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Abstract: Nickel and nickel phosphide nanoparticles are highly useful in various fields, owing to their
catalytic and magnetic properties. Although several synthetic protocols to produce nickel and nickel
phosphide nanoparticles have been previously proposed, controllable synthesis of nanoparticles
using these methods is challenging. Herein, we synthesized highly monodisperse nickel and nickel
phosphide nanoparticles via thermal decomposition of nickel–oleylamine–phosphine complexes
in organic solvents. The size and composition of the nickel and nickel phosphide nanoparticles
were easily controlled by changing the aging temperature, precursor concentration, and phosphine
surfactant type. Large-sized monodisperse nickel nanoparticles obtained using our method were
successfully applied for the purification of histidine-tagged proteins.

Keywords: nanoparticles; nickel; nickel phosphide; his-tagged protein

1. Introduction

The synthesis of magnetic nanoparticles is important because of their broad applica-
tions in magnetic resonance imaging, drug delivery, magnetic separation, catalysis, and
magnetic storage devices [1–5]. As physical properties of nanoparticles are affected by their
size and shape, synthetic methods allowing the control of particle size, size distribution,
and particle shape are strongly desired [6–8]. Nickel and nickel oxide nanoparticles are
widely used as catalysts [9,10], in magnetic separation of histidine-tagged proteins [11], in
resistive random access memory [12], and as superconductors [13]. Nickel nanoparticles
have been previously synthesized using sonochemistry [14], reduction [15–17], decomposi-
tion of organometallic compounds or metal salts [18,19], and electrochemical methods [20].
However, nanoparticles synthesized using these methods are polydisperse, have low crys-
tallinity, and are prone to aggregation. Monodisperse nickel nanoparticles have also been
synthesized using the thermal decomposition of organometallic complexes in organic sol-
vents. However, the diameter of the monodisperse nickel nanoparticles synthesized via the
abovementioned procedures is usually smaller than 10 nm [21–24], and small nanoparticles
are fully oxidized to antiferromagnetic nickel oxide nanoparticles with a low magnetic
moment [24]. Nickel phosphide nanoparticles are also important materials for catalysis,
supercapacitors, and electrocatalysis [25–28].

Metal phosphide nanoparticles have been previously synthesized using phosphine [29–33],
phosphate salts [34], and pure phosphorous as phosphorous sources [35,36]. In recent
works, nickel nanoparticles have often been used as scaffolds for producing nickel phos-
phide nanoparticles [37,38]. The reported procedures, however, are tedious, and the
resulting nanoparticles are polydisperse.

A simple method for the synthesis of monodisperse nickel and nickel phosphide
nanoparticles is presented in this report. The resulting nickel nanoparticles are highly
monodisperse and sufficiently large to maintain a pure nickel core even after oxidation
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in air. Moreover, both nickel and nickel phosphide nanoparticles can be obtained using a
single synthetic scheme reported here, only at different aging temperatures.

2. Materials and Methods
2.1. Materials

Nickel(II) acetylacetonate (Ni(acac)2, 90%), octyl ether (99%), trioctyl phosphine
(TOP, 90%), 1-octadecene (90%), and oleic acid (90%) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Tributyl phosphine (TBP) was purchased from Fluka (Charlotte,
NC, USA). Oleyl amine was purchased from Acros. All chemicals were used without
further purification.

Histidine-tagged green fluorescent protein (GFP) and PE-Cy5-conjugated normal
mouse IgG1 were purchased from Santa Cruz Biotechnology (Dallas, TX, USA) and
Upstate, respectively.

