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Abstract: High-performance and low-power field-effect transistors (FETs) are the basis of integrated
circuit fields, which undoubtedly require researchers to find better film channel layer materials and
improve device structure technology. MoS2 has recently shown a special two-dimensional (2D)
structure and superior photoelectric performance, and it has shown new potential for next-generation
electronics. However, the natural atomic layer thickness and large specific surface area of MoS2 make
the contact interface and dielectric interface have a great influence on the performance of MoS2 FET.
Thus, we focus on its main performance improvement strategies, including optimizing the contact
behavior, regulating the conductive channel, and rationalizing the dielectric layer. On this basis, we
summarize the applications of 2D MoS2 FETs in key and emerging fields, specifically involving logic,
RF circuits, optoelectronic devices, biosensors, piezoelectric devices, and synaptic transistors. As a
whole, we discuss the state-of-the-art, key merits, and limitations of each of these 2D MoS2-based
FET systems, and prospects in the future.

Keywords: MoS2-FETs; logic and radio-frequency circuits; photodetector; biosensor; piezoelectric
devices; synapses transistors

1. Introduction

The FET is voltage-adjustable electronic device that controls the output circuit current
by controlling the electric field effect of the input circuit, which can work at very low current
and voltage, and which can easily integrate on a piece of silicon and other substrates, so
the FET has been widely used in large-scale integrated circuits [1]. The common FET
device structure consists of a gate, source/drain, channel layer and dielectric. As is well
known, the continuous miniaturization of silicon (Si)-based FETs has driven the exponential
growth of integrated circuits for more than half a century. However, with the bulk thickness
reduced to less than 10 nm, Si FETs exhibit a large number of attenuation phenomena of
carrier mobility. This requires researchers to come up with a series of strategies to overcome
this limitation, such as finding new materials, developing new structures, and improving
processes [1,2].

Recently, 2D materials including graphene [3], black phosphorus (BP) [4], and transi-
tion metal dichalcogenides (TMDs) [5–8] have shown natural advantages for the further
reduction in FET sizes due to their natural atomic-level thickness and surface without
hanging bonds, for remedying the shortcomings of Si-based FETs. Table 1 summarizes the
main electric performance of MoS2-based FETs and other mainstream 2D materials-based
FETs. The graphene FET has ultra-high mobility. However, its Ion/Ioff ratio is lowest
(typical below 10) owing to the lack of bandgap, and it is difficult to apply to logic elec-
tronics. The mobility of the BP FET is much higher than that of the MoS2 FET, but it is
not stable, due to reaction with water and oxygen in the air to decompose. TMDs (MoS2,
WS2, WSe2, etc.)-based FETs have an ultrahigh Ion/Ioff ratio and good mobility, which can
be assembled into low-power electronics. Especially, MoS2 FETs have the advantages of
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higher mobility, higher Ion/Ioff ratio, and lower subthreshold swing, compared with other
TMD FETs. Overall, MoS2 is the most suitable channel layer material for FETs, and MoS2
FETs are the promising candidate for downscaling electronics with a short channel, low
thickness, small volume, fast speed, high sensitivity, light weight, etc.

Table 1. Overview summary comparison of emerging 2D materials-based FETs.

Materials Technology Configuration Contact
Electrode Dielectric Mobility

(cm2/Vs) Ion/Ioff
SS

(mV/dec) Ref.

MoS2

Exfoliation Dual-gated Ni/Au Al2O3 517 108 140 [7]
CVD Back-gated Ti/Au HfO2 118 108 / [9]

Au-assisted
Exfoliation Back-gated Ti/Au SiO2 25 107 100 [10]

MOCVD Top-gated Au/Ti SiO2 22 105 / [11]
VLS Back-gated Au SiO2 33 108 980 [12]
PLD Top-gated Au/Ti HfO2 9 105 / [13]

Exfoliation Top-gated Au SiO2/Cytop 31 107 / [14]
Exfoliation Back-gated Graphene SiO2 9 106 / [15]

APCVD Back-gated Cr/Au SiO2 54 108 / [16]

Exfoliation Top-gated Cr/Au PMMA/P(VDF-
TrFE) / 107 / [17]

WSe2 CVD Back-gated Ti/Pd BN 92 10 / [5]
MoSe2 Exfoliation Back-gated Ni SiO2 50 106 / [8]
WS2 Exfoliation Back-gated Ti/Au SiO2 20 106 70 [6]
BP Exfoliation Top-gated Ni/Au SiO2 862 102 563 [4]

Graphene CVD Back-gated Cr/Au TiO2 1872 — / [3]

Table 1 also shows that different MoS2 FETs have performed differently, because the
natural atomic-level thickness and large specific surface area of MoS2 make the interface
quality have a great influence on the MoS2 properties [2]. High-quality MoS2 preparation
methods have constantly been investigated in recent years. The common preparation
methods of MoS2 include Chemical Vapor Deposition (CVD), Metal–Organic Chemical
Vapor Deposition (MOCVD), Atomic-layer deposition (ALD), and Vapor–Liquid–Solid
(VLS) [18]. The properties of stripped MoS2 are better than those of CVD-prepared MoS2,
because stripped MoS2 has high quality and less impurities, while the CVD process will
bring a lot of impurities. In addition, a 6-inch uniform monolayer MoS2 can be grown by
CVD in a short time [19]. MoS2 with the low surface energy can also be easily stripped
and transferred, the size of which depends mainly on the size of the bulk MoS2, which can
reach the centimeter level [20].

