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Abstract: In a sol–gel co-condensation, a mesoporous silica hybrid integrated with (3-mercaptopropyl)
trimethoxysilane (TMPSH) was prepared and then reacted with allylamine via a post-surface func-
tionalization approach. Approximately 15 mol% of TMSPSH was introduced into the mesoporous
silica pore walls along with tetraethyl orthosilicate. The mercapto ligands in the prepared mesoporous
silica pore walls were then reacted with allylamine (AM) to form the mercapto–amine-modified meso-
porous silica adsorbent (MSH@MA). The MSH@MA NPs demonstrate highly selective adsorption
of copper (Cu2+) ions (~190 mg/g) with a fast equilibrium adsorption time (30 min). The prepared
adsorbent shows at least a five times more efficient recyclable stability. The MSH@MA NPs adsorbent
is useful for selective adsorption of Cu2+ ions.

Keywords: silica nanoparticles; click chemistry; adsorption; aqueous solution; desorption

1. Introduction

With the rapid development of the industrial sector, heavy metal pollutants are now
considered a serious concern [1,2]. Toxic metal ions including copper, lead, mercury, etc.,
contaminate water bodies, and they induce severe biological and environmental toxic-
ity [3,4]. With high solubility and bioaccumulation, copper ions (Cu2+) are considered toxic
pollutants above a certain level. Copper poisoning can harm the immune system of living
things, and cause disabilities to internal organs [5–8]. Among the various techniques avail-
able, adsorption is the most widely applied technique used for Cu2+ ion separation [9–13].
Designing novel adsorbent materials desirable for toxic metal ions adsorption is needed
urgently. In general, porous materials are considered economically feasible. A range of
materials including mesoporous carbon and silica materials are used for toxic metal ions
adsorption [14–19]. Amongst these, mesoporous silica has proven significant adsorption
efficiency due to its porous structure, high surface area, and recyclability [20–24]. Further,
mesoporous silica materials offer the space to incorporate functional ligands to enhance
adsorption capacity [25–27].

Mesoporous silica functionalized with mercapto groups (-SH) and amine groups
(-NH2) show a specific affinity for specific metal ions [28–31]. In general, increasing
the ligand group content in adsorbent materials is thought to significantly improve the
adsorption efficiency [32–34]. Sol–gel is the most simple, cost-effective, and very useful
method to develop these kinds of materials. The co-condensation synthetic method offers
the advantage of being able to introduce a high amount of organic functional ligand content
in the mesopore walls [35–37].

In this work, we synthesize the mercapto–amine-groups-modified mesoporous silica
adsorbent via a co-condensation method, and surface modification to increase the applica-
tion efficiency of the adsorbent towards selective metal ions (Cu2+ ions). The synthesized
mercapto–amine-grafted mesoporous silica adsorbent (MSH@MA NPs) was analyzed and
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used to evaluate the removal capacity of Cu2+ ions from water. In addition, the adsorption
characteristics of the prepared MSH@MA NPs adsorbent were evaluated by studying
various parameters including pH, time, metal ion concentration, and recyclability. The
study results suggest that the MSH@MA NPs could be used to selectively remove Cu2+

ions from contaminated water.

2. Materials and Methods
2.1. Chemicals

Pluronic P123 (average Mn 5800), (3-mercaptopropyl)trimethoxysilane (TMSPSH,
95%), tetraethoxysilane (TEOS, 98%), allylamine (AM, 98%), Cu(NO3)2·3H2O (98%),
Cd(NO3)2·4H2O (98%), Pb(NO3)2 (99%), Cr(NO3)·6H2O, tetrahydrofuran (THF), hydrochlo-
ric acid (HCl), ethanol, and deionized water were received from Aldrich Chemicals, St.
Louis, MO, USA. All the metal ion stock solution was prepared with 100 mg/mL by dis-
solving the appropriate amount of each metal salt in a neutral pH (pH 7) buffer and stored
at 4 ◦C.

