
Citation: Smponias, A.; Stefanatos,

D.; Katsoulis, G.P.; Thanopulos, I.;

Paspalakis, E. Efficient Biexciton State

Preparation in a Semiconductor

Quantum Dot Coupled to a Metal

Nanoparticle with Linearly Chirped

Gaussian Pulses. Nanomaterials 2022,

12, 3098. https://doi.org/10.3390/

nano12183098

Academic Editor: Lucien Saviot

Received: 29 July 2022

Accepted: 30 August 2022

Published: 7 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Efficient Biexciton State Preparation in a Semiconductor
Quantum Dot Coupled to a Metal Nanoparticle with Linearly
Chirped Gaussian Pulses
Athanasios Smponias 1 , Dionisis Stefanatos 1,* , George P. Katsoulis 2 , Ioannis Thanopulos 1

and Emmanuel Paspalakis 1

1 Materials Science Department, School of Natural Sciences, University of Patras, 26504 Patras, Greece
2 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
* Correspondence: dionisis@post.harvard.edu

Abstract: We consider a hybrid nanostructure composed of a semiconductor quantum dot placed
near a spherical metallic nanoparticle, and study the effect of the nanoparticle on the population
transferral from the ground to the biexciton state of the quantum dot, when using linearly chirped
Gaussian pulses. For various values of the system parameters (biexciton energy shift, pulse area and
chirp, interparticle distance), we calculate the final population of the biexciton state by performing
numerical simulations of the non-linear density matrix equations which describe the coupled system,
as well as its interaction with the applied electromagnetic field. We find that for relatively large
values of the biexciton energy shift and not very small interparticle distances, the presence of the
nanoparticle improves the biexciton state preparation, since it effectively increases the area of the
applied pulse. For smaller biexciton energy shifts and smaller distances between the quantum dot
and the nanoparticle, the performance is, in general, degraded. However, even in these cases we
can still find ranges of parameter values where the population transfer to the biexciton state is
accomplished with high fidelity, when using linearly chirped Gaussian pulses. We anticipate that
our results may be exploited for the implementation of novel nanoscale photonic devices or future
quantum technologies.

Keywords: semiconductor quantum dots; biexciton; coherent control; adiabatic rapid passage

1. Introduction

Manipulating the exciton and biexciton states in semiconductor quantum dots using
laser fields is an intense research field, because such systems provide a promising solid
state platform for modern quantum technologies [1]. Within this framework, several works
study the optical properties of hybrid systems composed of semiconductor quantum dots
coupled to plasmonic nanostructures [2,3]. By coherently controlling the quantum part of
such composite nanosystems, they function as active nanophotonic structures which are
anticipated to find major applications in areas, such as nanotechnology and quantum tech-
nology. As an example we mention that a composite structure consisting of a semiconductor
quantum dot (SQD) and a metal nanoparticle (MNP), is more efficient than a quantum dot
alone for optical phenomena, such as the creation of single photons on demand [4,5] and
polarization-entangled photons [6]. In order to take advantage of the superior properties
provided by the SQD-MNP system regarding these quantum technological applications,
an important challenge is to efficiently prepare the biexciton state starting initially from
the grounds state of the quantum dot, when the nanoparticle is present. We note that
significant work on the efficient preparation and manipulation of the biexciton state in a
SQD with applications in quantum technology has been performed in the absence of the
MNP [7–17].
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In our recent works, we have tackled the problem of efficient generation of the biexci-
ton state of a SQD-MNP coupled structure using resonant hyperbolic secant [18] and on–off
pulses [19], as well as pulses designed using the methodology of shortcuts to adiabaticity [20].
Although these methods appear to be successful in theory, they may present some problems
in the experimental implementation. Specifically, the resonant pulses might not have the
necessary robustness against unexpected frequency detunings, while the shortcut pulse pro-
files might be difficult to implement experimentally. For these reasons, here we investigate
the problem of biexciton state preparation in the SQD-MNP hybrid structure using easily
implementable linearly chirped Gaussian pulses, and explore rapid adiabatic passage for
the efficient preparation of the biexciton state [21,22]. Note that such pulses have been suc-
cessfully used for population transfer to the biexciton state in a single quantum dot [23,24],
without the MNP, while here we study the problem in the presence of the MNP. In addition,
very recently chirped Gaussian pulses have been applied to efficiently generate the exciton
state in a coupled SQD-MNP structure [25]. We find with numerical simulations that the
desired population transfer can be implemented with the used pulses. We also find that for
large biexciton energies the nanoparticle improves the robustness of the population transfer,
while for moderate to small biexciton energies its presence reduces the efficiency. However,
even in the latter cases we can still find ranges of parameters where the population transfer
is successfully accomplished.

