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Abstract: An in situ photo-Fenton system can continuously generate H2O2 by photocatalysis, ac-
tivating H2O2 in situ to form strong oxidizing ·OH radicals and degrading organic pollutants. A
WSe2/g-C3N4 composite catalyst with WSe2 as a co-catalyst was successfully synthesized in this work
and used for in situ photo-Fenton oxidation. The WSe2/g-C3N4 composite with 7% loading of WSe2

(CNW2) has H2O2 production of 35.04 µmol/L, which is fourteen times higher than pure g-C3N4. The
degradation efficiency of CNW2 for phenol reached 67%. By constructing an in situ Fenton-system,
the phenol degradation rate could be further enhanced to 90%. WSe2 can enhance the catalytic
activity of CNW2 by increasing electron mobility and inhibiting the recombination of photogenerated
electron–hole pairs. Moreover, the addition of Fe2+ activates the generated H2O2, thus increasing
the amount of strong oxidative ·OH radicals for the degradation of phenol. Overall, CNW2 is a
promising novel material with a high H2O2 yield and can directly degrade organic pollutants using
an in situ photo-Fenton reaction.

Keywords: WSe2/g-C3N4; visible light; in situ photo-Fenton; phenol degradation

1. Introduction

Phenol is a major pollutant in industrial wastewater such as oil refineries, petrochemi-
cal plants, coking plants, and phenolic resin plants [1]. Phenol may be produced in certain
agricultural products and animal manure as well [2]. Phenol is a highly toxic organic
pollutant that poses a health threat to humans and biota [3]. In recent decades, advanced
oxidation processes (AOPs) have proven attractive for wastewater treatment [4]. Thus far,
AOPs have been successfully applied to the degradation of persistent organic pollutants,
and can convert toxic organic pollutants into easily degradable low molecular weight
metabolites [5]. As a typical kind of AOP, Fenton reaction can take advantage of Fe2+ to
activate hydrogen peroxide (H2O2) in order to form ·OH radicals, as shown in Equation (1).

Fe2+ + H2O2 → Fe3+ + ·OH + OH− (1)

·OH can be used as an unselective reactive oxygen species (ROS) to degrade most
organic pollutants in aqueous solutions [6]. Early in 1992, Zepp et al. [7] studied the kinetic
mechanism of organic pollutants removal, including oxalate, citrate, and phosphate com-
plexes through a photo-Fenton system constructed by Fe2+. This has been the foundation
for subsequent research on the photo-Fenton reaction in pollutant removal. The traditional
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photo-Fenton reaction requires the addition of H2O2, which increases costs and limits its
practical application. In contrast to the conventional Fenton reaction, which requires the
addition of H2O2, an in situ photo-Fenton system can continuously generate H2O2 by
photocatalysis and activate H2O2 in situ to form strong oxidizing ·OH radicals, accelerating
the degradation of various pollutants [8,9]. In the in situ photo-Fenton system, the role of
the catalyst is very important, as it is related to the production of H2O2 and the degradation
of pollutants. Therefore, developing a photocatalyst to construct an in situ photo-Fenton
system with high reactivity to produce H2O2 is critical for the degradation of pollutants.

Among various visible light-responsive materials, graphitized carbon nitride (g-C3N4)
has attracted much attention because of its effective visible light absorption, suitable
conduction band edge, high stability, and excellent environmental friendliness [10–13]. In
2014, Shiraishi et al. [14] discovered that g-C3N4 can be used as a photocatalyst for H2O2
production thanks to its high selectivity in ethanol/water mixed solutions when exposed to
visible light (λ > 420 nm). Many subsequent studies have confirmed these findings [15–17].
However, bulk g-C3N4 usually exhibits poor photocatalytic activity owing to the low
separation and transfer efficiency of photo-generated carriers [18]. Therefore, a series of
modifications have been made to g-C3N4 to improve its photocatalytic activity.

