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Abstract: Zero-dimensional (0D) hybrid manganese halides have emerged as promising platforms
for the white light-emitting diodes (w-LEDs) owing to their excellent optical properties. Necessary for
researching on the structure-activity relationship of photoluminescence (PL), the novel manganese
bromides (C13H14N)2MnBr4 and (C13H26N)2MnBr4 are reported by screening two ligands with
similar atomic arrangements but various steric configurations. It is found that (C13H14N)2MnBr4

with planar configuration tends to promote a stronger electron-phonon coupling, crystal filed effect
and concentration-quenching effect than (C13H26N)2MnBr4 with chair configuration, resulting in
the broadband emission (FWHM = 63 nm) to peak at 539 nm with a large Stokes shift (70 nm) and a
relatively low photoluminescence quantum yield (PLQY) (46.23%), which makes for the potential
application (LED-1, Ra = 82.1) in solid-state lighting. In contrast, (C13H26N)2MnBr4 exhibits a
narrowband emission (FWHM = 44 nm) which peaked at 515 nm with a small Stokes shift (47 nm)
and a high PLQY of 64.60%, and the as-fabricated white LED-2 reaches a wide colour gamut of 107.8%
National Television Standards Committee (NTSC), thus highlighting the immeasurable application
prospects in solid-state display. This work clarifies the significance of the spatial configuration
of organic cations in hybrids perovskites and enriches the design ideas for function-oriented low-
dimensional emitters.

Keywords: zero-dimensional manganese bromides; steric configurations; tunable emission; white
light-emitting diodes

1. Introduction

Low-dimensional organic-inorganic hybrid metal halides (OHMHs) have been widely
recognized for their outstanding optical properties, including high-efficiency tunable emis-
sions, near-unity photoluminescence quantum yields (PLQYs), and long decay lifetimes,
etc., which are attributed to the strong quantum confinement at the molecular levels and
the most convenient radiative recombination of photo-generated excitons [1–4]. However,
the absorption peaks of most OHMHs are located in the ultraviolet (UV) region, which
limits the luminous efficiency of white light-emitting diodes (w-LEDs) because they cannot
be excited by commercial blue chips, thus hindering their industrialization in the fields of
solid-state lighting and display. Remarkably, the zero-dimensional (0D) hybrid manganese
halides become the preference for blue-light-excited luminescent materials since their pho-
toluminescence excitation (PLE) bands lie in the near-ultraviolet and blue regions, while
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exhibiting bright photoluminescence (PL) [5,6], and they possess abundant coordination
modes and tunable emissions [7–11]. Whether the octahedral coordinated Mn2+ ions show
intense broadband orange-red emission from the [Mn3X12]6− inorganic units [12–15], or the
tetrahedral coordinated Mn2+ ions exhibit narrowband green emission from the [MnX4]2−

inorganic units, both of which are attributed to the d-d transition of Mn2+ and present
application potential in the field of w-LEDs [16–19].

The inorganic units are embedded in organic matrix for OHMHs and are connected to
the cations through various molecular interactions, prompting that their structure and PL
behaviours can be tuned by engineering the organic cations [7,20]. Different organic cations
induce the deformation of inorganic units in varying degrees, resulting in varying crystal
field effects, nephelauxetic effects and concentration-quenching effects [21]. Numerous
research has exposed that the effect of organic cations on the luminescence properties in
0D hybrid manganese halides. Seshadri et al., and Xia et al., investigated the relationship
between structure and PL properties in hybrid manganese halides, and proposed that
bulky, rigid, single-protonated cations are in favour of large Mn–Mn distance, thereby
leading to high PLQYs [17,22]. Xiao et al., reported and highlighted the effect of organic
components with different degrees of conjugation on the optical properties from the view
of the band alignment types involving ground state and excited state [7]. Kovalenko et al.,
found that the PL decay can be accelerated by introducing heavy atoms (e.g., iodine,
bromine) in the second coordination sphere of Mn2+ [6]. However, these reports ignored
the role of spatial configuration of organic components on the fine-tuning PL behaviours
and the correspondence between organic components and optical properties of 0D hybrid
manganese halides has not been completely established.