This article is structured as follows. In Section 2 we discuss the system under study
and in Section 3 the applied pulses. In Section 4 we present the results from numerical
simulations of the system, and in Section 5 we summarize our findings.

2. System

The coupled SQD-MNP system is displayed in Figure 1. The Hamiltonian of this
system, in the dipole approximation, can be expressed as [18–20]

H = E1|1〉〈1|+ (2E1 + Eb)|2〉〈2| − µESQD(t)
(
|0〉〈1|+ |1〉〈2|+ H.c.

)
. (1)

Figure 1. Semiconductor quantum dot–metal nanoparticle coupled system.

In the above expression, E1 is the energy of the single-exciton state |1〉 and Eb the
energy shift of the biexciton state |2〉. For simplicity, we have taken the energy of the ground
state |0〉 to be the zero of the energy. Additionally, µ denotes the dipole moment of the
SQD corresponding to the ground-exciton transition and the exciton-biexciton transition (in
order to simplify things, this is taken the same for both transitions), and ESQD represents
the electric field inside the SQD. We emphasize that we consider a symmetric quantum dot
and because of the selection rules there is no direct ground to biexciton transition with a
single photon.

In the dipole approximation, the total electric field inside the quantum dot consists
of two parts, where one part is due to the applied external field and the other part to the
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induced field produced by the polarization of the metal nanoparticle (taken into account
as a classical metallic nanosphere). We assume that the system interacts with a linearly
polarized electric field with E(t) = E0 f (t) cos[ωt + φ(t)], that excites both the ground-
exciton and the exciton–biexciton transitions in the semiconductor quantum dot. Here, E0
is the electric field amplitude, f (t) is the dimensionless pulse envelope, ω is the angular
frequency, and φ(t) is the time-dependent phase. Actually, in order to properly calculate
EQSD we have to separate the positive and negative frequency contributions since they
exhibit different time response. Then, ESQD is explicitly written as [26–30]:

ESQD(t) =
h̄
µ

{
Ω(t)

2
+ G[σ10(t) + σ21(t)]

}
e−i[ωt+φ(t)] + H.c. (2)

In this equation, we introduced the slowly varying quantities σ21(t) = ρ21(t)ei[ωt+φ(t)]

and σ10(t) = ρ10(t)ei[ωt+φ(t)], where ρij(t) are the density matrix elements. We also defined
the time-dependent Rabi frequency Ω(t) as [26–29]

Ω(t) = Ω0 f (t) , Ω0 =
µE0

h̄εe f f S

(
1 +

saγ1r3
mnp

R3

)
, (3)

and parameter G as [27]

G =
N

∑
n=1

1
4πεenv

(n + 1)2γnr2n+1
mnp µ2

h̄ε2
e f f SR2n+4

. (4)

Here, εe f f S = 2εenv+εS
3εenv

, γn = εm(ω)−εenv
εm(ω)+(n+1)εenv/n with n = 1, 2, 3, . . . , where εS, εm, εenv

express the dielectric constants of SQD, MNP and the environment, respectively, and
sa = 2 as the applied field is taken parallel to the interparticle axis of the system. R is the
SQD-MNP distance and rmnp is the MNP radius.

The time-dependent Rabi frequency contains two terms, one related to the direct
coupling of the quantum dot to the applied field, and another related to the electric
field from the metal nanoparticle which is induced by the external field. In addition,
parameter G emerges because of the electromagnetic interactions between excitons and
plasmons [26,27,31]. This self-interaction term has its origin in the induced dipole on the
metal nanoparticle, that is produced by the dipole induced by the applied field on the
semiconductor quantum dot [26,28,31]. The formula of Equation (4) accounts for multipole
effects and provides a higher accuracy for G [27]. In the subsequent calculation we use
N = 20, an adequate value in order to achieve convergence.