However, in MoS2 FETs, a high-quality MoS2 between the contact electrode and the
dielectric layer will still be obtained at the contact interface and dielectric interface, which
has further led to the different performance of MoS2 FETs [21]. Therefore, for improving
the performance of MoS2 FETs, we mainly focus on optimizing the contact behavior [14],
regulating the conductive channel [16], and rationalizing the dielectric layer [17]. This is
also the subject of our review. Then, we discuss the applications of MoS2 FETs in key and
emerging fields [21], involving logic and RF circuits [22,23], optoelectronic devices [24],
biosensors [25], piezoelectric devices [26], and synaptic transistors [27] (Figure 1).
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Figure 1. MoS2 FET performance improvement strategies and applications. (a) Schematic of mono-
layer MoS2 FET (reprinted/adapted with permission from Ref. [21]. Copyright 2021 Springer Na-
ture). (b) Improving MoS2 FET performance by optimizing contact behavior (reprinted/adapted 
with permission from Ref. [14]. Copyright 2022 Wiley). (c) Improving MoS2 FET performance by 
regulating conductive channel (reprinted/adapted with permission from Ref. [16]. Copyright 2022 
Wiley). (d) Improving MoS2 FET performance by rationalizing dielectric layer (reprinted/adapted 
with permission from Ref. [17]. Copyright 2020 IEEE). The applications of MoS2 FET in (e) logic 
circuits (reprinted/adapted with permission from Ref. [22]. Copyright 2020 American Chemical So-
ciety); (f) radio-frequency circuits (reprinted/adapted with permission from Ref. [23]. Copyright 
2014 American Chemical Society); (g) optoelectronic devices (reprinted/adapted with permission 
from Ref. [24]. Copyright 2021 American Chemical Society); (h) biosensors (reprinted/adapted with 
permission from Ref. [25]. Copyright 2021 Elsevier); (i) piezoelectric devices (reprinted/adapted 
with permission from Ref. [26]. Copyright 2020 American Chemical Society); (j) synaptic transistors 
(reprinted/adapted with permission from Ref. [27]. Copyright 2022 American Chemical Society). 

2. Performance Improvement Strategy of MoS2 FETs 
2.1. Optimizing Contact Behavior 

A metal electrode and traditional 2D electrode are usually directly deposited by 
chemical or physical deposition methods on MoS2 surfaces, which damages the contact 
interface, resulting in the Schottky barrier and Fermi-level pinning effect, between the 
MoS2/metal electrode, and the MoS2/traditional 2D semiconductor in MoS2 FETs [28], 
which could reduce electrical performance [29]. Therefore, it is very important to find 
suitable electrode materials to form ohmic contact and eliminate the Fermi pinning effect 
[30]. Recently, the van der Waals contact has been an indirect method of preparation into 
MoS2, which does not use direct chemical bonding, avoiding the damage of the deposition 

Figure 1. MoS2 FET performance improvement strategies and applications. (a) Schematic of mono-
layer MoS2 FET (reprinted/adapted with permission from Ref. [21]. Copyright 2021 Springer Nature).
(b) Improving MoS2 FET performance by optimizing contact behavior (reprinted/adapted with
permission from Ref. [14]. Copyright 2022 Wiley). (c) Improving MoS2 FET performance by reg-
ulating conductive channel (reprinted/adapted with permission from Ref. [16]. Copyright 2022
Wiley). (d) Improving MoS2 FET performance by rationalizing dielectric layer (reprinted/adapted
with permission from Ref. [17]. Copyright 2020 IEEE). The applications of MoS2 FET in (e) logic
circuits (reprinted/adapted with permission from Ref. [22]. Copyright 2020 American Chemical
Society); (f) radio-frequency circuits (reprinted/adapted with permission from Ref. [23]. Copyright
2014 American Chemical Society); (g) optoelectronic devices (reprinted/adapted with permission
from Ref. [24]. Copyright 2021 American Chemical Society); (h) biosensors (reprinted/adapted with
permission from Ref. [25]. Copyright 2021 Elsevier); (i) piezoelectric devices (reprinted/adapted
with permission from Ref. [26]. Copyright 2020 American Chemical Society); (j) synaptic transistors
(reprinted/adapted with permission from Ref. [27]. Copyright 2022 American Chemical Society).

2. Performance Improvement Strategy of MoS2 FETs
2.1. Optimizing Contact Behavior

A metal electrode and traditional 2D electrode are usually directly deposited by chem-
ical or physical deposition methods on MoS2 surfaces, which damages the contact interface,
resulting in the Schottky barrier and Fermi-level pinning effect, between the MoS2/metal
electrode, and the MoS2/traditional 2D semiconductor in MoS2 FETs [28], which could
reduce electrical performance [29]. Therefore, it is very important to find suitable electrode
materials to form ohmic contact and eliminate the Fermi pinning effect [30]. Recently, the
van der Waals contact has been an indirect method of preparation into MoS2, which does
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not use direct chemical bonding, avoiding the damage of the deposition process and the
diffusion at the contact interface, Here, we review the methods for obtaining ultra-low
contact resistance in both 2D and non-2D contacts.

Shen et al. prepared a back-gated monolayer MoS2 FET, where bismuth, nickel,
and titanium were used as electrodes to explore the contact barrier. The results showed
that the Bi-MoS2 FET had the lowest contact barrier (123 Ω µm at a carrier density of
1.5 × 1013 cm−2), attributed to the suppression of metal-induced interstitial states by the
semi-metallic bismuth contact with MoS2. This mechanism also contributes to good ohmic
contact in other TMDs FETs, i.e., the Ion/Ioff ratios are as high as (107) at low voltages
(1.5 V) [21].