Developing a precious metal-free co-catalyst with g-C3N4 as a composite material
is a potential modification approach [19,20]. In recent years, transition metal dichalco-
genides (TMDs) have attracted wide attention due to their unique layered structure, high
stability, and excellent electronic and electro-optical properties [21,22]. Tungsten selenite
(WSe2) is a type of TMD that is widely used in energy and environmental areas, includ-
ing in photodetectors [23], field-effect transistors [24,25], photocatalytic CO2 reduction
reactions (CO2RR) [26], and water splitting [27]. Guo et al. [28] found that using WSe2
nanosheets as a co-catalyst significantly increased the rate of photocatalytic H2 produc-
tion by Zn0.1Cd0.9S nanorods. With visible light as a driver, the generation rate of H2
was 147.32 mmol h−1 gcat

−1, which is eleven times the initial ate of Zn0.1Cd0.9S. Similarly,
Lin et al. [29] reported a floating plate photocatalytic system with WSe2 as the co-catalyst
which had an H2 evolution rate of 64.85 mmol h−1 g−1. These results suggest that WSe2
is an effective co-catalyst that can act as an electron absorber to accelerate the separation
of space carriers, thereby enhancing the performance of the photocatalytic reaction [30].
Wang et al. [30] synthesized a WSe2/g-C3N4 photocatalyst which showed high H2O2 pro-
duction and high bacterial inactivation efficiency. However, research on WSe2 nanosheets
as co-catalysts for photocatalytic organic pollutant removal is rarely reported.

In this work, WSe2/g-C3N4 composite catalysts with WSe2 as a co-catalyst were
successfully synthesized by a hydrothermal method combined with a calcination method.
The photocatalytic H2O2 production and the degradation of phenol with pure g-C3N4 and
the WSe2/g-C3N4 composite catalysts were tested in pure water under visible light. At the
same time, Fe2+ was added to create an in situ optical Fenton system for phenol degradation.
Coumarin was used as a trap to detect the ·OH produced by the photocatalytic reaction.
This work shows that the WSe2/g-C3N4 composite is a potential photocatalyst that can
produce H2O2 in pure water and be directly used in an in situ photo-Fenton reaction to
degrade organic pollutants.

2. Materials and Methods
2.1. Chemicals and Materials

Melamine (C3H6N6 99%, analytically pure) was obtained from Shanghai Macklin
Biochemical Technology Co., Ltd., Shanghai, China. Selenium powder, sodium tungstate
dihydrate (Na2WO6·2H2O 99.5%, analytically pure), sodium borohydride (NaBH4, an-
alytically pure), tungsten selenide (WSe2 99%, analytically pure), ferrous sulfate hep-
tahydrate (FeSO4·7H2O > 99%, analytically pure), phenol (C6H6O, analytically pure),
horseradish peroxidase (POD, RZ > 3.0), N,N-diethyl-p-phenylenediamine sulfate salt
(DPD), and coumarin (C9H6O2 99%, analytically pure) were all provided by Shanghai
Aladdin Biochemical Technology Co., Ltd., Shanghai, China. N,N-dimethylformamide
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(C3H7NO, analytically pure) was purchased from Guangzhou Chemical Reagent Factory,
Guangzhou, China. Ultra-pure water was used in all experiments.

2.2. Synthesis

Preparation of g-C3N4: The original g-C3N4 (labeled as PCN) was prepared by ther-
mally polymerizing melamine [31]. The specific experimental operation is as follows: 10 g
of C3H6N6 powder was placed into a crucible, then the crucible was heated under 520 ◦C
for 2 h in a box furnace. After the sample was naturally cooled, a yellow solid was obtained
and was collected after grinding.

