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Abstract: Carbon dots (CDs) are attracting much interest due to their excellent photoelectric properties
and wide range of potential applications. However, it is still a challenge to regulate their bandgap
emissions to achieve full-color CDs with high emissions. Herein, we propose an approach for
producing full-color emissive CDs by employing a solvent engineering strategy. By only tuning the
volume ratio of water and dimethylformamide (H2O/DMF), the photoluminescence (PL) emission
wavelengths of the CDs can be changed from 451 to 654 nm. Different fluorescence features of
multicolor CDs were systematically investigated. XRD, SEM, TEM, Abs/PL/PLE, XPS, and PL decay
lifetime characterizations provided conclusive evidence supporting the extent to which the solvent
controlled the dehydration and carbonization processes of the precursors, leading to a variation in
their emission color from red to blue. The as-prepared CDs exhibited excellent and stable fluorescence
performance even after being heated at 80 ◦C for 48 h and with UV light continuously irradiated for
15 h. Based on their excellent fluorescent properties and photothermal stability, bright multicolor
light-emitting diodes with a high CRI of up to 91 were obtained. We anticipate that these full-color
emissive CDs are beneficial for applications in lighting, display, and other fields.

Keywords: carbon dots; multicolor emission; solvent engineering; light-emitting diodes

1. Introduction

Since the discovery of fluorescence emission from quantum-sized carbon dots (CDs,
<10 nm), which was accidentally observed during the purification of a single-walled carbon
nanotube solution, light-emitting CDs have triggered intense research interest [1–3]. Due to
their outstanding advantages of low cost, excellent optical properties, biocompatibility, and
environmental friendliness, CDs are considered a high potential candidate to replace heavy
metal-based semiconductor quantum dots for light-emitting devices, sensors, biomedical,
imaging, energy storage, and other applications [4–8].

To date, hundreds of approaches and thousands of raw materials have been devoted
to CDs to achieve better photoluminescence quantum yields (PLQYs), explore their physic-
ochemical properties, and develop their applications. The methodologies mentioned are
divided into two main categories: “top-down” and “bottom-up” [9–12]. Using the “top-
down” method, the synthesis of CDs usually involves the destruction of bulky carbon
materials such as graphite through arc discharge, laser ablation, and other energy-intensive
techniques [13,14]. The “bottom-up” method requires high temperature, high pressure, and
strong oxidative reagents to prepare CDs from small molecular precursors such as amino
acids and carbohydrates [15]. CDs with a high PLQY can be easily manufactured using the
synthesis procedures described above. Despite the great success achieved in PLQYs, most
CDs only exhibit fluorescence emission in the blue-to-green-light region [16,17]. However,

Nanomaterials 2022, 12, 3132. https://doi.org/10.3390/nano12183132 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12183132
https://doi.org/10.3390/nano12183132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://doi.org/10.3390/nano12183132
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12183132?type=check_update&version=3


Nanomaterials 2022, 12, 3132 2 of 14

multicolor, long-wavelength, and white light-emitting CDs are of great importance in
applications such as bioimaging, multicolor patterning, white light-emitting diodes (LEDs),
sensor arrays, and full-color displays [18], attracting considerable interest in the preparation
of CDs with specific optical properties.

The multicolor emission of CDs cannot be obtained by simply adjusting the particle
size, as is not the case with semiconducting quantum dots. In fact, in most cases, the
multicolor emission of CDs is caused by the surface functional groups rather than by their
size [18]. Up to now, various methods, mainly including solvent engineering [19], surface
modification [20], precursor introduction [17], heteroatom doping [21], and surface defect
regulation [22], have been developed for achieving multicolor and long-wavelength CDs.
Among these methods, solvent engineering is an effective way to tune the fluorescent
wavelength and enhance the fluorescence intensity of CDs. Previous reports on the in-
fluence of solvents in preparing CDs have proved that this factor is critical to achieving
multicolor effects [23]. Xiong et al. demonstrated the synthesis of full-color CDs by tuning
the ratios of reactive molecules and different solvents [24]. Similarly, Wang et al. showed
that CDs emitted different PL colors when in different solvents [25]. Zhan et al. obtained
full-color CDs by varying the compositions of reaction solvents [26]. Although several
CDs with tunable emissions have been successfully obtained, their complicated synthesis
still requires different precursors and solvents, which greatly limits the development of
CD mechanisms and applications. In addition, in pursuit of a high-quality light-emitting
device, especially LEDs with high color rendering index (CRI, >80), it will undoubtedly
be necessary to use practical synthesis techniques to create robust CDs with tunable PL
emission. Therefore, the development of energy-efficient, safe, and highly stable synthetic
methods for multicolor CD emissions remains to be done.

