [123,129,130]. Additionally, the diagram of squareness
(Mrs/Ms) versus the remanent coercivity force (Hcr/Hc) is plotted in Figure 8e. This
diagram can be used to estimate the type of magnetic domain and shows that the particles
size range is in the stable single domain particle region. Single domain particles have a high
surface-to-volume ratio, which causes the boundary of the domain regions to disappear
and volumetric energies such as de-magnetic energy are increased, hence single-domain
particles have high magnetostatic energy [131,132]. This is the reason of the negative value
in the δM diagram of Figure 4 for the Mn-Al-C, indicating magnetostatic energy.

Wide distribution on the Hc axis is a statistical representation of the coercivity distri-
bution between domains and has been interpreted as a wide particle size distribution as
well as the presence of different anisotropy between particles [130].

Figure 8c shows the FORC distribution of F5 nanocomposite in coordinates (Hr, H).
For F5 nanocomposite, reversal occurs primarily by rotation of the domain (reverse magne-
tization nucleation) in the soft phase due to the low K. It can be seen from line 1 in Figure 8c.
The zero $ is related to the reversible change in magnetization. After the domain rotation,
the beginning of irreversible processes can be observed from the FORC distribution due
to decreasing the inverse field. This can be seen by scanning line 2 in Figure 8c. This field
corresponds to the nucleation field of the soft phase. However, the soft phase domains
begin to rotate toward the external applied field, but the nearest hard phases prevent the
soft phase from escaping despite the high uniaxial anisotropic force. The applied inverse
field did not have enough energy to overcome the rotation of the magnetization vector
within the magnetic domain. The external field has an optional direction (θ angle) relative
to the easy direction of the phase particles, which causes some of the magnetism to be
reversible and some to be irreversible, i.e., the magnetism has rotated from one stable
direction to another stable direction, hence the distribution of the FORC in these areas
(between lines 2 and 3) is non-zero.

A more positive distribution of FORC around point 3 indicates the occurrence of
an irreversible magnetization process. Between lines 3 and 4, the FORC distribution
continues to increase, reaching a maximum (around 3500 Oe), indicating a non-zero FORC
distribution. This indicates that the applied inverse field is sufficient to overcome the
further rotation of the moments and domains. The domains in the soft phase suddenly
begin to exceed the hard phases, leading to the irreversible switching of the hard and
soft phases. This is due to the fact that both the soft and hard phases are coupled with
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each other. Therefore, the magnetism of the particles switches from positive to negative.
However, some particles with higher anisotropy still exist. Subsequently, these domains
are overcome by increasing the applied inverse field, which leads to a non-zero FORC
distribution. Hence, when the nanocomposite reaches its negative saturation, irreversible
switching occurs and the FORC distribution is zero.

4. Conclusions

The α-Fe NPs with weight percentages of 5, 10, 15, and 20% were added to the
hard magnetic phase of Mn-Al-C and the magnetic properties and reverse magnetization
behavior of nanostructured bulk magnets were investigated. The demagnetization curve
(second quarter of the hysteresis loop) of the sample containing 5 wt. % α-Fe was convex.
Whereas, for samples with more iron, the curve was concave. Therefore, Mn-Al-C-0.05 α-Fe
sample showed good exchange coupling for hard and soft magnetic phases. In addition, the
maximum energy product is (BH)max = 1.6 MGOe, which is an increase of 60% compared
to the Mn-Al-C sample. A high value of relative residual (0.61) was obtained for the
sample containing 5 wt.% α-Fe, which indicates that the easy magnetization axis direction
in many soft phases is aligned with the easy direction in hard phases. Switching field
distribution diagrams showed that at high concentrations of soft iron phase, this phase is
not associated with good exchange coupling and there are biphase magnetic behaviors. The
results of the recoil diagram showed that there is a stronger exchange spring behavior in
the Mn-Al-C-0.05 α-Fe sample than in the iron-free sample and the magnetization recovery
is increased by adding 5% of the soft phase. FORC analysis also showed that the particles in
the Mn-Al-C-0.05 α-Fe sample are single-domain. A major peak for this alloy was observed
in the FORC diagram, indicating an exchange coupling that is consistent with the results of
Henkel plots and recoil analysis.
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