Preparation of WSe2/g-C3N4: According to the previous method [30], several
WSe2/g-C3N4 composite materials with different ratios were synthesized by the com-
bination of a hydrothermal and calcination method. The specific experimental operation
was as follows: a mixture of selenium powder (Se, 57.7 mg, 0.731 mmol) and sodium
tungstate dihydrate (Na2WO6·2H2O, 120.75 mg, 0.366 mmol) was added to a beaker con-
taining N, N-dimethylformamide (DMF, 60 mL). Then, 100 mg of sodium borohydride
(NaBH4) was slowly added under constant stirring, and the mixture solution was continu-
ously stirred for 2 h. After that, 2.5 g of PCN was added to the above mixed solution and
stirred for 1 h. After the stirring, the solution was transferred into a closed autoclave with a
volume of 100 mL and went subjected to heat treatment at 240 ◦C for 24 h. The solution was
cooled to room temperature and washed with ultrapure water and absolute ethanol several
times, then dried under vacuum at 60 ◦C for 24 h. Finally, the obtained solid was ground
into powder, which was calcined and annealed in a tube furnace at 300 ◦C for 5 h under an
argon atmosphere. The WSe2/g-C3N4 material with a WSe2 loading of 5% was named as
CNW1. To determine the WSe2/g-C3N4 material with the best photocatalytic performance,
other samples with 7%, 10%, and 14% loadings of WSe2 were prepared. These materials
were marked as CNW2, CNW3, and CNW4, respectively.

Preparation of WSe2: A mixture of Se powder (315.6 mg, 4 mmol) and Na2WO6·2H2O
(659.6 mg, 2 mmol) was added to a beaker containing 60 mL DMF while stirring. Then,
100 mg NaBH4 was slowly added into the mixed solution and stirred continuously for 3 h.
The rest of the operation was the same as the preparation method used for WSe2/g-C3N4.

2.3. Characterizations

X-ray diffraction (XRD) patterns of the synthesized materials were obtained from
an X-ray diffractometer with a Cu-Kα radiation source (λ = 1.5218 Å) (D8 ADVANCE,
Bruker Inc., Saarbrucken, Germany). Transmission electron microscopy (TEM) images were
examined on a Talos F200S (FEI, Thermo, Inc., Czech Republic) field-emission transmission
electron microscope operated at 200 kV. Field emission scanning electron microscopy
(FESEM) with energy dispersive X-ray spectroscopy (EDX) elemental mapping images
were taken by a field-emission electron microscope (SU8220, Hitachi Ltd., Tokyo, Japan)
with an acceleration voltage of 15 kV. X-ray photoelectron spectroscopy (XPS) spectra
were obtained from a Escalab 250Xi (Thermo Fisher Scientific, Inc., Waltham, MA, USA)
spectrometer with Al Kα radiation. Photoluminescence (PL) spectra were obtained using
an FS5 (Edinburgh Inc., Edinburgh, UK) fluorescence spectrophotometer under 380 nm
excitation. UV–vis diffuse reflectance spectra (UV–vis DRS) were acquired on a Cary
300 spectrophotometer (Agilent Technologies Inc., Palo Alto, CA, USA).

2.4. Photocatalytic Performance

Photocatalytic production of H2O2: This experiment was carried out in a PCX50B
Discover multi-channel photocatalytic system (5 W, λ > 420 nm, Perfectlight Technology
Co., Ltd., Beijing, China). Typically, a catalyst sample (30 mg) was added to a reactor
containing 30 mL of pure water. Before being exposed to light, a dark adsorption treatment
was carried out for 30 min. Then, the light was turned on and the reaction proceeded for
2 h. During the photocatalytic reaction, 1 mL of the solution was collected every 20 min
and filtered through a polytetrafluoroethylene (PES) millipore filter (0.22 µm) to remove
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the photocatalyst powders. Finally, the amount of H2O2 produced by photocatalysis
was determined by the DPD-POD method [32]. The specific method was as follows:
1 mL of sample aliquots were mixed with 1.12 mL water, 0.4 mL phosphate buffered
solution, 0.05 mL POD (1 mg/mL−1), and 0.05 mL DPD (10 mg/mL). Vigorous stirring was
maintained for 1 min, then the absorbance of the mixed liquid was measured at 551 nm
on a multifunctional microplate reader (Varioskan LUX, Thermo Fisher Scientific, Inc.,
Waltham, MA, USA). To ensure the accuracy of the experiment, the absorbance of H2O2
was measured three times.