2.2. Synthesis of MSH@SH NPs

For the synthesis of MSH@SH NPs, first, the (3-mercaptopropyl)trimethoxysilane
(TMSPSH)-groups-incorporated mesoporous silica was created via co-condensation method
using Pluronic P123 as structure-directing templating agent. To form a clear solution, P123 (1 g)
was dissolved in deionized water (40 mL) containing 3 g HCl under magnetic agitation for 2 h
at 37 ◦C. The pre-mixed TMPSH and TEOS solution [TMPSH/(TEOS + TMPSH) = 15 mol%]
was slowly added to this, and the solution was agitated for 24 h at 40 ◦C, and further
heated at 90 ◦C. The obtained precipitate was filtered, washed with water, and dried at
60 ◦C. The surfactant was extracted by stirring with an acidified ethanolic solution (1 mL
HCl in 50 EtOH). The extraction procedure was carried out three times. MSH@SH NPs
was the name given to the extracted surfactant sample (Scheme 1). Second, the mercapto
groups in the MSH@SH sample were further modified with allylamine (AM) groups (5 mL,
0.2 M) by incubating the MSH@SH NPs (0.2 g) in ethanol (20 mL) for 24 h at 55 ◦C [38]. The
finished product was filtered, washed with THF and ethanol, and dried at 60 ◦C. MSH@MA
NPs was the name given to the mercapto–amine-modified mesoporous silica adsorbent
(Scheme 1). For comparison, we prepared control MSNs without any ligand functionalities
such as mercapto–amine (MA) groups. For the synthesis of a control sample, about 1 g
of P123 was dissolved in deionized water (40 mL) containing 3 g HCl under magnetic
agitation for 2 h at 37 ◦C. To this, TEOS solution (1.5 mL) was added, and the solution was
magnetically stirred for 24 h at 40 ◦C and further heated at 90 ◦C. The obtained precipitate
was filtered, washed with water, and dried at 60 ◦C. The surfactant was extracted by stirring
with an acidified ethanolic solution (1 mL HCl in 50 EtOH). The obtained sample was
named as MSNs.

2.3. Characterization

Fourier-transform infrared (FT-IR, JASCO FTIR 4100, Easton, MD, USA) spectra were
carried out using the KBr pelleting method. X-ray diffraction (XRD, Bruker AXN, Billercia,
MA, USA) analysis was performed with CuK radiation. Nitrogen adsorption–desorption
experiments were carried out on a Nova 4000e analyzer (Quantachrome Instruments,
Boynton Beach, FL, USA) at −196 ◦C. The surface area, pore size, and pore volumes
were calculated using the Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda
(BJH) techniques, respectively. Scanning electron microscopy (SEM, JEOL 6400, Akishima,
Tokyo, Japan) was performed with a 10 kV accelerating voltage. A transmission electron
microscope (TEM) analysis was performed on a JEOL 2010 TEM, Akishima, Tokyo, Japan
at 200 kV. The materials were subjected to thermogravimetric (TG, Perkin-Elmer Pyris
1, Waltham, MA, USA) analysis at a heating rate of 10 ◦C/min. An inductively coupled
plasma atomic emission spectrometer was used to quantify adsorbed metal ions (ICP-AES,
Perkin-Elmer, Model Optima 5300 DV, Waltham, MA, USA).
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Scheme 1. Schematic representation for the synthesis of MSH@MA NPs adsorbent.

2.4. Adsorption Study

The following equations were applied to determine the amounts of an adsorbed metal
ion at equilibrium (Qe, mg/g) and at time t (Qt, mg/g).

Qe = [(C0 − Ce)V]/m (1)

Qt = [(C0 − Ct)] V/m (2)

where C0 and Ce are the initial and equilibrium concentrations, respectively, and Ct is the
concentration at any given time t; V is the volume of solution (mL), and m is the adsorbent
weight (g).

2.4.1. Effect of pH

To carry out this study, MSH@MA NPs sample (0.1 g) was suspended in a 10 mL buffer
solution and about 0.5 mL of Cu2+ ion solution (100 mg/L) was introduced. Further, the
solution medium was adjusted with different pH levels (3, 5, 6.5, 7, and 9) using 0.1 M HCl,
and shaken at 25 ◦C for 60 min to reach equilibrium. The sample was isolated by filtration,
and the obtained filtrate solution was used to determine unadsorbed Cu2+ ions using the
ICP-AES instrument.

2.4.2. Effect of Time

A kinetic adsorption study was performed at different time points. For this study, the
MSH@MA NPs sample (0.1 g) was suspended in water (10 mL), and the medium pH was
adjusted. Cu2+ ion solution (0.5 mL) was introduced and agitated at 25 ◦C for different
lengths of time (5–120 min). After the specified time, the sample was filtered and washed
with water. ICP-AES analysis was performed on the filtrate obtained.