Using Hamiltonian (1) and following the theory of density matrix dynamics, in the
rotating wave approximation, we obtain the following equations for the slowly varying
envelopes of the density matrix elements



Nanomaterials 2022, 12, 3098 4 of 14

σ̇00(t) = Γ11σ11(t) + i
Ω∗(t)

2
σ10(t)− i

Ω(t)
2

σ01(t)

+ iG∗[σ01(t) + σ12(t)]σ10(t)− iG[σ10(t) + σ21(t)]σ01(t) , (5)

σ̇22(t) = −Γ22σ22(t) + i
Ω(t)

2
σ12(t)− i

Ω∗(t)
2

σ21(t)

+ iG[σ10(t) + σ21(t)]σ12(t)− iG∗[σ01(t) + σ12(t)]σ21(t) , (6)

σ̇01(t) =

[
i
E1
h̄
− i(ω + φ̇)− γ01

]
σ01(t) + i

Ω∗(t)
2

[σ11(t)− σ00(t)]− i
Ω(t)

2
σ02(t)

+ iG∗[σ01(t) + σ12(t)][σ11(t)− σ00(t)]− iG[σ10(t) + σ21(t)]σ02(t) , (7)

σ̇02(t) =

[
i
2E1 + Eb

h̄
− 2i(ω + φ̇)− γ02

]
σ02(t) + i

Ω∗(t)
2

[σ12(t)− σ01(t)]

+ iG∗
[
σ2

12(t)− σ2
01(t)

]
, (8)

σ̇12(t) =

[
i
E1 + Eb

h̄
− i(ω + φ̇)− γ12

]
σ12(t) + i

Ω∗(t)
2

[σ22(t)− σ11(t)] + i
Ω(t)

2
σ02(t)

+ iG∗[σ01(t) + σ12(t)][σ22(t)− σ11(t)] + iG[σ10(t) + σ21(t)]σ02(t) . (9)

In the above equations Γ11, Γ22 denote the decay rates of the single-exciton and biexciton states,
respectively, and γnm, with n 6= m the dephasing rates of the system. In addition, σnn(t) = ρnn(t),
consequently σ00(t)+ σ11(t)+ σ22(t) = 1, and σ01(t) = ρ01(t)e−i[ωt+φ(t)], σ02(t) = ρ02(t)e−2i[ωt+φ(t)],
and σ12(t) = ρ12(t)e−i[ωt+φ(t)]. In the following, we also set the laser frequency to the two-photon
resonance value

h̄ω = E1 +
Eb
2

. (10)

3. Methods
Using Equations (5)–(9) with Γ11 = Γ22 = γ01 = γ12 = γ02 = 0 and Eb = 0 for the variables

∆(t) = σ00(t)− σ22(t), (11)

σ(t) =
1√
2
[σ10(t) + σ21(t)], (12)

we obtain the equations

∆̇(t) = iΩ̃∗(t)σ(t)− iΩ̃(t)σ∗(t) + 4GIσ(t)σ∗(t), (13)

σ̇(t) = iφ̇(t)σ(t) + i
Ω̃(t)

2
∆(t) + iG∆(t)σ(t), (14)

where Ω̃(t) = Ω(t)/
√

2 = |Ω(t)|eiβ/
√

2 and GI = Im{G}. Note that at t = 0 the initial conditions
corresponding to the ground state are ∆(0) = 1, σ(0) = 0, and perfect biexciton preparation at the
final time t = t f corresponds to the target value ∆(t f ) = −1.