Photocatalytic degradation of phenol: In this experiment, phenol with a concen-
tration of 10 ppm (10 mg/L) was used as the target pollutant. The phenol degradation
performance of the prepared photocatalysts was tested under the visible light irradiation of
the PCX50B Discover multi-channel photocatalytic system. A catalyst sample (30 mg) was
added to a reactor with 30 mL of phenol solution (10 ppm). Before exposure to light, a dark
adsorption treatment was carried out for 30 min. Then, the light was turned on and the
reaction proceeded for 6 h. During the photocatalytic reaction process, water samples were
taken every 1 h. The solution was transferred into a high-performance liquid chromatog-
raphy (HPLC, Eclassical 3100, Elite Analytical Instrument Co., Ltd., Dalian, China) vial,
and the concentration of phenol was analyzed and determined by HPLC equipment with a
UV detector. Methanol and ultra-pure water (40:60) were employed as the mobile phases
at a flow rate of 0.8 mL min−1 and the wavelength of the detector was set at 270 nm. The
degradation rate of phenol can be expressed by Equation (2)

D = 1−
(

C
C0

)
× 100% (2)

where C and C0 represent the concentrations of phenol at a specific interval and the initial
time, respectively [33].

In situ photo-Fenton degradation of phenol: The H2O2 generated by photocatalysis
was activated in situ by adding an external iron source to form an in situ photo-Fenton
system. Generally, a catalyst sample (30 mg) was added to a reactor with 30 mL phenol
solution (10 ppm). Before exposure to light, a certain amount of ferrous sulfate heptahydrate
(FeSO4·7H2O) solid was added into the reactor, then a dark adsorption experiment was
carried out for 30 min. The operations of sampling and phenol concentration measurement
were the same as described above.

Detection of hydroxyl radicals (·OH): Coumarin was used as a trap to detect the
hydroxyl radicals produced in the photocatalytic reaction [34]. In detail, a catalyst sample
(30 mg) was added into a reactor containing 30 mL coumarin (1 mM) solution. Before
exposure to light, a dark adsorption treatment was carried out for 30 min. During the pho-
tocatalytic reaction, samples were taken every 20 min. Finally, the fluorescence spectrum of
the solution was measured with a fluorescence spectrometer with a wavelength of 332 nm.

3. Results and Discussion
3.1. Characterizations of Materials

X-ray diffraction was used to investigate the crystal structure of diverse materials.
The XRD spectra of pure WSe2, PCN, CNW1, CNW2, CNW3, and CNW4 are shown in
Figure 1a. The XRD spectrum of the pure WSe2 is well matched with its standard card
(JCPDS: 38-1388) [35], indicating that WSe2 can be synthesized by this method with high
purity. The XRD patterns of the CNW materials are nearly identical to PCN, demonstrating
that the addition of WSe2 does not affect the crystal structure of PCN. There are two charac-
teristic peaks in the spectra of PCN and CNW materials. The peak at 13.1◦ corresponds
to the (100) plane of PCN, representing the repetition of non-planar units. The other peak
at 27.5◦ corresponds to the (002) plane of PCN, which is related to the superimposed
reflection of the conjugate plane [36]. In addition, as WSe2 loading in CNW composites
increases, the intensity of the (100) and (002) peaks gradually weakens. The insignificant
peak of WSe2 in the CNW materials is due to the low content of WSe2.
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and CNW4.