In this study, we demonstrate a one-step solvent engineering strategy for producing
highly emissive CDs with remarkably tunable and stable fluorescence emissions from red
to blue. By controlling the volume ratio of water and dimethylformamide (H2O/DMF), the
PL emission wavelengths of the as-prepared CDs can be tuned from 451 to 654 nm. Various
techniques were used to gain a deeper understanding of the engineering mechanism of
solvents, including XRD, SEM, TEM, Abs/PL/PLE, XPS, and PL decay lifetime analysis.
The results provide solid evidence supporting the extent to which the solvent played a
substantial role in the dehydration and carbonization processes of the precursors, leading
to variations in their emission colors from red to blue. Furthermore, the as-prepared CDs
exhibited excellent fluorescence performance even after being heated at 80 ◦C for 48 h
and with UV light continuously irradiated for 15 h. Taking advantage of their excellent
fluorescent properties and photothermal stability, bright multicolor light-emitting diodes
with a high CRI of up to 91 were obtained, paving the way to practically applicable LEDs.
We anticipate that these full-color emissive CDs will be beneficial for applications in lighting,
display, and other fields.

2. Materials and Methods
2.1. Chemicals and Materials

We obtained aqueous ammonium citrate (A.R.), N, N-dimethylformamide (DMF,
99.8%), and petroleum ether (PE, A.R.) from Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China). Polydimethylsiloxane (PDMS) was purchased from Dow Corning
(Shanghai, China). The scientific reagents used in this experiment were used as received
without further purification. Deionized water (H2O, 18.2 MΩ) was used for all experiments.

2.2. Synthesis of Multicolor Luminescent CDs

Multicolor luminescent CDs were synthesized using H2O and DMF as solvents and
ammonium citrate as a precursor. Typically, red-emission CDs (R-CDs) are prepared using
3.9 g of ammonium citrate dissolved in 5 mL of H2O and 45 mL of DMF. These solutions
were magnetically stirred until well-mixed. A light yellow solution was obtained by
transferring the mixture to a Teflon-coated stainless steel autoclave and heating it for 8 h at
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200 ◦C. Then, the products were purified three times with PE to remove impurities, and
they were dialyzed (1000 Da of cut-off molecular weight) for 24 h to remove unreacted
precursors. Finally, the bright emissive R-CDs solution was achieved. Other yellow-
emitting CDs (Y-CDs), green-emitting CDs (G-CDs), and blue-emitting CDs (B-CDs) were
obtained by only varying the volume ratio of the H2O and DMF in the mixture. Other
experimental procedures were carried out as described above, as shown in Figure 1 and
Table S1. In detail, 20 mL of H2O and 30 mL of DMF (20:30) were used to prepare the
Y-CDs, 30 mL of water and 20 mL of DMF (30:20) were used for the G-CDs, and 50 mL of
water (50:0) was used for the Y-CDs.
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2.3. Fabrication of CD-Based LED Devices

We created CD-based LEDs in a similar way to our previously published work [27].
Using R-CD LEDs as an example, R-CDs were combined with PDMS at a weight ratio
of 3:8 for 12 min using a vacuum homogenizer at 1360 rpm and 0.2 MPa vacuum. To
form a phosphor layer, the mixture was dropped onto the surface of the UV LED chip and
solidified at 120 ◦C for two hours under ambient conditions. To prevent contamination and
damage, a high transmittance hemispherical lens was used for encapsulation.