Samori et al. prepared an asymmetric Schottky diode by self-assembled monolayers
(SAMs) of pre-functionalized gold electrodes, then transferring them to MoS2 by the
dry method [14]. Figure 2a shows the MoS2 FETs structure, where the drain/source
electrodes are 2, 3, 4, 5, 6-pentafluorobenzenethiol (PFBT)-functionalized electrodes and
the source 4-(dimethylamine) benzenethiol (DABT) functionalized electrode, respectively.
The output curve of the Schottky diode is shown in Figure 2b. The Vgs of the device is
reduced from 90 to −30 V, and the rectification ratio reaches a maximum of 103 at −30 V
in Figure 2c. Figure 2d–f show the band structure of devices under different bias voltages.
This strategy can be adjusted to control the electrode and different chemisorption SAMs
functionalization to reduce (increase) the charge injection barrier, thus providing a strategy
for the manufacture of asymmetric charge injection devices [14].
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Figure 2. (a) Structure diagram of asymmetric MoS2 FETs. (b) Semilogarithmic plot of the Ids-Vds.
(c) Rectification ratio. (d–f) Energy band diagram at thermodynamic equilibrium, positively biased
source–drain, and negatively biased source–drain, respectively. (Reprinted/adapted with permission
from Ref. [14]. Copyright 2022 Wiley).

Recently, experiments have found that graphene materials as the electrodes of MoS2
FETs can also achieve good ohmic characteristics [31]. Yu et al. fabricated graphene/MoS2
heterojunction FETs, by adjusting the Fermi level of the graphene electrode to modulate
the height of the Schottky barrier between heterojunctions, where the short-channel effect
with a channel length less than 30 nm was successfully eliminated, and at the same time,
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the drain-induced barrier lowering of the device was 0.92 v/v and the Ion/Ioff ratio was
as high as 108 [31]. Kim et al. reported high properties of monolayer MoS2 FETs with a
nitrogen-doped graphene (NGr) electrode [15], as shown in Figure 3. Compared to un-
doped graphene electrodes, the device current increased 214% and the field-effect mobility
increased fourfold. Figure 3c,f illustrates that the Fermi level of MoS2 FET was improved
by employing the NGr electrode. Therefore, this is one of the effective means to reduce
contact resistance, which will provide a new idea for the development of high-performance
devices.
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Figure 3. Electrical characteristics of MoS2/pristine Gr contact device: (a) Transfer characteristic
(left axis) and semilogarithm (right axis). (b) Output characteristic. (c) Schematic diagram of band
alignment. Electrical characteristics of MoS2/NGr contact device: (d) Transfer characteristic (left axis)
and semilogarithm (right axis). (e) Output characteristic. (f) Schematic diagram of band alignment.
(Reprinted/adapted with permission from Ref. [15]. Copyright 2019 American Institute of Physics).

Two-dimensional Mxenes contain transition metal carbides, carbonitrides, and nitrides,
and have graphene-like surface structures and good electrical conductivity [32], which
show great application potential in barriers, capacitors, and electrodes of electrochemical
systems [33]. Dai et al. calculated the contact barrier of MoS2 FETs with Ta2C, Ta2CF2, and
Ta2C(OH)2 as the electrode material, using density functional theory. The results showed
that the N-type Schottky barrier was created by a Ta2C electrode. However, using a Ta2CF2
or Ta2C(OH)2 electrode can form ohmic contact, and the resistance of MoS2/Ta2C(OH)2
was 2 times smaller than that of MoS2/Ta2CF2. This study provides theoretical guidance
for the application of MXene materials in MoS2 FETs [30]. Du et al. first studied the
contact characteristics between MoS2 and M3C2(OH)2 (M = Ti, Zr, Hf) by first principles,
which found that Ti and Hf are more suitable for ohmic contact as electrode materials. The
subthreshold swing (SS) range of devices was 100~200 mV/decade, and the Ion/Ioff ratio
was as high as 106, in the sub-10 nm range [34].

To sum up, in the modification of the MoS2 FET electrode, the selection of an ap-
propriate metal electrode or other excellent electrode materials can reduce the Schottky
barrier, especially the combination of the above new two-dimensional material, and MoS2
can better achieve a high-performance, low-power-consumption FET, which will also be a
significant attraction for the development of electronic devices in the future. In addition,
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2D MoS2 could produce unique quantum effects by contacting with the metal, such as
quantum transport, superconductors, and valley transport [35].