Now observe that for G = 0 the above equations become the two-level system equations

i
(

ȧ1(t)
ȧ2(t)

)
=

1
2

(
−φ̇(t) Ω̃(t)
Ω̃∗(t) φ̇(t)

)(
a1(t)
a2(t)

)
, (15)

with the correspondence ∆(t) = |a1(t)|2 − |a2(t)|2 and σ(t) = a1(t)a∗2(t). Thus, the biexciton state
preparation from ∆(0) = 1 to ∆(t f ) = −1 is equivalent to inverting the population in this two-level
system. The instantaneous eigenstates and eigenvalues of the two-level system are

|ψ+(t)〉 =

(
cos θ(t)

2
sin θ(t)

2 e−iβ

)
, (16)

|ψ−(t)〉 =

(
sin θ(t)

2
− cos θ(t)

2 e−iβ

)
(17)

and
A±(t) = ±

1
2

√
φ̇2(t) + |Ω̃(t)|2 , (18)
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where

tan θ(t) =
|Ω̃(t)|
−φ̇(t)

(19)

while recall that Ω̃(t) = Ω(t)/
√

2 = |Ω(t)|eiβ/
√

2. If the applied field is chosen so the mixing
angle changes slowly from θ(0) = 0 to θ(t f ) = π, then the population inversion occurs adiabatically
following the eigenstate |ψ+(t)〉. On the other hand, if θ(0) = π is slowly changed to θ(t f ) = 0, the
inversion takes place following the eigenstate |ψ−(t)〉.

To accomplish the targeted population inversion and the corresponding biexciton state preparation,
we will employ linearly chirped Gaussian pulses. We explain briefly how such a pulse can be obtained
when starting from a pulse with constant frequency and Gaussian profile

f (t) = exp

[
− (t− t0)

2

2τ2
0

]
, (20)

i.e.,

E = E0 exp

[
− (t− t0)

2

2τ2
0

]
cos ωt, (21)

where

E0 =
h̄εe f f s

µ

Θ√
2πτ0

(22)

is the amplitude and

Θ =
∫ ∞

−∞
f (t) dt, (23)

is the pulse area, which equals
√

2πτ0 for the profile (20). If the pulse (21) passes through a chirp
filter characterized by a chirp constant a, it is transformed to the pulse [23,32]

E(t) =
h̄εe f f s

µ

Θ√
2πτ0tp

exp

[
− (t− t0)

2

2t2
p

]
cos(ωt + φ(t)), (24)

where its duration is modified from τ0 to [23,32]

tp =

√
τ2

0 +
a2

τ2
0

, (25)

and its frequency obtains a linear chirp

φ̇(t) = c(t− t0), (26)

with chirp rate [23,32]

c =
a

a2 + τ4
0

. (27)

The pulse duration is set to t f = 2t0 with long enough t0, which also determines the pulse center.
Note that for c > 0 (a > 0) the mixing angle varies from 0 to π, thus the system follows |ψ+(t)〉,

while for c < 0 (a < 0) it varies from π to 0 and the system follows |ψ−(t)〉.

4. Results and Discussion

We numerically simulate Equations (5)–(9) with the parameter values: Γ−1
11 = Γ−1

22 = 0.8 ns,
γ−1

01 = γ−1
02 = γ−1

12 = 0.3 ns, εenv = ε0, εs = 6ε0, E1 = 2.5 eV, µ = 0.65 enm, and rmnp = 7.5 nm, with
ε0 denoting the vacuum dielectric constant. These values have been utilized in many studies of the
systems at hand, see, for example, Refs. [18–20], and represent typical values for CdSe-based quantum
dots. The reason behind choosing CdSe-based quantum dots is that the localized surface plasmon has
the main contribution near the exciton energy of the quantum dot, as it has a plasmon resonance near
that frequency. The results would be analogous for other quantum dot structures, f.e., GaAs-based
or InAs/GaAs, which nevertheless have much smaller exciton energies, thus the influence of the
nanoparticle is much smaller since they are away from the plasmon resonance frequency. An example
of coherent control in a SQD-MNP coupled system involving a CdSe-based quantum dot is also
discussed in Ref. [33]. The only material parameter of the SQD which we change in the simulations is
the biexciton energy shift, an ordinary procedure when studying robustness of population transfer
to the biexciton state, as in Ref. [23]. For CdSe-based quantum dots with gap energy of 2.5 eV, the
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biexciton binding energy lies in the range −15 meV to −10 meV [34]. We will mainly use these
realistic values of Eb for this specific type of quantum dots, but for completeness of the present
theoretical work we will also consider values outside of this range, which may apply to other types.
For the gold nanoparticle we use the dielectric constant value εm(ω) = −2.27829 + i3.81264 from
Ref. [35]. We take the SQD initially in the ground state, thus σ00(t = 0) = 1 and σnm(t = 0) = 0
for the other density matrix elements, and study the population dynamics and the effectiveness of
population transfer to the biexciton state in the presence of the MNP, when applying chirped Gaussian
pulses with initial duration τ0 = 0.75 ps, for various values of pulse area and chirp parameter. Note
that, as discussed in the previous section and also explained in Ref. [32], the chirped pulses essentially
implement adiabatic rapid passage, which is known to be robust against moderate perturbations
in the system parameters, thus it can also effectively reduce the influence of non-uniformity of
CdSe-based quantum dot parameters.