Herein, we screen two ligands with similar atomic arrangements but different spatial con-
figurations to synthesize 0D manganese bromides (C13H14N)2MnBr4 and (C13H26N)2MnBr4
via a simple solution-phase crystallization method. They are crystallized in different space
groups and composed of [MnBr4]2− twisted tetrahedron and organic matrix with planar
and chair configuration, respectively. Experimental and theoretical researches indicate
that the organic cation with planar configuration tend to induce stronger electron-phonon
coupling, crystal filed effect and concentration-quenching effect than chair configuration in
these 0D manganese bromides, thereby finely tuning PL behaviours, including emission
bandwidth, peak position, Stokes shift, lifetimes and PLQYs, as well as the luminescence
mechanism was discussed by combining the Tunabe-Sugano (T-S) energy diagram. The w-
LEDs devices were fabricated using the above manganese bromides as green components;
it is concluded that LED-1 based on (C13H14N)2MnBr4 with a high Ra of 82.1 is suitable for
solid-state lighting, while LED-2 based on (C13H26N)2MnBr4 with a wide colour gamut of
107.8% NTSC holds unprecedented promising for use in solid-state displays. Our work
demonstrates that the organic cations with different spatial configurations are able to trigger
tunable emission in 0D Manganese hybrids, and the design principle provides a new idea
for future research on white light-emitting materials.

2. Experimental
2.1. Materials and Preparation

N-Methyldiphenylamine (C13H13N, 98%, Aladdin, Shanghai, China), N,N-Dicycloh-
exylmethylamine (C13H25N, 98%, Aladdin, Shanghai, China), manganese bromide tetrahy-
drate (MnBr2·4H2O, 98%, Aladdin, Shanghai, China), hydrobromic acid (HBr, 40%, Aladdin,
Shanghai, China) and ethanol (C2H5OH, 99.7%, Guangfu, Tianjin, China). MnBr2·4H2O
needs to be heated at 120 ◦C for 6 h to remove the crystal water for later use.

The single-crystals of (C13H14N)2MnBr4 and (C13H26N)2MnBr4 were synthesized by
a simple solution-phase crystallization method. First, C13H13N (0.3665 g, 2 mmol) or
C13H25N (0.3907 g, 2 mmol) was dissolved in 1.5 mL HBr for protonation. Then MnBr2
(0.2148 g, 1 mmol) and 5 mL C2H5OH were added to the above protonated solution, and
heated and stirred at 75 ◦C until forming a clear solution. After the solution was naturally
cooled to room temperature, yellow (C13H14N)2MnBr4 and green (C13H26N)2MnBr4 bulky
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crystals were precipitated overnight. Finally, the crystals were washed several times with
acetone and dried in a vacuum oven.

2.2. Characterization

Single-crystal X-ray diffraction (SCXRD) data of (C13H14N)2MnBr4 and (C13H26N)2MnBr4
were collected by using an Agilent Technologies Gemini EOS (Palo Alto, CA, USA) diffrac-
tometer at 298 K using Mo Kα radiation (λ = 0.71073 Å). Powder X-ray diffraction (PXRD)
data of (C13H14N)2MnBr4 and (C13H26N)2MnBr4 for Rietveld analysis was collected at
room temperature with a Bruker D8 ADVANCE powder diffractometer EOS (Karlsruhe,
Germany) (Cu-Kα radiation) and linear VANTEC detector. The step size of 2θ was 0.011◦,
and the counting time was 2 s per step. Rietveld structure refinements were performed
by using TOPAS 4.2. PL, PLE spectra, PL decay curves and PLQYs were measured by
an Edinburgh FLS920 fluorescence spectrometer EOS (Edinburgh, UK) with a picosecond
pulsed diode laser. Temperature-dependent emission spectra were measured on the same
spectrophotometer installed with a heating apparatus as the heating source. Morphology
observation and elemental mappings were conducted by a scanning electron microscope
(SEM, JEOL JSM-6510, EOS, Peabody, MA, USA). UV-vis absorption curves were recorded
on a TU-1901 Ultraviolet spectrometer EOS (Beijing, China) at room temperature, in which
BaSO4 was used as the standard reference. CIE chromaticity coordinates were calculated
using the CIE calculator software based on the emission spectra excited at 450 nm. The
emission spectra, correlated colour temperature (CCT), luminous efficacy, and CIE coor-
dinates of w-LEDs were performed on the integrating sphere spectroradiometer system
(ATA-100, Everfine, EOS, Hangzhou, Cina).