2.2. Boosting Conductive Channel

MoS2 with the good direct bandgap (~1.8 eV) when the bulk MoS2 is stripped to
monolayer MoS2 sets the stage for MoS2 FETs with high mobility and high Ion/Ioff ratio [36].
As is well known, doping is one of the most prevalent techniques to regulate the band
structure of semiconductor materials [37], which have both metal ion doping and nonmetal
ion doping. An oxygen uniformly doped monolayer MoS2 can be prepared directly by in
situ chemical vapor deposition on a 2-inch sapphire substrate. The results showed that the
bandgap of MoS2 was regulated (from 2.25 eV (intrinsic) to 1.72 eV (heavily doped). The
mobility of the MoS2-XOx FET was 78 cm2/Vs, and the Ion/Ioff ratio was 3.5 × 108 [38].
Shi et al. developed a one-step CVD method to achieve the growth of centimeter-level
monolayer MoS2 film [16]. Unidirectionally Fe-doped MoS2 domains (domain size up to
250 µm) were prepared on 2-inch commercial c-plane sapphire, which achieved very low
contact resistance (≈678 Ω µm) and good ohmic contact with the electrode, as shown in
Figure 4a–c. MoS2 FETs obtained electron mobility (54 cm2V−1s−1 at room temperature,
94 cm2/Vs at 100 K, and Ion/Ioff ratio (108)). The electron mobility of monolayer Fe-MoS2
was decreased with increasing temperature, as observed in Figure 4d,e, which indicated
that it can inhibit the scattering of impurities. Figure 4f shows the energy barriers of pristine
MoS2 and Fe-MoS2.
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Figure 4. (a) Schematic diagram and OM graph of monolayer Fe-MoS2 device. (b) Transfer character-
istic of MoS2-based devices. (c) Temperature vs. transfer characteristic. The inset shows the MIT area.
(d) Electron mobility vs. temperature. (e) Arrhenius plots. (f) Energy barriers and energy band of the
monolayer Fe-MoS2. (Reprinted/adapted with permission from Ref. [16]. Copyright 2022 Wiley).
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Wang et al. first synthesized a Ta-doped p-type monolayer MoS2 by NaCl-assisted
CVD, which has the advantages of large area, controllability, high quality, and controllable
doping concentration [39]. With the addition of Ta, MoS2 FET devices showed bipolar
properties and changed from N type to P type with increasing concentration. The p-type
MoS2 active layer was applied with heavy niobium doping by mechanical stripping on the
Si substrate. Then, the p-type MoS2 FETs with the Pt electrode obtained a 0.13 eV contact
barrier, output current of −10 µA, and drain voltage of −1 V when the channel length was
~1 µm [40]. Han et al. reported a strategy for the controllable transformation of n-type MoS2
into p-type MoS2 by low energy (100 eV) He+ irradiation, as shown in Figure 5. Through
theoretical calculation and characterization, it was found that this method increases the
band size through the migration of the topmost S atom, and electron capture transforms
n-type MoS2 into p-type MoS2 [41].
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shifts of Mo 3d, S 2p, and valence band photoemission spectra depend on (b) the ion energy band,
and (c) irradiation time of He+ ion irradiation. (Reprinted/adapted with permission from Ref. [41].
Copyright 2022 Springer Nature).

Doping can effectively improve the performance of MoS2 films, but in the case of thin
atom thickness or few layers, traditional doping strategies such as ion implantation or
high-temperature diffusion could not improve the performance, because these methods
tend to destroy the lattice and produce defects. Therefore, it is particularly important to
find new doping methods, which provides inspiration for future research and development
of more processes suitable for less layer MoS2 doping.

2.3. Rationalizing Dielectric Layer

As for the MoS2 FET, the surface accumulation of charges and charge traps on the
dielectric are big issues leading to high leakage current, which is observed by using a
scanning tunneling microscope [42,43]. Therefore, an appropriate dielectric layer with high
permittivity should be used to effectively reduce the influence of impurity scattering at
the interface on carrier transport in the channel layer, while avoiding the possible short-
channel effect and reducing gate leakage current [44,45]. It is noted that a high-K dielectric
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layer (HfO2, ZrO2, HfZrO, etc.) can effectively shield the scattering of charged impurities
and boost the gate control ability on the channel carriers, thus effectively improving the
electrical performance of MoS2 FETs [46–49]. However, the high-K dielectric layer will also
generate trap charges and surface optical phonons to offset its advantages [49].

To solve these problems, Song et al. found that adding Al to the ZrO2 dielectric layer
in a certain proportion (Zr:Al = 1:1) could effectively improve the electrical performance of
MoS2 FETs, due to the moderate Al reducing the oxygen vacancy, and optimize leakage
current, as well as improve the interface state density [50]. Zhao et al. demonstrated
HfO2 with treatment by NH3 plasma and added Al2O3 as a high-K dielectric layer of
the top-gate MoS2 FETs. That significantly reduced the leakage current and provided a
high carrier mobility ~87 cm2/Vs, Ion/Ioff ~2.1 × 107, and SS of 72 mV/dec [51]. Li et al.
reported MoS2 FETs with the self-limiting epitaxy technology, employing a monolayer
molecular crystal of perylene-tetracarboxylic dianhydride as a buffer layer, graphene as a
gate, and HfO2 as a gate dielectric layer, which obtained good dielectric properties, low
leakage current, and high breakdown power. The device has SS ~73 mV/dec, Ion/Ioff > 107,
and is not affected by short-channel effects [52]. Liao et al. designed high-performance
MoS2 FETs with the double-layer gate dielectric structure, as shown in Figure 6a,b. A
high-K vinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) dielectric is used to provide
high carrier concentrations, and a low-K polymethyl methacrylate (PMMA) dielectric
provides device stability, as shown in Figure 6d,e. MoS2 FETs with low operating voltage,
no hysteresis, and high stability were achieved through combining high-K and low-K
dielectrics, as shown in Figure 6f [17].
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Figure 6. (a) Structure diagram of MoS2 transistor. (b) The OM graph of MoS2 transistor. (c) Ferro-
electric characteristics of the different dielectrics. (d–f) Transfer properties of the MoS2 transistors
with different gate dielectrics, at VD = 1 V (Red), 0.5 V (black), and 0.1 V (blue), receptively. The insets
are the enlarged figure of the transfer curve with VD = 1 V. (Reprinted/adapted with permission from
Ref. [17]. Copyright 2020 IEEE).



Nanomaterials 2022, 12, 3233 9 of 22

Therefore, an excellent dielectric layer is important to obtain nonhysteresis, low volt-
age, and stable operation for MoS2 FETs. A high-K dielectric can effectively suppress the
scattering of charge impurities and the other problems. However, when the 2D MoS2
material as the channel layer is very thin, the interface state problem will be more signif-
icant. Therefore, finding suitable single-layer/multi-layer dielectric materials and their
high-quality deposition methods, or adding possible buffer layers, etc., can play a role in
reducing these negative effects of monolayer MoS2 FETs.