2.2. Methods
2.2.1. Synthesis of 9 nm Nickel Nanoparticles

Ni–oleylamine complex was prepared by reacting 1.55 g of oleylamine with 0.257 g
of Ni(acac)2 at 100 ◦C for 30 min under an inert atmosphere. Dioctyl ether (6 mL) was
injected into the Ni–oleylamine complex, and the solution was degassed for 1 h at 100 ◦C
under vacuum. TBP (0.3 mL) was injected into the nickel complex solution under an argon
atmosphere. The solution was heated to 250 ◦C with a heating rate of 2 ◦C/min and aged at
the same temperature for 30 min. At approximately 200 ◦C, the color of the solution started
to change from bluish-green to black, indicating the formation of nickel nanoparticles. After
aging, the product was rapidly cooled to 70 ◦C. Oleic acid (2 mL) was added to the product
under argon flow to stabilize the nanoparticle dispersion. Nanoparticles were precipitated
by adding a 1:2 mixture of excess ethanol and acetone. The nanoparticles were dispersed in
hydrophobic solvents, such as hexane or chloroform.

2.2.2. Synthesis of 13 nm Nickel Nanoparticles

Dioctyl ether (5 mL) was injected into the Ni–oleylamine complex, and the solution
was degassed for 1 h at 100 ◦C under vacuum. TBP (0.3 mL) was injected into the nickel
complex solution under an argon atmosphere. The solution was then heated to 250 ◦C with
a heating rate of 2 ◦C/min and aged at the same temperature for 30 min.

2.2.3. Synthesis of Ni12P5 Nanoparticles

Dioctyl ether (5 mL) was injected into the Ni–oleylamine complex, and the solution
was degassed for 1 h at 100 ◦C under vacuum. TBP (0.3 mL) was injected into the nickel
complex solution under an argon atmosphere. The solution was then heated to 280 ◦C with
a heating rate of 2 ◦C/min and aged at the same temperature for 30 min.

2.2.4. Ligand Exchange of Nickel/Nickel Oxide (Ni/NiO) Nanoparticles

The nanoparticles (200 mg) oxidized in air were dispersed in an imidazole solution in
chloroform (0.1 g/mL, 5 mL) and stirred for 6 h. The ligand-exchanged nanoparticles were
collected by centrifugation after adding n-hexane.

2.2.5. Reaction of Ni/NiO Nanoparticles with Proteins

The imidazol-stabilized oxidized Ni nanoparticles (60 µg) were mixed with 250 µL of
protein solution with a concentration of 30 µg/mL. The protein solutions were prepared by
dissolving histidine-tagged GFP or PE-Cy5-conjugated normal mouse IgG1 antibodies in
PBS. The mixture containing Ni/NiO nanoparticles and fluorescent proteins was incubated
by shaking for 30 min. The Ni/NiO nanoparticles and bound proteins were purified using
a magnet. The purified particles and proteins were redispersed in 250 µL of imidazole
solution (0.1 g/mL). The proteins bound to the Ni/NiO nanoparticles were released by
shaking for 30 min.
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2.2.6. Characterization of Materials

Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images
were obtained by JEOL EM-2010 and JEOL EM-2100F at an accelerating voltage of 200 kV.
X-ray diffraction (XRD) patterns were acquired using a Rigaku Dmax 2500 diffractome-
ter using monochromatized Cu-Kα radiation at 40 kV and 200 mA. The hydrodynamic
size of the ligand-exchanged nanoparticles was characterized by Otsuka DLS-8000. The
magnetization measurements were performed using an MPMS 5XL Quantum Design su-
perconducting quantum interference device (SQUID) magnetometer. Photoluminescence
spectra were collected on a Perkin-Elmer LS 50 B spectrometer at excitation wavelengths of
400 nm (for GFP) and 630 nm (for Cy5).

3. Results and Discussion
Analysis of Ni Nanoparticles

TEM images of Ni nanoparticles synthesized using TBP as a surfactant are shown in
Figure 1. The images show highly monodisperse Ni nanoparticles obtained without any
size selection. The large-area two-dimensional assembly of nanoparticles confirmed their
monodispersity, as shown in Figure S1. The particle sizes were controlled by regulating the
precursor concentration: nanoparticles with diameters of 9 and 13 nm (Figure 1a,b) were
synthesized at precursor concentrations of 167 and 200 mM, respectively. Size distribution
histograms proved that the particles were very monodisperse, with the coefficient of
variation for size not exceeding 4% (Figure 1c,d).