In Figure 2, we display contour diagrams of the final biexciton population as a function of the
pulse area and the chirp parameter, for biexciton energy shift Eb = −15 meV and four interparticle
distances. When R = 100 nm, Figure 2a, a distance for which MNP has practically no effect on
the population transfer, we observe that the biexciton state can, in general, be robustly generated
for larger values of the chirp parameter a, as long as the pulse area exceeds some threshold. For
smaller distances, such as R = 15 nm and R = 12 nm, we observe from Figure 2b,c that the pulse
area threshold is lowered and thus the robustness of the transfer is increased, due to the presence
of the MNP. For even shorter distances, as in Figure 2d where R = 11 nm, we observe that the
performance is degraded compared to the previous two cases, although large parameter areas for
which the population transfer is robust still can be found. Similar observations hold for the results
displayed in Figure 3, which are obtained with Eb = −10 meV. Figure 4 is obtained similarly to
Figures 2 and 3 but using the value Eb = −2.5 meV. Here, we observe that the effect of the MNP is
not that pronounced and, in general, it rather degrades the performance. However, even in this case,
parameter values for robust population transfer can still be obtained, for negative values of the chirp
parameter. Finally, Figure 5 is obtained using Eb = 0. Now it is obvious that the transfer efficiency
is becoming worse as the MNP is approached, although parameter ranges for robust population
transfer can still be identified.
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Figure 2. Contour diagrams for the biexciton population at the final time, as function of the pulse area
and the chirp parameter a of the applied Gaussian pulse, with biexciton energy shift Eb = −15 meV and
four different interparticle distances: (a) R = 100 nm, (b) R = 15 nm, (c) R = 12 nm, and (d) R = 11 nm.
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Figure 3. Contour diagrams for the biexciton population at the final time, as function of the pulse area
and the chirp parameter a of the applied Gaussian pulse, with biexciton energy shift Eb = −10 meV and
four different interparticle distances: (a) R = 100 nm, (b) R = 15 nm, (c) R = 12 nm, and (d) R = 11 nm.
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Figure 4. Contour diagrams for the biexciton population at the final time, as function of the pulse area
and the chirp parameter a of the applied Gaussian pulse, with biexciton energy shift Eb = −2.5 meV and
four different interparticle distances: (a) R = 100 nm, (b) R = 15 nm, (c) R = 12 nm, and (d) R = 11 nm.
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(a) (b)

(c) (d)

Figure 5. Contour diagrams for the biexciton population at the final time, as function of the pulse area
and the chirp parameter a of the applied Gaussian pulse, with biexciton energy shift Eb = 0 meV and
four different interparticle distances: (a) R = 100 nm, (b) R = 15 nm, (c) R = 12 nm, and (d) R = 11 nm.