2.4. Characterization

The crystal phases of the products were determined using X-ray diffraction (XRD, D8-
ADVANCE, Bruker, Karlsruhe, Germany) with a Cu-Kα radiation source (λ = 0.15418 nm)
at 35 kV and a counting rate of 2◦/min in the 5◦ to 60◦ scanning angle range. A transmission
electron microscope (TEM, JEM-2100F, JEOL, Tokyo, Japan) with a 200 kV accelerating
voltage was used for the observations. The UV-Vis absorption spectra of the samples were
obtained using a UV-Vis spectrometer (Tu-1901, Purkinje, Beijing, China). A fluorescence
spectrophotometer (RF-6000, Shimadzu, Kyoto, Japan) with a xenon lamp as an excitation
source was used to record the PL spectra of the products. A Fourier transform infrared
spectrometer was used to record FTIR spectra ranging from 4000 to 400 cm−1 (Vertex 33,
Bruker, Karlsruhe, Germany). A Thermo Scientific (Thermo K-Alpha, T.F.S., Waltham, MA,
USA) machine with a mono Al-Kα excitation source (1486.6 eV) as the X-ray source was
used for X-ray photoelectron spectroscopy (XPS). Edinburgh Instruments were used to
collect the PL lifetime (FLS 980, E.I., Edinburgh, UK). The PL decay curves obtained were
fitted with the multiple exponential functions given in the expression below [28].

A(t) =
n

∑
i=1

Ai exp(
−t
τi

) (1)
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where A(t) represents the PL intensity at time t; Ai denotes the relative weights of the
lifetime components at time t = 0; τi represents the decay time for the lifetime components.
The average decay lifetime τavg. was calculated using the following expression [29]:

τavg. =

n
∑

i=1
A1τ2

i

n
∑

i=1
A1τi

(2)

3. Results and Discussion

As shown in Figure 2, by only changing the solvent volume ratio of the H2O/DMF,
the PL emission wavelengths of the as-prepared samples could cover the visible spectrum
ranging from 451 to 654 nm, which fully demonstrates the feasibility and convenience of the
solvent engineering strategy. Furthermore, to investigate the effect of the H2O/DMF vol-
ume ratio on the optical properties, morphological features, and multicolor light-emitting
mechanism of the as-prepared samples, we focused on four typical CDs—R-CDs, Y-CDs,
G-CDs, and B-CDs—which were prepared using the H2O/DMF volume ratios of 5:45,
20:30, 30:20, and 50:0, indexing as 45D, 30D, 20D, and 0D, respectively, as presented
in Table S1.
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Figure 2. PL spectra of the as-prepared samples that were synthesized by changing the solvent
volume ratio between the H2O and DMF.

3.1. Morphological and Structural Characterizations of Multicolor Luminescent CDs

To confirm the nature of the carbon nanoparticles, the as-prepared CDs were charac-
terized using XRD and TEM. The XRD patterns of the R-CDs, Y-CDs, G-CDs, and B-CDs
exhibited a typical carbon structure feature with significant diffraction peaks, as shown in
Figure 3a,d,g,j. These four CDs demonstrate a single broad diffraction peak at 2θ = 29.4◦,
29.6◦, 29.6◦, and 29.2◦, respectively, which corresponds to the (002) hkl plane of the graphite
carbon structure (JCPDS PDF # 75-2078) and proves the formation of a very tiny carbogenic
core in CDs [30–32]. According to the Debye–Scherrer equation, the XRD pattern peaks are
broadened when the crystal size is decreased:

D = kλ/β cos θ (3)

where β is the width of the observed diffraction peak at its half-maximum intensity
(FWHM), k is the shape factor, which takes a value of about 0.9, θ is Bragg’s angle, D
is the crystallite size, and λ is the X-ray wavelength (Cu-Kα radiation, equal to 0.15444 nm).
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Furthermore, TEM was used to examine the morphology and size of the four CDs.
Figure 3b,e,h,k shows that the four CDs were uniform and well-dispersed. Meanwhile,
the four CDs’ size distribution histograms (Figure 3c,f,i,l) show a narrow size distribution,
with average diameters of 2.36 ± 0.1, 2.27 ± 0.1, 2.18 ± 0.1, and 2.96 ± 0.1 nm, respectively.
According to the TEM data, the average diameter of the corresponding CDs decreased and
then increased from the R-CDs to the B-CDs, and some large crystals appeared. Notably,
when compared to the R-CDs, Y-CDs, and G-CDs, the obtained B-CDs easily formed
“clusters” due to their high surface energy and agglomeration tendency, which can explain
why the particle sizes of the B-CDs calculated by the Debye–Scherrer equation differ from
those using TEM.