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 1. TEM images of (a) 9 nm and (b) 13 nm nickel nanoparticles obtained at precursor concen-
trations of 167 and 200 mM, respectively. Scale bars are 50 nm. The corresponding size histograms 
are displayed in (c,d). The average diameters of the nanoparticles were (c) 9.03 nm and (d) 12.61 nm. 
The standard deviations were (c) 2.97% (0.268 nm) and (d) 3.67% (0.463 nm). Blue lines are Gaussian 
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age showed voids at the interface between the nickel and nickel oxide layers and bridges 
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anions produce a metal/metal oxide core/shell structure with voids at the interface be-
tween the metal and metal oxide. The Kirkendall effect can occur at room temperature if 
atomic diffusivity is low for a sufficiently long time. Upon exposure to air for a month, 
the 13 nm nickel nanoparticles changed to 16 nm Ni/NiO nanoparticles, as shown in the 
HRTEM image (Figure S2). This peculiar change may also be the result of the Kirkendall 
effect. The core nickel cations moved faster than the outer oxide anions. As a result, a 
nickel oxide layer was formed, and the size of the nanoparticles increased.  

The crystal structures of the nickel nanoparticles were characterized using XRD. The 
large and broad (111) peak at 44° and the small (220) peak at 77° in the XRD pattern in 
Figure 2c indicate that the particles consisted of face-centered-cubic (fcc) Ni. The broad 

Figure 1. TEM images of (a) 9 nm and (b) 13 nm nickel nanoparticles obtained at precursor concen-
trations of 167 and 200 mM, respectively. Scale bars are 50 nm. The corresponding size histograms
are displayed in (c,d). The average diameters of the nanoparticles were (c) 9.03 nm and (d) 12.61 nm.
The standard deviations were (c) 2.97% (0.268 nm) and (d) 3.67% (0.463 nm). Blue lines are Gaussian
fitted lines. To ensure the accuracy of size measurement, we measured the sizes of 208 individual
particles for each batch.
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The HRTEM image of the 13 nm nanoparticles observed one month after the synthesis
revealed the polycrystalline structure of the nickel core and nickel oxide shell (Figure S2).
With continuous exposure to air, nickel atoms on the surface of the nanoparticles are
oxidized and form a ~3 nm thick nickel oxide layer, owing to the limited diffusion depth of
oxygen [39]. While large nickel particles are partially oxidized, nanoparticles smaller than
7 nm are completely oxidized to nickel oxide nanoparticles [40,41]. The HRTEM image
showed voids at the interface between the nickel and nickel oxide layers and bridges in
the voids. The voids and bridges between the two components are typical features of the
nanoscale Kirkendall effect. The Kirkendall effect is an atomic transfer phenomenon at
the interface of a diffusion couple [9,42]. When atomic diffusion occurs through vacancy
exchange, the outward flow of fast-moving cations and inward flow of slow-moving oxide
anions produce a metal/metal oxide core/shell structure with voids at the interface between
the metal and metal oxide. The Kirkendall effect can occur at room temperature if atomic
diffusivity is low for a sufficiently long time. Upon exposure to air for a month, the 13 nm
nickel nanoparticles changed to 16 nm Ni/NiO nanoparticles, as shown in the HRTEM
image (Figure S2). This peculiar change may also be the result of the Kirkendall effect. The
core nickel cations moved faster than the outer oxide anions. As a result, a nickel oxide
layer was formed, and the size of the nanoparticles increased.

The crystal structures of the nickel nanoparticles were characterized using XRD. The
large and broad (111) peak at 44◦ and the small (220) peak at 77◦ in the XRD pattern in
Figure 2c indicate that the particles consisted of face-centered-cubic (fcc) Ni. The broad
peaks imply that the particles had a small grain size. The grain size calculated using the
Scherrer equation was 2.2 nm [43], which was much smaller than the core size measured
by TEM (~9 nm), indicating that the core material had a polycrystalline morphology.
The polycrystalline nature of the obtained nickel nanoparticles was also identified using
HRTEM (Figure S2). Nickel oxide peaks were absent in the XRD pattern because the metal
oxide shell formed through the Kirkendall effect has amorphous morphology [44]. The
oxidation of nickel was confirmed using X-ray photoelectron spectroscopy (XPS). The XPS
data exhibited two peaks related to Ni2+ ions on the surface (Figure S3).