In order to understand the behavior observed in Figures 2–4, where a non-zero Eb is used, we
need to adapt the point of view of Ref. [23] to the case where a MNP is placed next to the SQD.
In that work, the authors study the population transfer to the biexciton state in a SQD without
MNP, when using linearly chirped Gaussian pulses. They explain their results by considering the
effect of Eb on the eigen-energies of the three-level biexciton system. Here, we will adopt the same
point of view and additionally consider the influence of the MNP. The effect of the MNP on our
system is two-fold. First, it effectively increases the pulse area through the factor 1 + saγ1r3

mnp/R3 in
Equation (3). Second, the terms involving G act as a perturbation, inducing transitions between the
energy levels. As explained in Ref. [23], for large values of |Eb|, such as in Figures 2 and 3, for pulse
areas above threshold and one chirp sign (positive), the spacing between the energy eigenvalues
is large enough to allow the adiabatic population transfer from the ground to the biexciton state.
For the other chirp sign (negative), the population is successfully transferred to the biexciton state
through two sequential diabatic jumps, from the ground to the exciton and then to the biexciton
state. The transfer efficiency for both chirp signs is depicted in Figure 2a, where, for the large
interparticle distance R = 100 nm, the MNP has practically no effect. As the interparticle distance R
decreases, the large value of |Eb|, which determines the detuning between the central pulse frequency
ω and the energy of the exciton level, guarantees that the perturbation terms involving G do not
induce further transitions between exciton and biexciton states and, consequently, do not disturb
the situation described in Ref. [23]. Thus, the only effect of the nanoparticle is to increase the
effective pulse area and thus robustness, as is demonstrated in Figure 2b,c, obtained for smaller
interparticle distances, where efficient population transfer is achieved for smaller nominal pulse
areas than in Figure 2a, which is obtained for R = 100 nm with the MNP having practically no
influence. We emphasize that this phenomenon has not been observed in Ref. [23], since no MNP
is considered there. Only for shorter distances, where parameter G increases considerably, the
robustness is undermined by the presence of the MNP, as in Figure 2d where the interparticle distance
is reduced to R = 11 nm. The situation is similar for the case where Eb = −10 meV, depicted
in Figure 3, since |Eb| still has a large value. Note that the performance obtained with ordinary
(unchirped) Gaussian pulses is retrieved for a = 0, in the middle of the presented diagrams, and
is very sensitive to the pulse area. When using linearly chirped Gaussian pulses with non-zero
chirp parameter a and pulse area above a chirp-dependent threshold, the robustness is increased,
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as expressed by the large yellow areas developed on the left and right of these diagrams. For the
case corresponding to the intermediate value Eb = −2.5 meV, shown in Figure 4, we observe similar
results to those of Ref. [23]. Specifically, for one chirp sign (positive) the eigen-energies are well
separated, as long as the pulse area exceeds the necessary threshold, while for the other chirp sign
(negative) the smaller |Eb| value makes it more difficult to distinguish the exciton and biexciton
states and renders the sequential jumps incomplete, leaving, thus, some population trapped in the
exciton state for certain combinations of the pulse parameters and giving rise to the observed strip
structure in the efficiency. The presence of the nanoparticle at R = 15 nm, Figure 4b, seems to
marginally improve the robustness for positive chirp, by slightly decreasing the threshold area, while
it degrades the performance for negative chirp, since the G-terms stimulate further transitions from
the biexciton to the exciton state. For the smaller distances R = 12 nm and R = 11 nm, displayed in
Figure 4c,d, respectively, the situation is worse since parameter G is further increased.

For the case where Eb = 0 meV, Figure 5, we see that the transfer robustness is reduced as the
interparticle distance is decreased, due to the increase in the undesirable G-terms which cannot be
masked in the absence of Eb. We also observe an asymmetry for the different chirp signs, which can
be explained using the two-level picture developed in the previous section. Specifically, Equation (14)
for the two-level coherence can be re-written as

σ̇(t) = i[φ̇(t) + GR∆(t)]σ(t) + i
Ω̃(t)

2
∆(t)− GI∆(t)σ(t), (28)

where GR = Re{G}, GI = Im{G}. Observe, from this equation, that the presence of the MNP
adds to the chirp φ̇(t) a noise term GR∆(t) which affects differently the opposite chirp signs. This
differentiation is manifested as an asymmetry in the transfer efficiency for shorter distances, where
GR becomes stronger.