3.2. Optical Properties of the CDs

The UV-Vis absorption and PL emission spectra were conducted by UV-visible spec-
troscopy and photoluminescence spectroscopy to evaluate the optimal optical properties
of the R-CDs, Y-CDs, G-CDs, and B-CDs, as shown in Figure 4a–f. The R-CDs, Y-CDs,
G-CDs, and B-CDs exhibited rose red, dark yellow, yellow, and light yellow when exposed
to sunlight, and they emitted bright red, yellow, green, and blue light when exposed to
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365 nm ultraviolet radiation (Figure 4a,b). Surprisingly, the UV-Vis absorption and PL emis-
sion of the as-prepared CDs could be tuned by changing the volume ratio of H2O/DMF
while keeping the other conditions constant. Figure 4c–f clearly shows that these CDs’
absorption characteristics differ from UV to visible wavelengths. All four CDs had a strong
absorption band in the 200–300 nm range in the high-energy region, corresponding to the
C=C bond π-π* transition in the sp2 carbon domain [24]. Nevertheless, in the low-energy
region, their characteristic absorption peaks differed significantly. The absorption bands of
the R-CDs, Y-CDs, G-CDs, and B-CDs were distinct at 338 nm, 328 nm, 324 nm, and 320 nm,
respectively, and are attributed to the n–π* transitions of the surface states containing C=N
and C=O structures [24]. Because the absorption of the Y-CDs and G-CDs was stronger
than that of the R-CDs and B-CDs, the former two samples had more C=C, C=N, and C=O
groups on their surface [33]. Furthermore, the similar UV-Vis absorption properties of the
R-CDs, Y-CDs, G-CDs, and B-CDs suggest that these four CDs were formed through similar
processes. The intensities of each peak, however, differed, depending on the carbon core
and surface state of each sample.
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Figure 4. Corresponding photos of the R-CDs, Y-CDs, G-CDs, and B-CDs under sunlight (a) and
UV light (365 nm) irradiation (b), respectively. (c) Emission and UV-adsorption spectra of R-CDs.
(d) Emission and UV-adsorption spectra of Y-CDs. (e) PL emissions and UV-adsorption spectra of
G-CDs. (f) Emission and UV-adsorption spectra of B-CDs.

The R-CDs, Y-CDs, G-CDs, and B-CDs had PL emission peaks at 645 nm, 586 nm,
530 nm, and 451 nm, respectively, indicating that the PL emission range of these samples
covered the entire visible light region. The Stokes shift between the first characteristic
absorption peak and the PL emission was more than 130 nm. The greater the Stokes
shift, the less overlap there is between the absorption and emission spectra, which can
prevent fluorescence efficiency from being reduced due to energy transfer and benefit
from achieving a higher quantum yield. Furthermore, we discovered that the PL emis-
sion peaks from the R-CDs to B-CDs gradually became symmetrical and smooth, as op-
posed to unsymmetrical or sharp peaks, implying an increase in the CD purity. The full
widths at the half-maximum (FWHM) of the R-CD, Y-CD, G-CD, and B-CD PL emissions
were 93.7 nm, 118.8 nm, 136.4 nm, and 73 nm, respectively. The B-CDs and R-CDs with
lower FWHM values had higher color purity, which is advantageous for lighting and
display applications.
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The PL emission spectrum, normalized PL emission spectrum, and three-dimensional
excitation–emission fluorescence spectrum of the R-CDs, Y-CDs, G-CDs, and B-CDs under
different excitation wavelengths are presented in Figure 5 to demonstrate the relationships
between the excitation and emission properties of CDs. As the excitation wavelengths
increased, the maximum emission wavelengths of the R-CDs and B-CDs showed no signifi-
cant changes, indicating relatively stable PL emissions at 650 nm and 452 nm, respectively
(Figure 5a–c,j–l). This excitation-independent feature was most likely caused by an eigen-
state emission, which is closely related to the carbon core and is more similar to traditional
inorganic phosphors than previously reported CDs [34]. However, as the excitation wave-
lengths increased, the maximum emission wavelengths of the as-prepared Y-CDs and
G-CDs gradually redshifted (Figure 5d–i), demonstrating excitation-dependent PL features,
similar to most CDs in previous works [35,36]. The excitation-dependent PL behaviors are
possibly related to the carbon bonds and surface functional groups [37,38]. These findings
are consistent with UV-Vis absorption characteristics.
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3.3. Structure Analysis and Multicolor Spectral Regulation Mechanism of the CDs