2.3. Computational Methods

The electronic band structure and density of state (DOS) were calculated by CASTEP
based on plane-wave pseudopotential density functional theory (DFT) [23]. Perdew-Burke-
Ernzerhof (PBE) functionals in the form of general gradient approximation (GGA) were
used for electronic structure calculations [24]. A kinetic energy cut off value of 450 eV
and a Monkhorst-pack k-point mesh spanning less than 0.03 Å−1 in the Brillouin zone
were chosen.

3. Results and Discussion

As shown in Figure 1a,d, two ligands with similar atomic arrangements but differ-
ent spatial configurations were screened out to synthesize hybrid manganese bromides
(C13H14N)2MnBr4 and (C13H26N)2MnBr4 with MnBr2 via a simple solution-phase crys-
tallization method. The crystal structures resolved by SCXRD technique show that both
(C13H14N)2MnBr4 and (C13H26N)2MnBr4 correspond to typical 0D “host-guest” structures.
That is, central metal Mn2+ ions are coordinated with four Br− anions to form twisted
tetrahedral [MnBr4]2− inorganic units and all inorganic components are periodically dis-
persive embedded in insulating organic cations (Figure 1c,f). Different organic cations
induce the distinct packing and deformation of anions. Therefore, (C13H14N)2MnBr4
and (C13H26N)2MnBr4 are crystallized in triclinic space group P1 and monoclinic space
group P21/c, respectively. As shown in Figure 1b,e, two different [MnBr4]2− inorganic
units exhibit different distortion degree. The distances of four Mn–Br bonds are in the
range of 2.4829(13)–2.5201(13) Å and the Br–Mn–Br bond angles ranged from 103.19(5)
to 117.83(6)◦ for (C13H14N)2MnBr4. However, this structural information is in the range
of 2.4704(9)–2.5226(9) Å and 107.07(3) to 114.21(4)◦ for (C13H26N)2MnBr4. The crystallo-
graphic information files (CIFs) are shown in the Supporting Information (SI), and the main
bond lengths and bond angles are shown in Table S1 and Table S2, respectively. The bond
length distortion (∆d) and bond angle variance (σ2) of individual [MnBr4]2− are calculated
by the following formulas [25,26]:
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∆d = 1/4
4

∑
i=1

((di − d0)/d0)
2

where d0 represents the average Mn–Br bond length and di are four individual lengths of
Mn–Br bond.

σ2 = 1/5
6

∑
i=1

(θi − 109.47)2

where θi refer to the individual Br–Mn–Br angles. The ∆d values of (C13H14N)2MnBr4
and (C13H26N)2MnBr4 are 1.78 × 10−4 and 2.39 × 10−4, respectively. The σ2 values are
24.64 and 6.08. It is worth noting that the difference in bond length distortion is small and
can be ignored, since the large distinction in the bond angle variance maybe the underlying
reason for the disparate optical properties of (C13H14N)2MnBr4 and (C13H26N)2MnBr4.
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Figure 1. (a,d) The chemical structures of organic cations [C13H14N]+ and [C13H26N]+. (b,e) Ball and
stick models of inorganic units and structural information including bond length, bond angles and
twist degrees. (c,f) Crystal structures of (C13H14N)2MnBr4 and (C13H26N)2MnBr4.

The phase purity and crystallinity of (C13H14N)2MnBr4 and (C13H26N)2MnBr4 pow-
ders were monitored by PXRD, and the results are shown in Figure S1. All peaks were
indexed by triclinic cell (P1) and monoclinic cell (P21/c) with parameters close to those
obtained from a single crystal experiment, respectively. Therefore, these structures were
considered as a starting model for Rietveld refinement, as shown in Figure 2a,b, which were
performed using TOPAS 4.2. The refinement results were stable and gave low R-factors. The
main parameters of processing and refinement of (C13H14N)2MnBr4 and (C13H26N)2MnBr4
were listed in Table S3. The elemental mapping images (Figure 2c,d) indicate that the
elements N, Br and Mn are evenly distributed on the above manganese bromides.