For completeness of the present theoretical work and also in order to study the symmetry of the
problem, we consider a case with positive biexciton energy shift, specifically the value Eb = 2.5 meV,
i.e., the opposite of the value used in Figure 4, with the rest of the parameters kept the same.
The corresponding results are displayed in Figure 6. We observe that the outcome is similar to
the case with negative biexciton energy shift, and the only important difference is that the strip
structure in the efficiency for Eb = 2.5 meV arises for the opposite chirp sign compared to the
case where Eb = −2.5 meV. This last finding can be explained as follows. By taking into account
in Equations (5)–(9), only the effect of Eb, i.e., ignoring decay-dephasing and the influence of the
MNP, we can easily obtain the following equations for the modified probability amplitudes c̃1 = c1,
c̃2 = c2ei(ωt+φ), c̃3 = c3e2i(ωt+φ) of the ground, exciton, and biexciton states, respectively,

i
dc̃1
dt

= −Ω∗

2
c̃2, (29)

i
dc̃2
dt

= −Ω
2

c̃1 −
[

Eb
2h̄

+ c(t− t0)

]
c̃2 −

Ω∗

2
c̃3, (30)

i
dc̃3
dt

= −Ω
2

c̃2 − 2c(t− t0)c̃3, (31)

where note that we have replaced the chirp φ̇ by expression (26) and also recall that the laser
frequency is fixed to the value corresponding to the two-photon resonance (10). Now consider a
negative biexciton energy shift, Eb = −|Eb| < 0. If we plug this value in Equations (29)–(31) and
transform them in backward time t′ = t f − t0 = 2t0 − t, we find for the transformed amplitudes
c̄1 = c̃1, c̄2 = −c̃2, c̄3 = c̃3 the equations

i
dc̄1
dt′

= −Ω∗

2
c̄2, (32)

i
dc̄2
dt′

= −Ω
2

c̄1 −
[
|Eb|
2h̄

+ c(t′ − t0)

]
c̄2 −

Ω∗

2
c̄3, (33)

i
dc̄3
dt′

= −Ω
2

c̄2 − 2c(t′ − t0)c̄3, (34)
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Comparing Equations (32)–(34) with Equations (29)–(31), we observe that the former correspond
to the positive biexciton energy shift E′b = |Eb| = −Eb and a chirp that changes linearly in backward
time from the value ct0 at t′ = 2t0 to −ct0 at t′ = 0, while the latter correspond to the negative
biexciton energy shift Eb and a linearly varying chirp in forward time from −ct0 at t = 0 to ct0 at
t = 2t0. Note that the pulses Ω are invariant under the backward time transformation due to the
Gaussian shape (20). We deduce that the evolution is preserved if both the biexciton energy shift and
the chirp change sign. Note, of course, that the presence of the nanoparticle breaks this symmetry,
something which is evident at shorter distances, compare for example Figures 4d and 6d. Another
interesting observation which can be made from Equation (30), where the MNP is ignored, is that the
biexciton energy shift Eb appears additive to the chirp φ̇. On the other hand, in Equation (28), where
the effect of Eb is ignored, the undesirable term GR∆(t) appears additive to φ̇. This may explain why
relatively larger values of |Eb|, as in Figures 2 and 3, mask the effect of the G term, which becomes
evident only at short interparticle distances.

(a) (b)

(c) (d)

Figure 6. Contour diagrams for the biexciton population at the final time, as function of the pulse area
and the chirp parameter a of the applied Gaussian pulse, with biexciton energy shift Eb = 2.5 meV and
four different interparticle distances: (a) R = 100 nm, (b) R = 15 nm, (c) R = 12 nm, and (d) R = 11 nm.