To further explicate the chemical structure of the as-obtained samples, FTIR and XPS
were employed to identify the chemical bonding and chemical compositions of the R-CDs,
Y-CDs, G-CDs, and B-CDs. These CDs had similar FTIR spectra, as shown in Figure 6a.
They all exhibited the clearly distinct absorption peaks of O–H/N–H at approximately
3446 cm−1, C=O at 1710 cm−1, C=C/C=N at 1650 cm−1, C–N= at 1400 cm−1, C–O at
1180 cm−1, and C–H at 870 cm−1 [37,39]. The stretching vibrations of O–H/N–H, in
particular, were allocated to the absorption band at 3446 cm−1, confirming the creation of
–OH during the synthesis of the four CDs. The stretching vibrations of C=O are indicated
by the absorption bands located around 1710 cm−1. In addition, the weak absorption
band centered at 1650 cm−1 is attributed to the C=C/C=N characteristic absorption bands.
During the synthesis process, the stretching vibrations band of C–N= (1400 cm−1) and
C–O (1180 cm−1) were observed, indicating the formation of polyaromatic structures in
the four CDs. The C–H bending vibration was also detected at 870 cm−1. Following
further investigation, we discovered that the stretching vibration intensities of C=C/C=N
(1650 cm−1) gradually decreased or shifted to higher wavenumbers from the R-CDs to the
B-CDs, whereas the stretching vibration intensities of C=O (1710 cm−1), C–N= (1400 cm−1),
and C–O (1180 cm−1) slowly increased, indicating that the content of the nitrogen-doping
polyaromatic structures gradually increased and the degree of carbonization decreased [40].
These findings imply that the chemical structures of the CDs had a significant impact on
the PL emissions.
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Figure 6. (a) FTIR spectra and (b) full-scan XPS spectra of the R-CDs, Y-CDs, G-CDs, and B-CDs.

The presence of chemical structures in the R-CDs, Y-CDs, G-CDs, and B-CDs was
further confirmed by XPS. The full XPS spectra of the four CDs exhibited three characteristic
peaks at 284.5 eV, 399.5 eV, and 531.4 eV, corresponding to C 1s, N 1s, and O 1s (Figure 6b),
respectively, indicating that nitrogen atoms were doped into the CD framework. The C 1s
band can be separated into three binding energy peaks at 284.5 eV, 286.0 eV, and 287.8 eV
in the high-resolution XPS spectra (Figure 7a–l), which can be ascribed to the sp2 carbon
(C=C/C–C), sp3 carbon (C–N/C–O), and carbonyl groups (C=O/C=N), respectively. The
N 1s spectra show three component peaks at 398.6 eV, 399.4 eV, and 400.4 eV, corresponding
to pyridinic N, pyrrolic N, and graphitic N [41]. The component peaks of the O 1s band are
531.1 eV and 532.6 eV, corresponding to C=O and C–O, respectively. The blue shift in the
emission wavelength decreased with a decreasing carbon concentration and decreasing
degree of carbonization, as determined by carefully comparing the relative strength of the
C 1s peak. In addition, the N/C ratios of the R-CDs, Y-CDs, G-CDs, and B-CDs were 0.12,
0.13, and 0.16, respectively, and the O/C ratios were 0.23, 0.26, 0.29, and 0.29, respectively
(Figure 7m–p), indicating that the nitrogen and oxygen contents increased progressively
from the R-CDs to B-CDs. The rising oxygen concentration may be interpreted as a measure
of the reduced degree of dehydration and carbonization of the precursors in solvothermal
synthesis [5], which is supported by the FTIR data analysis. In general, the FTIR and XPS
data show that the shifted absorption and emission bands were connected to the chemical
structure and degree of carbonization.
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and B-CDs (p).