The FTIR spectra of pure WSe2, PCN, CNW1, CNW2, CNW3, and CNW4 are shown
in Figure 1b. There is no clear sharp peak in the infrared spectrum of WSe2 across the
full wavenumber range (500–3500 cm−1). The spectrum of CNW composite materials is
similar to that of PCN, which indicates that PCN is the primary source of the infrared
spectrum signals in CNWs. A tiny peak appearing at 810 cm−1 is attributed to the vi-
bration of the triazine unit in PCN and CNW materials. The characteristic peak in the
region of 1200–1700 cm−1 can be assigned to the C–N heterocyclic ring frame stretching
vibration [37,38]. In addition, the characteristic peaks between 3000–3400 cm−1 can be
assigned to the stretching vibrations of –OH and –NH groups caused by free amino groups
in the PCN structure and hydroxyl groups adsorbed on the surface [39].

For the practical study of materials, thermal stability is essential. The TGA plots of the
materials were tested in N2 atmosphere. All of the produced materials exhibit excellent
thermal stability in the 30~500 ◦C range, as shown in Figure S1. This demonstrates that
it is feasible to use CNW materials to treat pollutants in water. The specific surface area
of PCN and CNW2 are determined by the nitrogen adsorption–desorption isotherm. As
shown in Figure S2, the specific surface area of PCN and CNW2 fitted with the Brunauer–
Emmett–Teller (BET) method are 4.61 m2/g and 11.83 m2/g, respectively. The tiny BET
surface area may have little influence on the catalytic activity for H2O2 evolution or phenol
degradation, similar to the results in the literature [30].

The morphology of the synthesized samples was obtained by SEM. As shown in
Figure 2a, PCN has a large irregular block structure and a relatively smooth surface. In
Figure 2b, the synthesized WSe2 exhibits a layered petal-like structure self-assembled
from ultra-thin nanosheets, consistent with previous studies [40]. Figure 2c,d suggests a
few ultra-thin WSe2 nanosheets grown on the surface and edges of PCN, which indicates
that the WSe2 nanosheets were successfully loaded. The WSe2 and PCN in the CNW2
are in close contact, which promotes the rapid transfer of photogenerated electrons from
the surface of the PCN to the WSe2. The distribution of various elements (C, N, W, Se)
in CNW2 was studied by element mapping analysis. From the HAADF-SEM and the
corresponding EDX elemental mapping images of CNW2 (Figure 2e,f), CNW2 contains
four elements, i.e., C, N, W, and Se, and their uniform distribution indicates that CNW
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nanocomposites were successfully prepared. The SEM image and the corresponding EDX
elemental mapping images of PCN, CNW3, and CNW4 are shown in Figure S3.
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Figure 2. SEM images of (a) PCN, (b) WSe2, and (c,d) CNW2; (e) HAADF-SEM image and (f) corre-
sponding EDX elemental mapping images of CNW2.

The micromorphology of PCN and CNW composite materials were further analyzed
by TEM and HRTEM (Figure 3 and Figure S4). As shown in Figure S4a,b, there are no lattice
fringes locally due to the low crystallinity of PCN. As shown in Figure 3a, WSe2 nanosheets
are mainly loaded on the edge of g-C3N4. WSe2 exhibits distinct lattice fringes with a
fringe spacing of about 0.68 nm, corresponding to the (002) crystal plane of WSe2 [40,41].
Moreover, the size of WSe2 nanosheets is approximately 30 nm, much smaller than the
size of PCN nanosheets. These results reveal that the WSe2 nanosheets were successfully
loaded onto the PCN, which is consistent with the SEM observations.
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The XPS survey spectra of WSe2, CNW2, and PCN are shown in Figure 4a. The
characteristic peaks of the four elements, C, N, W, and Se, can be observed from the XPS
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spectrum of the CNW2 composite material, which is consistent with the EDX element
mapping. The XPS spectrum of CNW2 is similar to that of PCN, because PCN is the
major component of CNW2. Because the relative content of WSe2 in CNW2 composites
is relatively small, the characteristic peaks of W and Se in the XPS spectra of the CNW2
composites are very weak.
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Figure 4. (a) XPS survey spectra of WSe2, CNW2, and PCN, (b) High-resolution XPS C 1s spectra of
CNW2 and PCN, (c) N 1s spectra of CNW2 and PCN, (d) O 1s spectra of CNW2 and PCN, (e) W 4f
spectra of WSe2 and CNW2, and (f) Se 3d spectra of WSe2 and CNW2.