2.4.3. Effect of Competitive Metal Ions

For this study, the MSH@MA NPs sample (0.1 g) was suspended in a vial containing
10 mL of a mixed solution containing Cu2+ and Co2+, Cd2+, Pb2+, and Cr3+ ions, and then
agitated at 25 ◦C for 60 min. Finally, ICP-AES analysis was used to determine the number
of metal ions adsorbed.
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2.4.4. Recyclability Test

To accomplish this study, metal-adsorbed MSH@MA/Cu2+ NPs sample (0.1 g) was
agitated for 60 min at 25 ◦C in 10 mL of aqueous HCl solution (0.1 M). The sample was
filtered, washed several times, and dried at 60 ◦C. The desorbed metal ion was determined.
The adsorption–desorption procedure was repeated five times in a row, with the adsorption
efficiency of the MSH@MA NPs being determined each time.

3. Results and Discussion
3.1. FTIR Analysis

The FTIR spectrum of mercapto-amine-groups-functionalized mesoporous silica MSH@MA
NPs is shown in Figure 1a. The stretching modes at 594, 2622, 2895, and 2932 cm−1, are
assigned to the stretching modes of the alkyl (-CH2-CH2-) stretching peaks, evidencing
that the mercapto-amine groups are present in the silica materials [39,40]. In addition, the
typical band at 965 and 1088 cm−1 promotes the formation of surface silanol and siloxane
networks in MSH@MA NPs. Moreover, the control MSNs show at 965 cm−1 and 1088 cm−1,
depicting surface silanol and siloxane groups, without any specific peaks for organic ligand
mercapto-amine groups (Figure 1b).
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Figure 1. FTIR spectra of the (a) MSH@MA NPs; (b) MSNs.

3.2. XRD and BET Analysis of MSH@MA NPs

Figure 2a depicts the powder XRD pattern of the mercapto–amine-groups-functionalized
MSH@MA NPs. The sample shows the diffraction peak at 2θ = 0.97◦, indicating (100)
diffraction that indicates the formation of an ordered mesostructure arrangement in the
MSH@MA NPs, as shown in Figure 2a. A similar XRD pattern is also observed for the
control samples (See Figure S1 in Supplementary Materials). Figure 2b shows type IV
isotherm curves with H1 hysteresis of the MSH@MA NPs sample, indicating mesopore
formation [41]. The MSH@MA NPs sample’s surface area, pore volume, and mesopore size
are determined to be approximately 563 m2/g, 0.61 cm3/g, and 2.7 nm, respectively. For
the control MSNs, the estimated surface area, pore volume, and average mesopore size
are determined to be 690 m2/g, 0.72 cm3/g, and 3.1 nm, respectively (See Figure S2a in
Supplementary Materials).
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3.3. TGA, Zeta, and Particle Size Analysis of MSH@MA NPs

The TG analysis of the MSH@MA NPs is shown in Figure 3a. As shown in Figure 3a,
the MSH@MA NPs sample experiences an initial weight loss of about 2.3 wt% at 100 ◦C,
due to surface-adsorbed moisture evaporation. Following that, a 20.8 wt% weight loss
occurs at 101–650 ◦C, indicating that the functionalized ligand decomposes. The control
MSNs sample shows a negligible weight loss, with an overall weight loss of about ~2.8 wt%
caused by physisorbed moisture (See Figure S3a). As shown in Figure 3b, the MSH@MA
NPs sample has positive zeta potential values of about +16 ± 1 mV, +10 ± 2 mV, and
+7 ± 1 mV at pH 3, 5, and 6 respectively. In addition, the zeta potential values at pH 7
and 9 are about −15 ± 1 and −21 ± 2 mV, respectively, and the negative zeta potential
value arises due to the presence of sulfur atom in the modified functional groups, which
supports the existing mercapto–amine ligands in the MSH@MA NPs adsorbents [42]. The
control sample shows negative zeta potential values of about −6 to −24 mV at pH 3 to
9, respectively, indicating the presence of negatively charged silanol groups (Figure 3b).
Furthermore, the particle size analysis of MSH@MA NPs measured by DLS analysis reveals
particle sizes fall in between the 100 to 400 nm range, with the average particle size of
about ~250 ± 100 nm (Figure 3c). In contrast, MSNPs show particle sizes in the range from
~100 nm to 500 nm, with an average particle size of about ~300 nm (See Figure S3b).