3. Logic and Radio-Frequency Circuits
3.1. Logic Circuits

Logical computation is an important part of a computer. Silicon complementary
metal oxide semiconductor (CMOS) circuits are widely used at present, and they have
complementary features to ensure data transmission will not produce problems, such
as loss threshold voltage, accurate logic transmission, high Ion/Ioff, and easy integration.
The application of graphene in logic devices is limited by the zero bandgap. Therefore,
the MoS2 with a suitable bandgap provides a basis for the future application in logic
computing devices [53]. Simulations revealed that monolayer MoS2 FETs showed a 52%
smaller drain-induced barrier lowering, and a 13% smaller SS, than the 3 nm thick-body Si
FETs at a channel length of 10 nm [54]. Therefore, MoS2 FETs are expected to improve the
performance, and obtain new functions of devices in the field of electronics and display
technology [55].

For voltage switching and high-frequency operation, logic devices need to achieve
some performance, such as a high Ion/Ioff ratio (>103) and moderate mobility [18]. Ang et al.
prepared a top-gate MoS2 FETs. The monolayer MoS2 was grown on sapphire substrates
by CVD and employed HfO2 as a high-K dielectric layer. The inverter was fabricated by
direct-coupled FET logic technology to obtain a high voltage gain ~16. When VDD = 3 V,
the total noise margin was 0.72 VDD [56]. Pan et al. proposed a double-gate MoS2 FETs to
overcome the difficulty in regulating the threshold voltage and SS under the condition of a
single gate. The device obtained an ultralow SS value of 65.5 mV/dec in the large current
range above 104, when the dual gate was operating simultaneously in the inverter [57].

Multiple inverters require FETs with a stable resistance ratio to ensure constant output
voltage. Kim et al. prepared cross-type FETs and the WSe2/MoS2 PN heterojunction surface
was treated with PMMA-co-PMAA, so the channel current and anti-bipolar transistor region
characteristics improved. Figure 7c,d shows that PMMA-co-PMAA can increase the current
and ensure the stability of the inverter by doping effect-inducing charge transfer. Applying
a cross-type p−n heterojunction WSe2/MoS2-based FET into a ternary inverter, three stable
logic states of 1, 1/2, and 0 were realized [22], as shown in Figure 7a,b.

Zhou et al. fabricated MoS2 FETs with a double-gate structure and double surface
channel, where the top gate and the back gate serve as two input signals. Logic (OR,
AND) was successfully implemented in a single cell [58]. MoS2-based FETs will replace
the traditional silicon device to achieve a higher degree of integration of logic devices, but
only simple logic can be achieved at present. On the one hand, the development of P-type
MoS2 FETs still has a low performance and complex process problems, so its application in
CMOS circuits still has a long way to go. On the other hand, mass production of large-size
monolayer MoS2 is also a difficulty. However, we still believe that MoS2-based FETs will be
applied to complex and scalable large-scale integrated circuits in the future.
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3.2. Radio-Frequency Circuits

With the advent of the 5G communication era, the position of RF devices is increasingly
prominent and comparable to the importance of logic devices and memory devices. Facing
the problem of bandwidth growth, promoting the working frequency of RF transistors
is inevitable [53]. The maximum frequency of oscillation (fmax) based on III-V materials
has exceeded 1 THz [59]. To further improve the operating frequency and bandwidth,
optimizing the device processes or finding materials with higher mobility such as graphene
is an effective strategy. Although the RF devices made of graphene can reach the operating
frequency of mainstream RF devices, the gain cannot be further improved, due to the
restriction of the zero bandgap. However, MoS2 with a sizable bandgap can solve this
bottleneck effectively [60].

Cheng et al. demonstrated a high-performance MoS2 RF device on a flexible substrate
with an intrinsic cut-off frequency of 42 GHz and fmax up to 50 GHz, and an intrinsic gain
over 30 [61]. Wu et al. reported a microwave circuit with a MoS2 self-switching diode.
Ten layers of MoS2 were grown on an Al2O3/Si substrate to realize the audio spectrum
of an amplitude-modulated microwave signal in the 0.9~10 GHz band [62]. Modreanu
et al. fabricated RF transistors with a double-layer MoS2 channel structure, and the RF
performance of the device was improved by electrostatic doping of the back gate. For MoS2
RF transistors with a 190 nm gate length, at VBG = 3 V, the external natural cutoff frequency
was 6 GHz, the internal natural cutoff frequency was up to 19 GHz, and the maximum
oscillation frequency was 29.7 GHz [63].

Among the flexible electronic devices, the fT and fmax of MoS2 RF transistors were
higher than or comparable to those based on flexible electronic materials such as silicon
film and InGaZnO [59]. Gao et al. transferred the bilayer MoS2 onto a flexible polyimide
substrate to prepare high-performance RF transistors. The different gate lengths (0.3 µm,
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0.6 µm, and 1 µm) affected the performance of MoS2 RF transistors. It was found that fT
and fmax increased with the decrease in the gate length, and with the gate length of 0.3 µm,
the external fT was 4 GHz and fMax was 10 GHz [64].

Dresselhaus et al. formed a (1T/1T’-2H) phase heterostructure of MoS2, and a Schottky
diode flexible rectifier was fabricated by ohmic contact with palladium and Au electrodes,
as shown in Figure 8d. Figure 8a–c show that the rectifier voltage increased with the
increase in RF power, the maximum power efficiency could reach 40.1% at the 2.4 GHz
band, and fT was 10 MHz. A radio-frequency energy collector was prepared by integrating
with a flexible Wi-Fi antenna, as shown in Figure 8e. The radio-frequency energy collector
at 2.5 cm produced an output voltage of 250 mV at 5.9 GHz. These provided a universal
energy-harvesting building block, which could also be integrated with various flexible
electronic systems [65].
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Most MoS2-based RF transistors have been concentrated in bilayer structures because
bilayer MoS2 typically has higher mobility and saturation speed than single-layer MoS2,
providing a better power gain and cutoff frequency for the device. However, the high-
frequency performance of MoS2 RF transistors is still lower than that of silicon transistors.
Therefore, it is important to optimize the device structure or process (such as optimizing
gate structure and edge contact). In addition, MoS2 with excellent mechanical properties
can be used to manufacture flexible devices and, combined with RF, logic, and other fields,
can achieve flexible electronic systems such as wearable devices, flexible sensors, and
medical equipment.
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4. Photodetectors