The time-resolved decay curves were then used to investigate the PL dynamics for the
R-CDs, Y-CDs, G-CDs, and B-CDs. The PL decay times of these four CDs were measured
using a 375 nm pulse laser as an excitation source. According to Equations (1) and (2), each
PL decay curve can be fitted to a double exponential formula, as illustrated in Figure 8a–e
and Table 1, indicating that the luminescence processes of these four samples were identical.
In particular, all CDs display similar characteristic time constants τ1 and τ2 in fitting curves,
showing that all four samples included several emitting species with varying recombination
rates [28]. The quick component τ1 corresponds to eigenstate radiative recombination,
whereas the slow component τ2 relates to surface state recombination processes [33]. By
precise calculation, the fitted τ1 values for the R-CDs, Y-CDs, G-CDs, and B-CDs were
14.56 ns, 10.76 ns, 1.24 ns, and 1.19 ns, respectively, and the fitted τ2 values for the R-CDs,
Y-CDs, G-CDs, and B-CDs were 21.38 ns, 10.86 ns, 6.88 ns, and 6.72 ns, respectively. The
R-CDs, Y-CDs, G-CDs, and B-CDs had computed average τavg values of 18.55 ns, 10.81 ns,
6.28 ns, and 6.27 ns, respectively. The existence of τ1 and τ2 implies that the CDs had two
luminescence centers, coming from the π-π* transitions of the carbon core with conjugated
sp2 domains and the n-π* transitions of the O-based and N-based contained functional
groups, which adjusted the fluorescence performance of the CDs jointly. In addition, the
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average τavg values suggest that the carbon core influenced the PL decays of the R-CDs
and Y-CDs, whereas the surface functional groups of the CDs governed the PL decay of
the G-CDs and B-CDs. As a result, these materials’ multicolor fluorescence features were
intimately connected to their carbon core and surface state.
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Table 1. Fitted lifetimes of the R-CDs, Y-CDs, G-CDs, and B-CDs.

Samples A1 τ1 (ns) A2 τ2 (ns) τavg. (ns)

R-CDs 0.51 14.56 0.49 21.38 18.55
Y-CDs 0.50 10.76 0.50 10.86 10.81
G-CDs 0.42 1.24 0.58 6.88 6.28
B-CDs 0.33 1.19 0.67 6.72 6.27

By simply varying the volume ratios of the solvents, four CDs with distinct light-
emitting wavelengths were created in this study. As shown in Figure 2, the PL emission
wavelengths of the CDs ranged from 451 to 654 nm when the volume ratios of H2O/DMF
fluctuated from 50/0 to 0/50, demonstrating that solvent characteristics resulted in emission
wavelength redshift. Previous research has shown that aprotic solvents, such as DMF, are
more likely to provide CDs precursors with a higher degree of dehydration and carbonation
than protic solvents such as H2O, resulting in different sp2 carbon domains, and thus, a
different spectrum ranging from blue to red regions [5], which is consistent with XPS
characterization. In addition, the solvent solubility and boiling point had a considerable
impact on the chemical structure and morphology of the CDs, resulting in varied emission
wavelengths. As we know, the precursor ammonium citrate is highly soluble in water
but less soluble in DMF at room temperature, which can be attributed to DMF’s methyl
groups possessing steric barriers that decrease solvent–solvent interaction [42]. As a result,
the solubility of the ammonium citrate in the solvent steadily decreased as more DMF
was employed, and the emissions of the produced CDs shifted toward a long wavelength.
Furthermore, the boiling temperatures of DMF and H2O are 153 ◦C and 100 ◦C, respectively.
The lower boiling point provided higher reaction pressure in the autoclave under the same
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reaction conditions, which greatly simplified the doping of N and O inside the produced
CDs. Thus, the nitrogen and oxygen contents gradually increased from the R-CDs to the
B-CDs. Therefore, the polarity, solubility, and boiling point of the solvent all had an impact
on the shifts in the CD emissions.