As shown in Figure S2b,c, the manganese bromides of (C13H14N)2MnBr4 and
(C13H26N)2MnBr4 with yellow-green body colour exhibit bright yellow-green fluorescence
under a 365 nm UV lamp, and the corresponding CIE coordinates are depicted in Figure S2a.
To further reveal their PL properties, the PLE and PL spectra of (C13H14N)2MnBr4 and
(C13H26N)2MnBr4 are initially investigated in Figure 3a,b. Both manganese bromides
exhibit similar excitation bands attributed to the d–d transition of tetrahedrally coordinated
Mn2+ centres and can be excited by blue light, but they possess distinct emission spectra.
(C13H14N)2MnBr4 displays a broadband emission peaked at 539 nm with a full width at half
maximum (FWHM) of 63 nm and the Stokes shift of 70 nm, which is wider than most 0D
hybrid manganese halides [19,27,28]. In contrast, the emission peak of (C13H26N)2MnBr4
appears at 515 nm, with a FWHM of 44 nm and the Stokes shift of 47 nm. Meanwhile, we
synthesized the powder chlorides of (C13H14N)2MnCl4 and (C13H26N)2MnCl4 using the
above two ligands and they exhibit the same effect and difference on their PL properties as
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(C13H14N)2MnBr4 and (C13H26N)2MnBr4 (Figure S3). We consider that the essence for the
PL difference may be caused by the different spatial configuration of organic components
in above manganese bromides. The ligand C13H13N contains two planar benzene rings
with little steric hindrance. However, the twelve carbon atoms are not in the same plane for
C13H25N, so that there is a larger steric hindrance. Proceeding from (C13H14N)2MnBr4 to
(C13H26N)2MnBr4, the increasing cation volume and the steric hindrance not only shrink
the free space for the atom movement or the cation/anion rotation, but also inhibit the lattice
distortion [29,30]. Therefore, (C13H14N)2MnBr4 produce stronger electron-phonon coupling
and crystal field strength than (C13H26N)2MnBr4, resulting in a broadband emission with
large Stokes shift.
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Figure 3c depicts the temperature-dependent PL spectra of (C13H14N)2MnBr4 and
(C13H26N)2MnBr4 in the range of 80–300 K. The PL intensity decreases with the increasing
temperature, which is consistent with the PL quenching behaviour caused by thermally
activated non-radiative recombination. Meanwhile, the emission peak positions have
a blue-shift. It is speculated that the reason for this phenomenon is that the thermally
induced lattice expansion weakens the crystal field strength, or reduces the energy loss due
to the spin-spin coupling between localized neighbouring Mn2+ ions [16]. Furthermore, the
FWHM versus temperature (Figure 3d) can reveal the origin of the PL differences in above
manganese bromides. The Huang-Rhys factor S defines the degree of electron–phonon
coupling; it can be solved by the following equation [18,31,32]:

FWHM = 2.36h̄ω

√
S coth

(
h̄ω

2kT

)
where ω is the phonon frequency, h̄ω is the maximum phonon energy, k is the Boltzmann
constant, S is Huang-Rhys factor, and coth(x) = ex+e−x

ex−e−x = 1 + 2
e2x−1 . When h̄ω

kT is small

enough, e
h̄ω
kT − 1 ≈ h̄ω

kT , it can be obtained the following equation:

FWHM2 = 5.57(h̄ω)2S

(
1 +

2

e
h̄ω
kT − 1

)
= 5.57(h̄ω)2S

(
1 +

1
h̄ω
2kT

)

Further written as:
FWHM2 = a +

b
1

2kT

where a = 5.57 × S × (h̄ω)2 and b = 5.57 × S × (h̄ω).
The obtained S factor is 2.89 and phonon energy h̄ω phonon is 44.26 meV for

(C13H14N)2MnBr4, while for (C13H26N)2MnBr4, it corresponds to S = 0.77, h̄ω = 75.85 meV.
The higher S factor indicates that there is a stronger electron-phonon coupling in
(C13H14N)2MnBr4, which is favourable for the formation of broadband emission with large
Stokes shift.

In addition, the crystal field strength plays a key role in affecting the PL properties of
manganese bromides. Previous references reported that the crystal field strength is related
to the polyhedral distortion, and the increasing distortion leads to strong crystal field
splitting and low position of the lowest 3d excited energy levels, resulting in the red-shift
of the emission band [33–36]. The σ2 values of (C13H14N)2MnBr4 and (C13H26N)2MnBr4
are 24.64 and 6.08, respectively, as calculated above, indicating that the larger bond angle
distortion contributes to a red-shift of the emission peak from 515 nm to 539 nm.