3.4. Morphological Analysis (SEM and TEM) of MSH@MA NPs

SEM images of MSH@MA NPs reveal aggregated particles with an average size of
400 nm, as shown in Figure 4a. The TEM image (Figure 4b) shows the mesopore ar-
rangement in the MSH@MA NPs sample, evidencing the existence of ordered mesopore
structures. The presence of wormhole-like porous structure can be easily noticed from
the TEM analysis. SEM and TEM (inset) images of the MSNs sample also show aggre-
gated particles with a particle size of about 350 nm, with clear mesopore channels (See
Figure S2b, ESI).
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3.5. Adsorption Kinetics
3.5.1. Effect of pH and Time on Adsorption Efficacy of MSH@MA NPs

Adsorption medium pH-based adsorption was studied at different pH conditions.
Figure 5a shows that the Cu2+ ion adsorption gradually increases from pH 3 to pH 7, and
then decreases further while reaching pH 9. The maximum of Cu2+ ions adsorption is
achieved at pH 6.5, the estimated amount being 190 mg/g (Figure 5b). Therefore, pH 6.5
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was selected for further kinetic studies. Furthermore, the MSH@MA NPs show enhanced
adsorption in the pH 3 to 7 range, indicating that the surface-modified mercapto–amine
groups effectively increase the adsorption efficiency of the MSH@MA NPs. The adsorption
capacity of Cu2+ ions decreases at a low pH due to lower metal ion–ligand affinity. This
might be caused due to the interference of H+ ions and the Cu2+ ions under reduced pH [43].
The adsorption efficiency of MSH@MA NPs towards Cu2+ ions is greatly decreased at low
pH conditions such as pH 3 and pH 5. At these reduced pH conditions, the concentration
of acidic protons (H+ ions) in the solution medium is considerably higher and it could
competitively interact with the nitrogen (N) and sulfur (S) atoms. Thus, the Cu2+ ion
interaction with these mercapto–amine ligand groups is considerably hindered. This is
the reason why the Cu2+ ions are adsorbed at a low amount by the MSA@MA NPs under
acidic pH conditions [44].
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Figure 5. Adsorption kinetics of MSH@MA NPs. (a) Influence of solution pH on the adsorption
percentage of Cu2+ ions onto the MSH@MA NPs. (b) Influence of solution pH on the amount of
adsorption of Cu2+ ions onto the MSH@MA NPs. (c) Influence of contact time on the adsorption
percentage of Cu2+ ions onto the MSH@MA NPs. (d) Influence of contact time on the amount of
adsorption of Cu2+ ions onto the MSH@MA NPs.

Time-dependent adsorption kinetics were calculated using a Cu2+ ion solution con-
taining 100 mg/L. Figure 5c shows that the adsorption efficiency of MSH@MA NPs on Cu2+
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ions increases before reaching equilibrium. The prepared MSH@MA NPs takes a short
time to reach maximum adsorption of 190 mg/g, with approximately 85% of adsorption
occurring within 30 min, and reaching equilibrium adsorption in about 60 min, and almost
reaching equilibrium when increasing the time to 90 min (Figure 5d).

3.5.2. Effect of Adsorbent Dosage and Selective Efficiency of MSH@MA NPs

The adsorption behavior of the prepared MSH@MA NPs was tested at 25 ◦C with
different amounts of adsorbent (10–150 mg/L) using Cu2+ ions (100 mg/L). Figure 6a
shows that increasing the quantity of MSH@MA NPs increases the Cu2+ ion adsorption.
As shown in the graph, using adsorbent amounts of 100 mg/L, approximately 85% of
the removed Cu2+ ions are adsorbed. The obtained results reveal that the quantity of
mercapto–amine groups increases with increasing the adsorbent dosage of 150 mg/L, and
the functionalities are responsible for the Cu2+ ion removal from the aqueous solution.
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Figure 6. (a) Effect of adsorbent dosage of Cu2+ ions onto the MSH@MA and MS NPs. (b) Selective
adsorption efficiency for various competitive metal ions by MSH@MA NPs.