Phosphine surfactants, TBP and TOP, were used to synthesize nickel nanoparticles.
The use of TOP as a surfactant in a 200 mM precursor produced nickel nanoparticles with
a size of 10 nm. At the same time, 13 nm nickel nanoparticles were synthesized using
TBP as a surfactant (Figure S4). During aging, bulky TOP molecules limit the growth of
nanoparticles, resulting in the formation of small particles [22].

The chemical composition of nanoparticles was controlled by varying the aging tem-
perature. The XRD patterns of the nanoparticles aged at 240 and 280 ◦C are shown in
Figure 2c,d. The XRD patterns demonstrated that the nanoparticles aged at 280 ◦C con-
sisted of Ni12P5 with (440), (312), (510), and (004) peaks and that those aged at 240 ◦C were
fcc Ni particles. Ni12P5 particles had hollow structures (Figures 2b and S5); the phosphorus
source for their formation was trialkyl phosphine. Phosphine has been previously used
either as a phosphorus source for the synthesis of metal phosphide nanoparticles [33] or as
a surfactant for metal nanoparticles [45,46]. In most cases, when trialkyl phosphine was
used as a phosphorus source, nanoparticles are synthesized at temperatures higher than
280 ◦C. Above 280 ◦C, the carbon–phosphorus bonds in trialkyl phosphines are dissociated
owing to the high thermal energy. Free phosphorus atoms participate in the formation
of nanoparticles, resulting in the formation of metal phosphides. Moreover, the surface
metal atoms of the nanoparticles can act as catalysts to break carbon–phosphorus bonds
and promote phosphide formation reactions [32]. At aging temperatures below 250 ◦C,
trialkyl phosphines act as surfactants [22,45]. Below 250 ◦C, carbon–phosphorus bonds
in trialkyl phosphines remain intact because of low thermal energy. Therefore, at low
temperatures, nickel nanoparticles were obtained, whereas at high temperatures, nickel
phosphide nanoparticles were synthesized, as shown in the XRD patterns. The differen-
tial scanning calorimetry (DSC) data for TBP support this explanation (Figure S6). Two
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endothermic peaks that indicate the dissociation of the carbon–phosphorus bond were
observed at 255 and 296 ◦C in the DSC results.

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 10 
 

 

peaks imply that the particles had a small grain size. The grain size calculated using the 
Scherrer equation was 2.2 nm [43], which was much smaller than the core size measured 
by TEM (~9 nm), indicating that the core material had a polycrystalline morphology. The 
polycrystalline nature of the obtained nickel nanoparticles was also identified using 
HRTEM (Figure S2). Nickel oxide peaks were absent in the XRD pattern because the metal 
oxide shell formed through the Kirkendall effect has amorphous morphology [44]. The 
oxidation of nickel was confirmed using X-ray photoelectron spectroscopy (XPS). The XPS 
data exhibited two peaks related to Ni2+ ions on the surface (Figure S3). 

 
Figure 2. TEM images of (a) Ni and (b) Ni12P5 synthesized at (a) 240 and (b) 280 °C (precursor con-
centration = 200 mM, surfactant: TBP, solvent: dioctyl ether) and XRD spectra of (c) Ni (a, JCPDS 
number 87-0712) and (d) Ni12P5 (b, JCPDS number 74-1381) nanoparticles. 

Phosphine surfactants, TBP and TOP, were used to synthesize nickel nanoparticles. 
The use of TOP as a surfactant in a 200 mM precursor produced nickel nanoparticles with 
a size of 10 nm. At the same time, 13 nm nickel nanoparticles were synthesized using TBP 
as a surfactant (Figure S4). During aging, bulky TOP molecules limit the growth of nano-
particles, resulting in the formation of small particles [22]. 