Figure 4b–f shows the high-resolution XPS spectra of C 1s, N 1s, O 1s, W 4f, and Se 3d
from WSe2, CNW2, and PCN. In the XPS spectra of C 1s, the characteristic peak at the bind-
ing energy of 284.8 eV corresponds to the extraneous carbon element (C–C bond). Normally,
the two peaks at 286.4 and 288.2 eV in PCN are attributed to the C–NH2 and N–C=N bonds,
respectively [42,43], while in CNW2 composites these two peaks are negatively shifted by
0.1 eV compared to PCN, being located at 286.3 and 288.1 eV, respectively. In Figure 4c, the
strongest characteristic peak of PCN located at the binding energy of 398.7 eV indicates
the presence of sp2 hybrid nitrogen on the aromatic ring of the N atom (C–N=C) [44].
The peak near the binding energy of 400.1 eV is attributed to the tertiary nitrogen N–(C)3
group [45]. In addition, two weak peaks at the binding energy of 401.2 and 404.4 eV are
attributed to the amino group (C–N–H) and the charging effect in the heterocyclic ring,
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respectively [42,46]. Similarly, after WSe2 loading, the four peaks are all transferred to the
lower binding energy positions (398.6, 400.0, 401.1, and 404.3 eV). The XPS spectrum of
O 1s is shown in Figure 4d. The peak of CNW2 and PCN at the binding energy of about
532.3 eV is considered to be the adsorbed oxygen species [47]. There is a new peak in
the CNW2 composite material appearing at the binding energy of 529.4 eV which can be
assigned to the lattice oxygen atom [48], which indicates that the surface of WSe2 in the
CNW2 composite is slightly oxidized.

As shown in Figure 4e, four typical peaks in WSe2 nanosheets are located at the
binding energy of 32.5, 34.6, 36.9, and 38.9 eV, respectively. The first two peaks can be
attributed to W 4f7/2 and W 4f5/2 of W4+ in pure WSe2, respectively. The other two small
double peaks can be attributed to the W–O bond, which may be due to the oxidation state of
W6+ formed by slight oxidation on the surface of the WSe2 nanosheets during the synthesis
process [49–51]. In CNW2 composites, these peaks are all shifted to the lower binding
energy positions (31.7, 34.0, 36.2, and 38.4 eV). In addition, the proportion of the W–O peak
area of WSe2 in CNW2 composites increases due to the loading of WSe2 nanosheets on
the surface of PCN. Figure 4f shows that the Se 3d spectrum in WSe2 can be divided into
Se 3d5/2 (54.9 eV) and Se 3d3/2 (55.8 eV) of the divalent Se ion, which is consistent with
previous studies [52,53]. In the CNW2 composite, Se 3d5/2 and Se 3d3/2 move to positions
with binding energies of 51.9 and 54.8 eV, respectively. The changes in the binding energy of
these chemical bonds indicate that electrons are transferred from PCN to WSe2 nanosheets
in the CNW2 samples. Due to the strong Mott–Schottky effect between PCN and WSe2, the
electron density of WSe2 increases, affecting the electronic structure of the two materials.