A photodetector is a device that converts photons into current by the photogenerated
voltage effect of semiconductor materials. When a light source with strong radiation energy
illuminates a semiconductor, the semiconductor material will absorb photons and generate
electron–hole pairs to generate photocurrent [66]. MoS2 has a wide bandgap, layered
structure, strong photoluminescence characteristics, and excellent mechanical properties.
Photodetectors made of MoS2 have strong light response characteristics in the terahertz,
mid-infrared, visible light, and near-infrared ranges [67]. Widely used photodetector
performance indicators include responsivity, time response, specific detection rate, and
spectral selectivity [68].

Zhang et al. developed a method for rapid synthesis of multilayer MoS2 films from
1 L to more than 20 L with good quality using NaCl as a promoter. Then, a monolayer-
to-multilayer MoS2 photodetector was constructed, as shown in Figure 9a. Figure 9b,c
illustrates the output curve of the monolayer–multilayer MoS2 heterojunction device and
the outstanding rectifying ratio (103). Figure 9d depicts the band diagram of the mono-
layer MoS2 under high performance. In order to explore photoresponsivity, the transfer
characteristic curve (Figure 9e) of the device under light and dark conditions and the light
response ability under different voltages were investigated. Figure 9f shows that the device
could achieve a maximum sensitivity of 104 A/W at 0 V (VGS) [69].
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Vds characteristics. (c) Rectification ratio as Vgs. (d) Band diagram of the 1 L-ML MoS2 heterojunction
in the off state (Vgs = 0; Vds = 0). (e) Ids-Vgs characteristics. The inset is the OM graph of the device.
(f) Vgs vs. photoresponsivity. (Reprinted/adapted with permission from Ref. [69]. Copyright 2019
American Chemical Society).

Wu et al. prepared a photodetector by combining MXene nanoparticles with a 2D
MoS2 in a hybrid plasma structure. This strategy could improve the optical response of
MoS2 and make it more sensitive to visible light. The experimental results showed that
the response rate of the device was 20.67 A/W, the detectivity was 5.39 × 1012 Jones, and
the external quantum efficiency was up to 5167% [70]. Wang et al. grew a gate dielectric
heap (Al2O3/HZO/TiN) on a Si substrate and transferred multilayer MoS2 to prepare an
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ultra-sensitive negative-capacitance MoS2 phototransistor. The HZO film could signifi-
cantly enhance the optical gating effect, suppress dark current, and improve the ratio of
light to dark current through a ferroelectric local electrostatic field and the ferroelectric NC
effect. The experiment demonstrated that the prototype device had a high detection rate of
4.7 × 1014 cm Hz1/2W−1 and a high response rate of 96.8 AW−1 at low operating voltages
of Vds = 0.5 V and Vg = 1.6 V at room temperature [71]. Walila et al. grew a 3.5 µm GaN
on a sapphire substrate, and the MoS2 was mechanically stripped as the active layer. Fig-
ure 10a,b show the highly sensitive photodetector with gold and chromium as the electrode.
Compared with bare GaN photodetectors, the responsivity and EQE of the photodetectors
improved by 5 times, as shown in Figure 10d,e. Under the condition of 1 V bias and 365 nm
excitation at 1 mW/cm2, the highest response rate and EQE were obtained, which were
1.8 × 104 A/W and 6.19 × 106%, respectively [24]. The GaN/MoS2 heterojunction laid a
foundation for wide bandgaps and excellent photoelectric performance.
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American Chemical Society).

At present, the MoS2 photodetector mainly focuses on two aspects: the change in
layer number and the construction of a heterojunction. The monolayer MoS2 has a low
absorption surface and low quantum yield, which limits its development in photoelectric
devices. In contrast, the multilayer MoS2 has a small bandgap and can improve the
absorption efficiency. Especially, the MoS2-based heterojunction photodetector could
achieve faster charge transfer and optical response. Optoelectronic devices require trade-
offs between responsiveness and response time to meet practical needs. Although MoS2-
based photodetectors have some difficulties, they still have great advantages in flexible
photodetectors and integrated nano-optoelectronic systems.
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5. Biosensors

Biosensors are widely used in clinical and disease treatment as a powerful tool to detect
biochemical processes. The great demand for detection has promoted the development
of new nanomaterials as a sensing platform [72,73]. The global spread of COVID-19 has
warned people to protect their own health, and biosensors with rapid, real-time, and
accurate detection can effectively contain the spread of the virus and remind people
to treat themselves in a timely manner [73,74]. MoS2 attracted new interest with the
multidimensional structures and structure-dependent unique electronic, electrocatalytic,
and optical properties [75]. Therefore, MoS2 has been widely applied in biosensors that can
detect DNA, proteins, metal ions, and other compounds [76].