To verify the electronic transition process, we measured the lifetimes excited at 450 nm
and monitored at 539 nm and 515 nm, respectively. As shown in Figure 3e,f, the PL decay
curves can be fitted with a single order exponential equation:

I(t) = I0 + A exp (−t/τ)

where I(t) and I0 are the luminescence intensity at time t and t � τ, respectively. A is a con-
stant, and τ is the decay time for an exponential component. At 298 K, the lifetimes are on
millisecond scale, and the values are determined to be 0.245 ms and 0.370 ms, respectively,
which are close to the previously reported lifetimes of hybrid manganese bromides, demon-
strating that these emissions belong to the d–d transition (4T1–6A1) of Mn2+ [17,37,38].
At 80 K, the lifetimes are prolonged, but the variation tendency of (C13H14N)2MnBr4 is
greater than that of (C13H26N)2MnBr4, which may be because that (C13H14N)2MnBr4 has
more vibration options. In addition, PLQY is also affected by the spatial configuration of
organic cations in these manganese bromides. Figure S4 shows that the [C13H14N]+ cations
containing benzene ring planar configuration generate a short average distance between
the nearest [MnBr4]2− is 8.5934 Å, while the chair configuration of [C13H26N]+ cations with
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greater steric hindrance produce a longer Mn–Mn average distance is 9.6703 Å. Accordingly,
the concentration-quenching effect of (C13H26N)2MnBr4 is weakened, resulting in PLQYs
of 46.23% and 64.60% for (C13H14N)2MnBr4 and (C13H26N)2MnBr4, respectively.

To further reveal the photo-physical properties of (C13H14N)2MnBr4 and
(C13H26N)2MnBr4 composed of organic moieties with different spatial configurations.
The theoretical calculations involving electronic band structure and densities of states
(DOS) are conducted based on the density functional theory. As shown in Figure 4a,b, the
calculated band gap of (C13H14N)2MnBr4 and (C13H26N)2MnBr4 are 2.54 eV and 2.80 eV,
respectively, which are coincide with the observed optical absorption spectra (Figure S5). It
is worth noting that the (C13H14N)2MnBr4 has a lower conduction band level compared
to (C13H26N)2MnBr4, resulting from the higher degree of conjugation of organic compo-
nent, which is also responsible for the red-shift of the emission peak of (C13H14N)2MnBr4.
Both the frontier orbitals are flat and dispersion-less, indicating that the photoelectrons
are localized for above manganese bromides. This is because that the isolated [MnBr4]2−

tetrahedrons separated by bulky organic cations have weak interactions, resulting in spa-
tial confinement and electronic confinement effects. Figure 4c,d show the DOS projected
onto the constituent elements in (C13H14N)2MnBr4 and (C13H26N)2MnBr4. The valence
band maximum (VBM) states and the conduction band minimum (CBM) states are mainly
composed of Mn 3d and Br 3p orbitals, indicating that the electronic transition process
related to luminescence occurs within the [MnBr4]2− inorganic units, and the VBM- and
CBM-associated charge densities (Figure S6) also confirm this mechanism.
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(d) (C13H26N)2MnBr4.