The chemical composition of nanoparticles was controlled by varying the aging tem-
perature. The XRD patterns of the nanoparticles aged at 240 and 280 °C are shown in Fig-
ure 2c,d. The XRD patterns demonstrated that the nanoparticles aged at 280 °C consisted 
of Ni12P5 with (440), (312), (510), and (004) peaks and that those aged at 240 °C were fcc Ni 
particles. Ni12P5 particles had hollow structures (Figures 2b and S5); the phosphorus 
source for their formation was trialkyl phosphine. Phosphine has been previously used 
either as a phosphorus source for the synthesis of metal phosphide nanoparticles [33] or 
as a surfactant for metal nanoparticles [45,46]. In most cases, when trialkyl phosphine was 
used as a phosphorus source, nanoparticles are synthesized at temperatures higher than 
280 °C. Above 280 °C, the carbon–phosphorus bonds in trialkyl phosphines are 

Figure 2. TEM images of (a) Ni and (b) Ni12P5 synthesized at (a) 240 and (b) 280 ◦C (precursor
concentration = 200 mM, surfactant: TBP, solvent: dioctyl ether) and XRD spectra of (c) Ni (a, JCPDS
number 87-0712) and (d) Ni12P5 (b, JCPDS number 74-1381) nanoparticles.

The magnetic properties of nickel nanoparticles are dependent on their size. The
magnetization–magnetic field curve of 13 nm Ni nanoparticles measured using SQUID
showed that the saturation magnetization of the nanoparticles at 8000 Oe was 2.8 emu/g
(Figure 3), which is much smaller than the saturation magnetization of bulk nickel (56 emu/g).
The small magnetization of nickel nanoparticles is also reported in the literature on the
synthesis of nickel nanoparticles [14,47–49]. This result can be explained by several rea-
sons. First, a small volume of the magnetic region may cause small magnetization. Ni
nanoparticles changed into a Ni/NiO core/shell structure via surface oxidation (Figure S2).
Ni/NiO nanoparticles mostly consist of an antiferromagnetic nickel oxide layer, which
has much weaker magnetic properties than Ni. Second, the polycrystalline morphology
may reduce magnetization [14,49]. Incomplete coordination of nickel atoms on the sur-
face or grain boundaries of particles leads to spin disordering. This disorder has been
interpreted as the cause of the small saturation magnetization. Third, phosphorus impu-
rities may be responsible for reduced magnetism. As discussed in the previous section,
nickel phosphide nanoparticles were synthesized through the breakage of the carbon–
phosphorus bonds in trialkyl phosphine at temperatures higher than 280 ◦C. At the same
time, bond breakage can still occur below 280 ◦C because of the distribution of thermal
energy. Therefore, we assumed that the phosphorus atoms derived from phosphine acted as
impurities. The exchange coupling can be interrupted by impurities, resulting in decreased
magnetization [50].
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To obtain nanoparticles with high magnetism, both the crystallinity and size of the
particles should be increased while reducing the amount of impurities. When a smaller
amount of phosphine was used, larger particles with high crystallinity and fewer impu-
rities were obtained. Because phosphine molecules can induce the decomposition of the
Ni–oleylamine complex [21], the use of a small amount of phosphine leads to the slow
nucleation of nickel. The smaller number of nuclei formed during slow nucleation grew
to larger particles because of the higher number of atoms per nuclei [51]. At the same
time, phosphorus impurities expand the lattice parameter. When more phosphine was
used, the position of the Ni(111) peak in the XRD patterns shifted to a lower angle, and the
calculated lattice parameter increased. The relationship between the amount of phosphine
and the lattice parameter is shown in Figure S7 and Table S1. The particles synthesized with
the lowest amount of impurities (precursor: phosphine = 1:0.6) were the largest (18 nm).
The 18 nm nickel nanoparticles were highly attracted to magnets and showed a saturation
magnetization of 19 emu/g and a blocking temperature of 167 K (Figures 3, S8 and S9).
Previous literature reported that carbon impurity can be inserted into Ni at the aging
temperature we used [52].