Arshad et al. modified Au nanoparticles on MoS2 nanosheets to prepare bottom-gate
FETs for the detection of the low-concentration C-reactive protein. The detection limit and
sensitivity of BG-FETs were 8.38 fg/mL and 176 nA/g·mL−1, respectively [77]. Dai et al.
prepared MoS2 on a 300 nm SiO2/Si substrate and functionalized MoS2 by combining five
different DNA sequences into a DNA tetrahedron, as shown in Figure 11a. Figure 11b
shows that the biosensor is extremely sensitive to the target protein (prostate-specific
antigen, PSA). In phosphate-buffered brine, the detection limit was 1 fg/mL and the linear
range was 1 fg/mL~100 ng/mL. Figure 11c shows that the Ids decreases as the concentration
increases, and bovine serum albumin (BSA) is used as an interference signal for comparison
of detection effects. Figure 11d shows that the biosensor is extremely sensitive to the target
protein (prostate-specific antigen, PSA) [25].
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He et al. prepared a surface plasmon resonance (SPR) biosensor with Au nanoparticles-
modified MoS2 nanoflowers for IgG detection. The flower-like structure can provide more
active sites for metal particles to react with target substances. The sensitivity of the MoS2-
Aunps-modified sensor was 0.0472 nm/(µg/mL), which is about 3 times higher than
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that of an unmodified sensor (0.016 nm/(µg/mL)). The limit of detection of IgG was
reduced 2.7 times (from 0.16 to 0.06 µg/mL) [78]. Kim et al. prepared MoS2 biological
FETs with a nanoporous structure. Nanoporous structures could increase the edge area,
using block copolymer photolithography. The surface area of the nanocycle was selectively
functionalized by the newly formed suspended groups at the edge of the nanocycle. The
biosensor exhibited superior detection performance in human serum and artificial saliva
and resulted in a limit of detection of 1 ag/mL for cortisol [79].

This section mainly introduces the MoS2-based biosensor and the biocompatibility
of the MoS2 material with biological cells, and the portability, sensitivity, and low power
consumption of FETs have been widely studied and applied in biological monitoring.
During the background of COVID-19, the development of wearable biosensors for rapid
monitoring has become an urgent need.

6. Piezoelectric Devices

Piezoelectric properties exist in materials with centrosymmetric fractures. When strain
was applied, the center of gravity of the cation and anion did not coincide, which resulted
in a voltage potential at the interface between the semiconductor and the metal [80]. The
mechanical flexibility and piezoelectric and photoelectric effects of MoS2 materials can
meet the needs of pressure sensors, micro-electro-mechanical systems, and active flexible
electronic devices [81]. A layered MoS2 material could be modified to obtain piezoelectric
properties and could be applied to piezoelectric nanogenerators [82]. The piezoelectric effect
can be used to collect micro-mechanical energy and convert it into electrical energy [83].

Hone et al. first reported the piezoelectric properties of monolayer MoS2 in 2014 [84].
Kim et al. prepared a monolayer MoS2 piezoelectric nanogenerator (PNG) by sulfur vacancy
passivation. The output peak current and voltage of the PNG monolayer MoS2 nanoflakes
treated by S increased by 3 times (100 pA) and 2 times (22 mV), respectively. In addition,
the maximum power increased by nearly 10 times [85]. Hu et al. fabricated a single-layer
butterfly MoS2 piezoelectric device on a polyethylene terephthalate substrate. Figure 12a,d
shows the piezoelectric properties of the MoS2 single crystal (SC-MoS2) and MoS2 with
grain boundaries (GB-MoS2) under external strain. Figure 12b,c shows that under the
action of external stress, the current value generated by the direction of “armchair” was
higher than that of the direction of “Zigzag”. Figure 12e,f shows that the GB-MoS2 current
density is higher than that of SC-MoS2. It was found that the piezoelectric effect induced by
the grain boundary (~ 50%) could be applied to a self-powered sensor to monitor changes
in human blood pressure [26].

Xue et al. reported a new self-powered NH3 sensor, which employed monolayer MoS2
materials on PET and covered polydimethylsiloxane films, and deposited an Au electrode.
The sensor could be worn on different parts of the body and was responsive with a fast
response/recovery time of 18 s/16 s [86]. Willatzen et al. first calculated the piezoelectric
coefficient of 3R-MoS2. Here, the 5-layer 3R-MoS2 structure had the highest piezoelectric
constant in all MoS2 multilayer structures. The maximum piezoelectric constant was about
13% higher than that of the monolayer MoS2 structure [87].

The discovery of piezoelectric effects could utilize a lot of neglected energy. At present,
the application of MoS2 piezoelectric properties is not mature enough. It is necessary to
systematically study the piezoelectric properties, piezoelectric coefficients, and deformation
direction of MoS2 with different layers to help develop high-performance piezoelectric
devices. Hence, MoS2 piezoelectric sensors will realize their great potential in nanoscale
electromechanical systems, micro-flexible wearable devices, and other fields in the future.
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Figure 12. Schematic of a piezoelectric device based on (a) single-crystal MoS2 flake and (d) grain
boundaries of MoS2 flake. Recorded current outputs of the SC-MoS2 devices are (b) zigzag and
(c) armchair, and that of the (e) GB-MoS2 piezoelectric device is perpendicular. (f) Statistical data
for the current density of different monolayer MoS2-based piezoelectric devices (reprinted/adapted
with permission from Ref. [26]. Copyright 2020 American Chemical Society).

7. Synaptic Transistors

After the concept of artificial intelligence appeared, neuromorphic electronics, which
simulate human brain function and information processing, have been proposed as an
effective method to solve complex data processing problems [88]. The foundation of this
technology is to make artificial synapses, which have low power consumption, small size,
and simple structure. A MoS2 material is appropriate for the construction of artificial
synapses due to its excellent electrical properties and optical response. At present, a MoS2-
based artificial synapse has been applied in memory devices, programmable logic circuits,
and other fields.