Stability is a crucial factor in determining the dependability of materials. The fluo-
rescence characteristics of the R-CDs, Y-CDs, G-CDs, and B-CDs were studied after heat
treatment and long-term UV irradiation to value their thermal stability and photostability,
as shown in Figure 9. When the four CDs were heated at 80 ◦C for varying times, their fluo-
rescence intensities steadily decreased with time, with the R-CDs declining the most. After
48 h of heating, the fluorescence intensities of these four CDs persisted between 86 and 92%
(Figure 9a). Furthermore, after 15 h of continuous illumination at room temperature with a
365 nm UV light, the PL intensities of the four CDs remained at 87–93% of their starting
values, as shown in Figure 9b. Based on the foregoing results, all four CDs exhibited high
PL stability, making them promising for practical applications.
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3.4. Application in LEDs

Due to their good fluorescence qualities and great thermal and photo-stability, the
R-CDs, Y-CDs, G-CDs, and B-CDs were employed to manufacture multicolor light-emitting
diodes (LEDs). The excitation source was a 365 nm UV LED chip. The electroluminescence
(EL) spectra of the CD-based monochrome LEDs shifted from red to blue by varying the
mass ratios and concentrations of these four CDs. Figure 10a–d shows the typical EL
spectra of the four CD-based LEDs, with intense red, yellow, green, and blue light and
prominent PL peaks at 650 nm, 593 nm, 532 nm, and 448 nm, respectively. The CIE color
coordinates of the as-prepared R-CD-, Y-CD-, G-CD-, and B-CD-based LEDs were (0.60,
0.37), (0.46, 0.47), (0.31, 0.42), and (0.20, 0.23), respectively, and the CCT values were 2010,
3132, 6156, and 13,156 K. Furthermore, the CRI of the R-CD-based LED lamp was 91, which
was much higher than the CRIs of the Y-CD-, G-CD-, and B-CD-based LED lamps (CRI = 70,
78, and 89, respectively), indicating that the R-CD-based LED lamp provided high-quality
light. The multicolor LEDs indicate that the CDs are promising candidates for display
and lighting.
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Figure 10. The electroluminescence (EL) patterns of the CD-based LEDs device are: (a) R-CD-based
LED (R-LED), (b) Y-CD-based LED (Y-LED), (c) G-CD-based LED (G-LED), and (d) B-CD-based LED
(B-LED). (e) CIE chromaticity coordinates of the R-LED, Y-LED, G-LED, and B-LED. (f) Performance
of the R-LED, Y-LED, G-LED, and B-LED.

4. Conclusions

In summary, we developed a method for adjusting the mixed solvent volume ratios in
a solvothermal synthesis employing two independent solvents (H2O and DMF) and their
mixture. By simply changing the volume ratio of the H2O/DMF from 50/0 to 0/50, the
CDs’ PL emission wavelengths spanned from 451 to 654 nm. All of these XRD, SEM, TEM,
Abs/PL/PLE, XPS, and PL decay lifetime characterization results provide solid evidence
supporting the extent to which the solvent controls the dehydration and carbonization
processes of the precursors, resulting in the as-prepared CDs with different chemical
structures and surface states and a change in emission colors from red to blue. They had
both strong thermal characteristics and steady fluorescence performance, ranging from the
R-CDs to the B-CDs. After 48 h of heating, the fluorescence intensities of these four CDs
persisted for between 86 and 92%. Furthermore, the PL intensities of the four CDs were
sustained at 87–93% of their original values after 15 h of continuous stimulation. Multicolor
CD-based LEDs with the highest CRI of 91 were created using exceptional fluorescence
characteristics and photothermal stability. The full-color emissive CDs are expected to be
beneficial in applications such as lighting, display, and other fields.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12183132/s1. Table S1. The reagents and solvents were used
to prepare each sample.
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data analysis, B.S.; conceptualization, supervision, M.W.; validation, formal analysis, J.Z.; conceptual-
ization, data analysis, G.Z.; project administration, T.F.; supervision, funding acquisition X.N. All
authors have read and agreed to the published version of the manuscript.
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