In order to emphasize the major finding of the present work, which is the improvement
of robustness of population transfer from the ground to the biexciton state in the presence of
the nanoparticle for relatively large absolute values of the biexciton energy shift and not very
short interparticle distances, we perform numerical simulations using explicitly the same param-
eter values as in Figure 1c of Ref. [23]. The results are displayed in Figure 7 where we use
Eb = −3 meV, which is equivalent to the value Eb = 3 meV used in Ref. [23], while only in
this figure the initial Gaussian pulse duration is taken as τ0 = 2 ps and the chirp parameter a lies
in the range [−40, 40] ps2. We also set the decay and dephasing rates to zero, since Figure 1c of
Ref. [23] is obtained without taking into account any relaxation interactions, while, later, a phonon-
based relaxation mechanism is introduced and studied in that paper. We use four interparticle distances,
R = 100, 15, 14, and 13 nm, and observe a similar behavior to that displayed in Figures 2 and 3, namely
there is an improvement in the transfer efficiency for smaller interparticle distances, Figure 7b,c, com-
pared to the case where the MNP is placed away from the SQD and its effect is essentially negligible,
Figure 7a. The performance is degraded for shorter distances, Figure 7d, because of the increase in
parameter G. A final interesting remark is that in this specific example we obtained the efficiency
enhancement for Eb = −3 meV, while in a previous example and for the close value Eb = −2.5 meV
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we found the strip structure in the efficiency, see Figure 4. The reason behind this difference is that
the pulse used here has a longer duration, compare the initial Gaussian pulse duration τ0 = 2 ps with
the previous value τ0 = 0.75 ps. For a shorter pulse, a larger value of |Eb| is necessary in order to
discriminate between the exciton and biexciton states.
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Figure 7. Contour diagrams for the biexciton population at the final time, as function of the pulse area
and the chirp parameter a of the applied Gaussian pulse, with biexciton energy shift Eb = −3 meV,
initial Gaussian pulse duration τ0 = 2 ps, and four different interparticle distances: (a) R = 100 nm,
(b) R = 15 nm, (c) R = 14 nm, and (d) R = 13 nm.

We close our study by investigating the effect of the MNP radius on the population transfer
efficiency. In Figure 8 we display results for the realistic value Eb = −15 meV using the same pulses
as in most of the previous figures, for a constant distance d = 4 nm between the quantum dot and
the surface of the nanoparticle and four different nanoparticle radii rmnp, in the range 7–10 nm. The
corresponding interparticle distances are R = rmnp + d. The performance is, in general, quite robust
with respect to rmnp. As the nanoparticle radius increases, we observe that the pulse area threshold is
slightly decreased, while the performance for larger positive chirp values is degraded. This behavior
is consistent with that observed for constant rmnp and small R, see Figures 2d, 3d and 7d. In Figure 9
we also show results for different nanoparticle radii, but now the interparticle distance is taken to be
a multiple of the MNP radius, R = 1.5rmnp. This allows us to consider rmnp values larger than 10 nm.
It is obvious also in this case that the performance of population transfer is quite robust against
variations in rmnp. From these investigations we deduce that our previous conclusions hold for a
realistic range of nanoparticle radius.
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Figure 8. Contour diagrams for the biexciton population at the final time, as function of the pulse area
and the chirp parameter a of the applied Gaussian pulse, with biexciton energy shift Eb = −15 meV,
initial Gaussian pulse duration τ0 = 0.75 ps, a constant distance d = 4 nm between the quantum dot and
the surface of the nanoparticle, and four different nanoparticle radii: (a) rmnp = 7 nm, (b) rmnp = 8 nm,
(c) rmnp = 9 nm, and (d) rmnp = 10 nm.
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Figure 9. Contour diagrams for the biexciton population at the final time, as function of the pulse area
and the chirp parameter a of the applied Gaussian pulse, with biexciton energy shift Eb = −15 meV,
initial Gaussian pulse duration τ0 = 0.75 ps, interparticle distance R = 1.5rmnp, and four different
nanoparticle radii: (a) rmnp = 9 nm, (b) rmnp = 10 nm, (c) rmnp = 12 nm, and (d) rmnp = 15 nm.
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5. Conclusions
We showed with numerical simulations that the biexciton state can be efficiently prepared

in a coupled semiconductor quantum dot–metal nanoparticle system, using easily implemented
linearly chirped Gaussian pulses. This population transfer problem in this hybrid system is quite
important, since such systems present enhanced properties for quantum technology applications,
such as single-photon generation. We also found that for large absolute values of the biexciton energy
shift the presence of the nanoparticle enhances the robustness of the population transfer, while for
moderate to small values it degrades the performance. However, even in the latter cases, we can still
find ranges of parameters where the population transfer is successfully accomplished.
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