As shown in Figure 5a, PCN exhibits an absorption band at around 450 nm while pure
WSe2 has a broad and strong absorption range across the full wavelength (300–800 nm).
The visible light capturing ability of CNWs is significantly better than PCN due to the
addition of WSe2. These changes can be further verified by the changes in the physical
appearance of the various samples. As shown in Figure 5b, the increasing content of
WSe2 in CNW samples causes their color to change from yellow to dark yellow and finally
to black. The high light absorption capacity of the CNWs could promote the reaction of
photocatalytic H2O2 production and pollutant degradation.
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The PL spectra of PCN and CNW2 are shown in Figure 6a. With an excitation wave-
length of 369 nm, a strong emission peak appears at around 462 nm of PCN due to rapid
recombination of photogenerated electron-hole pairs in PCN. The fluorescence spectrum
intensity of the CNW2 composite emission peak becomes significantly lower than that of
PCN after WSe2 loading, indicating that WSe2 can inhibit the recombination of the electron-
hole pairs radiated from PCN. Figure 6b shows the transient photocurrent response curves
of the synthesized samples during the typical period of on/off visible light irradiation.
The photocurrent is generated immediately after turning on the light, indicating the high
photosensitivity and effective space charge separation ability of all samples [54,55]. All of
the CNW composites have higher photocurrent response values than PCN, and CNW2 has
the highest photocurrent response value with a photocurrent of 0.73 µA cm−2. This means
that the appropriate content of WSe2 can greatly accelerate the separation of charges on the
CNW2 sample. The excess black WSe2 in CNW composites scatters light and produces a
shading effect, reducing the utilization of light. In addition, electrochemical impedance
spectroscopy was used to examine the conductivity and interface charge transfer behavior
of various samples, as shown in Figure 6c. The semicircular diameter of the CNW2 com-
posite material is substantially smaller than that of PCN, indicating that the interface of the
CNW2 sample has better conductivity, contributing to the effective separation and transfer
of space charge within the CNW2 material during the photocatalytic reaction [56].
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3.2. Photocatalytic Performances

The photocatalytic performance of the synthesized materials for H2O2 production was
tested in ultrapure water under visible light. In Figure 7a, the linear coefficient (R2) of the
standard curve is 0.9993, indicating an excellent linear relationship between the concentra-
tion of H2O2 and its absorbance; as such, use of the absorbance to express the content of
hydrogen peroxide is credible. The time course of photocatalytic production of H2O2 under
visible light irradiation for the synthesized samples is shown in Figure 7b. The rate of H2O2
production gradually slows down and finally stabilizes as the reaction progresses, which
is caused by the photodecomposition of H2O2 [57]. As shown in Figure 7b,c, the H2O2
production of pure WSe2 is 0.97 µmol/L. Under visible light for 2 h, the H2O2 production
of PCN is about 2.49 µmol/L, suggesting the low H2O2 production activity of PCN and the
rapid recombination of photogenerated electron-hole pairs [58]. The photocatalytic activity
of CNW composite materials is higher than that of PCN and pure WSe2, indicating that
their combination can significantly improve the production of H2O2. Among them, CNW2
has the best photocatalytic performance of H2O2 generation of 35.04 µmol/L, which is
almost 14.1 times higher than that of the original g-C3N4 (2.49 µmol/L). Thus, WSe2 is an
effective co-catalyst. However, the production of H2O2 gradually decreases as the amount
of WSe2 loading in CNW composites is increased up to 7%. The excessive black WSe2 in
the CNW composite material reduces the utilization of light, thereby reducing the activity
of the photocatalytic reaction.
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Figure 7. (a) Standard curve of the concentration of H2O2 and its absorbance, (b) photocatalytic
H2O2 production profiles on various samples under visible light irradiation, and (c) maximum yield
of H2O2 on various samples under visible light irradiation.