According to the electron transition process, we employ the T-S energy diagram to
visualize the effect of spatial configuration of organic ligands on PL behaviours. It is
well known that the Mn2+ ions possess the outermost electron configuration of 3d5, and
the original five degenerate d orbitals of free Mn2+ are split into multiple energy levels
under the electrostatic field effect generated by ligands. In the tetrahedral field, the ground
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state is denoted as 6A1, the excited states of 4F, 4P, 4D and 4G correspond to the excited
energy levels in the UV (200–400 nm) and blue (400–500 nm) regions, respectively [6,7].
The electrons located at the ground state are transferred to different excited states under
excitation, and then transferred to the lowest excited state energy level 4T1 through non-
radiative relaxation, and finally the electrons return to the ground state with the release
of photons. In the T-S energy diagram, the strength of the crystal field is represented by
the abscissa (∆) and the energy difference between excited states 4T2 and 4T1. The stronger
the crystal field strength, the more obvious the splitting of 4T2 and 4T1, making the larger
values of E [4T2]–E[4T1]. In view of this, the luminescent mechanism is depicted in Figure 5.
(C13H14N)2MnBr4 and (C13H26N)2MnBr4 are arranged in the region of strong crystal field
and weak crystal field, respectively. (C13H14N)2MnBr4 occupies a wider range on the
abscissa than (C13H26N)2MnBr4, due to the larger electron-phonon coupling coefficient
for (C13H14N)2MnBr4, resulting in the crystal field strength varies greatly with lattice
vibrations. Reflected on the vertical coordinates, it is shown that (C13H14N)2MnBr4 has a
larger ∆E than (C13H26N)2MnBr4, that is, (C13H14N)2MnBr4 exhibits a broadband emission
with a large Stokes shift.
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To further evaluate their practical applications, the w-LEDs (LED-1 and LED-2) were
encapsulated by coating (C13H14N)2MnBr4/(C13H26N)2MnBr4 and KSF:Mn4+ red phos-
phors on a commercial InGaN blue chip (450 nm), respectively. As shown in Figure 6,
LED-1 presents the standard white-light emission with a relatively high colour-rendering
index (CIR) of Ra = 82.1, and a CIE chromaticity coordinate of (0.3211, 0.3206). LED-2
presents a cool white-light emission with a wide colour gamut of 107.8% NTSC in the CIE
1931 colour space, and a CIE chromaticity coordinate of (0.3037, 0.3297). It is concluded
that (C13H14N)2MnBr4 is more suitable for solid-state lighting, while (C13H26N)2MnBr4
is unprecedentedly promising as a narrow-band green emitter for solid-state displays.
The emission spectra of LED-1 and LED-2 under different drive current different current
(20−120 mA) in Figure S7 suggests that the w-LEDs possess excellent colour stability. Of
course, we also evaluated the thermal quenching behaviour of (C13H14N)2MnBr4 and
(C13H26N)2MnBr4. As shown in Figure S8, the PL intensity decreases with increasing
temperature. The PL intensity of (C13H14N)2MnBr4 and (C13H26N)2MnBr4 at 373 K remain
around 79.86% and 84.84% of that at room temperature, respectively, suggesting that the
above manganese bromides have relatively good thermal stability.
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Figure 6. Emission spectrum of w-LEDs based on (a) (C13H14N)2MnBr4 and (b) (C13H26N)2MnBr4.
The insets show the photographs of w-LEDs in the daylight (top) and working at 20 mA (bottom).
(c) CIE 1931 colour coordinates of fabricated LED-1 (orange dotted line), LED-2 (red dotted line) and
the NTSC standard (black dotted line).

4. Conclusions

In summary, the two new 0D manganese bromides were developed by using or-
ganic cations with different spatial configuration. (C13H14N)2MnBr4 exhibits a broadband
emission peaked at 539 nm with a FWHM of 63 nm and a Stokes shift of 70 nm, while
(C13H26N)2MnBr4 shows a narrowband emission peaked at 515 nm with a FWHM of 44 nm
and a Stokes shift of 47 nm, which is ascribed to that the ligand of C13H13N with planar con-
figuration induces a stronger electron-phonon coupling (S = 2.89) and crystal field strength
(σ2 = 24.64) than the ligand of C13H25N with chair configuration. DFT calculations reveal
that (C13H14N)2MnBr4 possesses a narrower bandgap compared to (C13H26N)2MnBr4, re-
sulting in the red-shift of the emission peak of (C13H14N)2MnBr4. Moreover, the steric effect
of organic cations on PL behaviours in manganese halides is comprehensively reflected
in T-S energy diagram. The as-fabricated white LED-1 based on (C13H14N)2MnBr4 with
a high CIR of Ra = 82.1 is suitable for solid-state lighting, while the as-fabricated white
LED-2 based on (C13H26N)2MnBr4 with a wide colour gamut of 107.8% NTSC in the CIE
1931 colour space presents an unprecedentedly promising utility for solid-state display.
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www.mdpi.com/article/10.3390/nano12183142/s1, Figure S1: PXRD patterns and standard diffrac-
tion pattern of (C13H14N)2MnBr4 and (C13H26N)2MnBr4; Figure S2: CIE chromaticity diagrams
of (C13H14N)2MnBr4 and (C13H26N)2MnBr4 and the photographs with UV off and on; Figure S3:
Normalized PLE and PL spectra and time-resolved PL decay curves of (C13H14N)2MnCl4 and
(C13H26N)2MnCl4 at 298 K; Figure S4: The schematic diagrams of Mn···Mn distance; Figure S5: Ab-
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charge densities of (C13H14N)2MnBr4 and (C13H26N)2MnBr4; Figure S7: PL spectra of the w-LED
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(C13H14N)2MnBr4 and (C13H26N)2MnBr4 ranging from 298 K to 423 K; Tables S1 and S2: The bond
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