Nickel nanoparticles were applied for the magnetic separation of histidine-tagged
proteins, which requires Ni2+ cations. Ni2+ ions have a high affinity for polyhistidine and
are exposed at the surface of the nickel nanoparticles after the oxidation of nickel to nickel
oxide under air exposure [11]. For the biomedical protein separation, we transformed the
hydrophobic nickel nanoparticles into hydrophilic particles to ensure their dispersion in
the water phase using ligand exchange (Figure S10). For the purpose of protein separation
by the Ni/NiO nanoparticles, we used polyhistidine-tagged GFP because the fluorescent
property of the protein enables visualization and characterization of the successful sepa-
ration of the protein. In a typical experiment, nickel nanoparticles were incubated with
histidine-tagged GFP for 30 min and then separated from the supernatant through the appli-
cation of the magnetic field. The fluorescence emission of the supernatant was significantly
lower (~5%) than that of the initial solution (Figure 4). The histidine-tagged GFP-bound
nanoparticles were then incubated with imidazole solution to release GFP proteins from the
nanoparticles. The fluorescence emission recovered to 71% of the initial solution after the
release of bound GFP proteins. This result indicated the efficient binding and separation of
histidine-tagged GFP by Ni/NiO nanoparticles. Although the nanoparticles are capped
with ligands, the purification of histidine-tagged proteins is activated by the partially
exposed Ni2+ ions on the surfaces. It has been known that the nanoparticle surface is not
fully coordinated with ligands due to the geometric factor, especially for bulky ligands such
as imidazole. In addition, adsorption and desorption of ligands on the nanoparticle surface
are reversible reactions; thus, Ni2+ ions can be exposed during adsorption and desorption.
As a control experiment, we conducted an identical experiment using normal mouse IgG1
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labeled with red-emitting Cy5 without a polyhistidine residue instead of histidine-tagged
GFP. For the conventional dye-labeled protein, we observed only a 12% decrease in the
fluorescence intensity, indicating a small extent of nonspecific protein binding.
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4. Conclusions

We synthesized highly monodisperse nickel nanoparticles, which were transformed
into a Ni/NiO core/shell structure via oxidation of the surface nickel atoms. We also
synthesized nickel phosphide nanoparticles using the same procedure but at a higher aging
temperature. At a higher temperature, the carbon–phosphorus bonds in alkyl phosphines
break, generating free phosphorus atoms to participate in the formation of nickel phosphide
nanoparticles. The resulting nickel nanoparticles can be used for the magnetic separation
of histidine-tagged proteins.

Our synthetic system is simple and highly reproducible. As our synthesis does not
require a hot injection step, it can be used to synthesize nickel particles on a large scale.
We were able to obtain 1.4 g of nickel nanoparticles in a single batch using 10 times more
reagent than reported here.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12183198/s1, Figure S1: Large-area TEM image of 9 nm
nickel nanoparticles.; Figure S2: TEM image of polycrystalline Ni/NiO core/shell nanoparticles after
oxidation of nickel nanoparticles.; Figure S3. X-ray photoelectron spectroscopy (XPS) spectrum of
9 nm nickel nanoparticles.; Figure S4. TEM images of (a) 10 nm and (b) 13 nm Ni nanoparticles,
synthesized using TOP and TBP as surfactants, respectively.; Figure S5. HRTEM images of hollow
Ni12P5 nanoparticles synthesized at 280 ◦C.; Figure S6. DSC data of TBP.; Figure S7. XRD patterns
of (a) 13 nm, (b) 15 nm, (c) 17 nm, and (d) 18 nm Ni nanoparticles synthesized when the precursor
to phosphine ratio was 1:1.2, 1:1.0, 1:0.8, and 1:0.60, respectively.; Table S1. Lattice parameters of Ni
nanoparticles obtained by varying precursor to phosphine ratio.; Figure S8. Temperature dependence
of magnetization measured with 100 Oe for (a) 13 nm and (b) 18 nm Ni nanoparticles.; Figure S9.
Magnetization–magnetic field curves of Ni nanoparticles measured by SQUID at 300 K for (a) 18 nm
and (b) 13 nm Ni particles.; Figure S10. The hydrodynamic size distribution of nickel nanoparticles
after the ligand exchange process as measured by DLS.
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