The selectivity of the adsorbent was studied along with the competitive metal ions.
As shown in Figure 6b, the MSH@MA NPs sample exhibits more Cu2+ ion adsorption than
the other metal ions. According to these findings, other competitive metal ions do not
interfere with the modified functional groups on the MSH@MA NPs, and do not cause any
notable adsorption efficiency toward the selective adsorption of Cu2+ ions. This implies
that the mercapto–amine functional groups in MSH@MA NPs have a preferable affinity for
Cu2+ ions than the other ions [23,44]. This is due to the interaction between Cu2+ ions and
mercapto–amine being stronger than those between other metal ions and mercapto–amine
ligands. Therefore, the higher selectivity of MSH@MA NPs towards Cu2+ ions is due to
the fact that the softer transition metal ions (for example, Cu2+) are prone to form stable
complexes with ligands carrying softer donor atoms [45].

3.5.3. Adsorption Kinetics in Aqueous Solution and Recyclability of MSH@MA NPs

The adsorption of Cu2+ ions fit well with a pseudo-second-order kinetic equation in Figure 7a,
and the constant Kad is estimated to be 3.9 × 10−3 g/mg/min and 4.8 × 10−3 g/mg/min
for initial concentrations of 50 and 100 mg/L of Cu2+ ions, respectively (Table 1). The
correlation coefficients (R2) for the Langmuir model are larger and fit better than the
Freundlich model, indicating that the Cu2+ ions adsorption of the functional groups could
be described as monolayer adsorption (Table 2). According to Table 3, the maximum
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adsorption capacity of MSH@MA NPs for Cu2+ is determined to be 190 mg/g, which is
higher than the various types of adsorbents previously reported [43–50].
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Table 1. The pseudo-second-order rate constant of adsorption kinetics of MSH@MA NPs in an
aqueous solution of Cu2+ ions.

Initial Conc. of Metal Ions (mg/L) Kad (g/mg/min) R2

50
Cu2+ Cu2+

2.8 × 10−3 0.98
100 3.9 × 10−3 0.97
150 4.8 × 10−3 0.97

Table 2. Comparison of Langmuir and Freundlich isothermal adsorption-related parameters of the
MSH@MA NPs materials for Cu2+ ions.

Langmuir Freundlich

Qm (mg/g) KL (L/mg) R2 1/n KF
((mg/g)/(mg/mL)) R2

MSH@MA NPs/Cu2+ 190 7.85 0.98 1.73 4.8 0.95

The recyclability and reusability of the prepared MSH@MA NPs were determined. For
this study, 0.1 g of Cu2+ ions adsorbed MSH@MA NPs was treated with 0.1 M HCl (25 mL)
and stirred for 60 min before centrifuging, washing with water, and drying. The adsorption
capacity of the recycled sample was then tested by adsorbing the Cu2+ ions from the
solution and determining the adsorbed metal ions. Figure 7b depicts the adsorption capacity
maintained at about 95–80% in the subsequent three cycles, revealing the MSH@MA NPs’
retention of Cu2+ ions adsorption capacity.
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Table 3. Comparison of the adsorption capacity of the various functional adsorbent materials.

Type of Adsorbent Adsorptionmax (mg/g) Reference

Sulfur-functionalized silica microspheres 62.3 [43]

Amino-functionalized mesoporous silica 36.4 [44]

Mesoporous silica SBA-15-triethylenetetramine 23.9 [45]

Multi-modified granulated SBA-15 31.8 [46]

Dopamine-functionalized silica NPs 58.7 [47]

Fe3O4@SiO2 nanoparticles 51.04 [48]

Chitosan–carboxymethyl starch composite 95 [49]

Chitosan@TiO2 composites 31 [50]

Mercapto–amine-modified mesoporous silica adsorbent 190 This work

4. Conclusions

In this study, mercapto–amine-groups-modified MSH@MA NPs were synthesized
via thiolene click reaction for selective removal of Cu2+ ions. By this approach, enriched
mercapto–amine functional groups were incorporated into the silica surfaces, which show
selectivity towards Cu2+ ions. The experimental results reveal that solution pH, adsorption
time, metal ion concentration, and adsorbent dosage all have a significant impact on adsorp-
tion behavior. At 25 ◦C, the prepared MSH@MA NPs have an estimated adsorption capacity
of 190 mg/g of Cu2+ ions. The experimental adsorption results show that functionalized
mercapto–amine groups in MSH@MA NPs have significantly higher adsorption activity
towards Cu2+ ions. As a result, the MSH@MA NPs could be used to selectively remove
Cu2+ ions from an aqueous solution.
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