Roy et al. fabricated a MoS2 vertical synaptic transistor with a titanium and Au
electrode. The device exhibited extremely low cycle-to-cycle variability and device-to-
device variability and stability in the SET voltage and RESET power distributions. The
results showed that there are 26 different conductance states in the device, and each state is
maintained for at least 300 s. These devices maintained a consistent on/off ratio during
the 1000 DC SET–RESET cycles [89]. Wang et al. proposed a phototransistor based on a
MoS2/graphene heterostructure and an integrated triboelectric nanogenerator to simulate
mechanical photon artificial synapses. Synaptic plasticity can be realized by modulating the
channel conductivity of the phototransistor by regulating the mechanical displacement of a
TENG. The simulation results showed that the image recognition accuracy of the artificial
neural network was improved by 92% with the help of mechanical plasticizing [90].

Im et al. fabricated multilevel memory based on van der Waals heterostack (HS)
N-MoSe2/N-MoS2 FETs and extended it to synaptic memory. Figure 13a shows that the
synaptic stacked channel FET was used to simulate a biological synapse. Figure 13b,c
illustrates that using a voltage pulse could simulate synaptic behavior. HS memory utilized
the capture/de-capture phenomenon induced by VGS for programming/erasing functions.
Due to the existence of a heterojunction energy barrier between MoS2 and MoS2, it could
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maintain a long retention time of 104 s. Based on the P-D characteristics of the device
under multiple 60 s short VGS pulses, the simulated recognition rate could reach 94% on
average [27], as shown in Figure 13.
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in neuron system and synaptic stack channel FETs for neuromorphic function. (b) Illustration of a
VPre pulse train. (c) Monitored P-D plots vs. the diverse amplitude. (d) Two P-D conductance plots
with GMax/GMin values. (e) Schematics of multilayer perceptron neural network for classification of
MNIST handwritten digits. (f) Circuit diagram of artificial neural network. (g) Simulation results vs.
actual P-D behavior. (Reprinted/adapted with permission from Ref. [27]. Copyright 2022 American
Chemical Society).

The successful fabrication of artificial synapses based on MoS2 has proved the possibil-
ity of its application in non-von Neumann computing. MoS2 synaptic transistors with high
performance, low power, and large-scale integration characteristics will be widely used in
the brain-like chip, logic circuit, and simulated artificial neuromorphic system. However,
there are still significant challenges in the fabrication technology and the structure of MoS2
synaptic transistors.

8. Conclusions

Two-dimensional MoS2 FETs have attracted wide and in-depth attention as a suitable
candidate for optoelectronic devices and next-generation large-size flexible electronics.
This benefited from the natural atomic layer thickness and large specific surface area of
MoS2, but it can impact the influence quality, which mainly contains a contact interface
and dielectric interface, and they both can then influence the performance of the MoS2
FET. Thus, in order to obtain higher-performance MoS2 FETs, it is necessary to focus on
its main performance improvement strategies, including optimizing the contact behavior,
regulating the conductive channel, and rationalizing the dielectric layer.

To optimize the contact behavior of MoS2 FETs, this paper reviewed metal, graphene,
Mxene, and other new electrodes materials contacting with MoS2, which can adjust the
Fermi level and reduce the Schottky barrier. Self-assembling monolayer functionalized
electrodes are also a novel way to improve the contact barrier, which can significantly
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reduce the Ion/Ioff required by the device. In addition, a 2D/2D van der Waals contact
is also the ideal way to optimize the contact behavior. Meanwhile, the intrinsic MoS2
is a typical N-type semiconductor, so it is difficult to prepare high-performance P-type
MoS2 FETs. At the same time, the defect sites on the surface of the film will produce high
resistance and hinder its electrical performance. Therefore, doping is an effective method to
improve the performance of conductive channels. Metal doping and non-metal doping can
improve the device mobility. More importantly, several different doping methods, such as
tantalum, niobium, and He+ irradiation methods, can realize the transformation of a MoS2
FET from N-type to P-type. In addition, surface charge accumulation and leakage current
due to trap charges are also key challenges for MoS2 FETs. A reasonable dielectric layer is
significant to reduce leakage current and optimize stability. Although the high-K dielectric
is a common solution, it can also produce trap charge. Doping dielectric layers, plasma
treatment, double-K dielectric layers, etc., are proposed to improve the performance of the
dielectric layer.

Functional 2D MoS2 FETs have been widely used in key and emerging fields such as
logic, RF circuits, optoelectronic devices, biosensors, piezoelectric devices, and synaptic
transistors. However, there are some important challenges. For example, how to obtain
high-performance P-type MoS2 FETs on a large scale and build complementary circuits
in logic circuits. The strong photoluminescence properties of the MoS2 material promote
its application in optoelectronic devices, but its effective mechanism in photolumines-
cence devices and electroluminescence devices remains to be explored, and wearable
high-performance biosensors are of great help to solve the current global epidemic detec-
tion. Thus, a MoS2 artificial synapse can be desired for real-time monitoring. Although its
research has been very hot in recent years, there is still a long way to go in the application
of a brain-like microarray and artificial neuromorphology. However, we still believe that
molybdenum sulfide FETs can be used to construct novel functionalized devices and even
super-large scale flexible electronic systems.

Two-dimensional MoS2 is a very suitable channel layer material for the high-performance
FETs, and 2D MoS2 FETs are the promising candidate for downscaling electronics with
short channels, low thickness, small volume, high speed, high sensitivity, light weight,
etc. Especially, a MoS2 FET array based on a high-quality MoS2 channel will have a large
degree of application in the next generation of integrated circuits and flexible electronics.
However, monolayer MoS2 can better meet the high-performance requirements of short
channels and even ultra-short-channel FETs. Thus, it is of great practical significance to
develop the preparation process of monolayer MoS2 and MoS2 FETs performance. Thus,
we believe it to be necessary to continue to extensively study in-depth fewer-layer MoS2
and MoS2-based FETs.
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