The photocatalytic degradation of phenol (10 ppm) by the synthesized samples was
performed under visible light. The visible light source in the multi-channel system had a
power of 5 W and the reaction lasted 6 h. As shown in Figure 8a, the degradation efficiency
of phenol by pure WSe2 is only about 7%. At the same time, PCN shows poor activity,
with phenol degrading at a rate of roughly 25% after 6 h. Under similar conditions, the
photocatalytic activity of CNWs is higher than that of PCN. The degradation efficiency rates
of the CNW4, CNW3, CNW1, and CNW2 samples are 34%, 52%, 61%, and 67%, respectively.
Among them, CNW2 has the best catalytic activity in terms of its behavior in photocatalytic
H2O2 production. The WSe2 in CNW2 composites can act as a noble metal-free promoter to
increase electron mobility and inhibit the recombination of photo-generated electron-hole
pairs, thus increasing the catalytic activity of CNW2.
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Figure 8. (a) Photocatalytic phenol (10 ppm) degradation by the synthesized samples (WSe2, PCN,
CNW1, CNW2, CNW3, and CNW4) under visible light, (b) the corresponding kinetic rate constant
k (h−1) for photocatalytic degradation of phenol, and (c) photocatalytic degradation of phenol
(10 ppm) on CNW2 after adding different concentrations of ferrous sulfate heptahydrate under
visible light irradiation.

The reaction kinetics of the photocatalytic degradation of phenol were further analyzed
using the first order kinetic formula below [59]

− ln
C
C0

= k× t (3)

where C, C0, k, and t, represent the concentration of phenol at time t, the initial concentration
of phenol, the reaction rate constant, and the reaction time, respectively.

The kinetic fitting curves of the synthesized samples are shown in Figure 8b, demon-
strating that the order of the photocatalytic reaction rate constant (k) of the samples is
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WSe2 < PCN < CNW4 < CNW3 < CNW1 < CNW2. The reaction rate constant of CNW2
increased by about 3.9 times compared to PCN, with respective k values of 0.180 h−1

and 0.0467 h−1.
The CNW2 composite photocatalyst was chosen for the subsequent in situ photo-

Fenton degradation of phenol. The photocatalytic degradation of phenol by CNW2 was
investigated at various concentrations of ferrous ions (Fe2+). In the tests, four different
concentrations of Fe2+ (0.5, 1.0, 1.5, and 2.0 mM) were selected; the results are shown
in Figure 8c. The concentration of Fe2+ has a significant influence on the photo-Fenton
degradation reaction. Adding a proper concentration of Fe2+ can increase the degradation
of phenol; at an Fe2+ concentration of 0.5 mM, phenol degradation is enhanced to 90%.
Fe2+ activates the H2O2 generated by photocatalysis to form an in situ photo-Fenton
system by producing more oxidative ·OH and improving photocatalytic degradation
efficiency. However, an excessive concentration of Fe2+ reduces photocatalytic reaction
activity. This may be due to the excessive hydrolysis of Fe2+ increasing the acidity of the
solution, causing pH to become the dominant factor affecting the photocatalytic reaction.
Moreover, compared to the literature (Table S1), the CNW2/Fe2+ system has a better phenol
degradation rate [60–69].

3.3. Reaction Mechanism

Several control experiments were carried out to clarify the production pathway
of H2O2 during the photocatalytic reaction shown in Figure 9a. The results show that
the production of H2O2 can be greatly improved by adding anhydrous ethanol as an
electron donor and oxygen gas. When the photocatalytic reaction was carried out in an
aqueous ethanol solution with a volume fraction of 10%, the production of H2O2 increased
from 35.04 µmol L−1 (pure water) to 117.32 µmol L−1, nearly 3.35 times higher than
that of pure water, within 2 h of light. When oxygen was injected into pure water, the
output of H2O2 was almost the same as with no gas supplied. At the same time, the
production of H2O2 was slightly suppressed under the nitrogen atmosphere (simulating
an anaerobic environment), which indicates that external oxygen has little influence on
the photocatalytic reaction. Generally, oxygen is an essential reactant for the generation
of hydrogen peroxide whether through a one-step two-electron direct reduction route or
a two-step continuous one-electron indirect reduction route [70]. The valence band of
g-C3N4 is about 1.4 eV, and its oxidizing property is sufficient to generate oxygen [54].
Therefore, it should be considered that the holes generated in the valence band of g-C3N4
in CNW2 can directly oxidize water to generate oxygen. These results indicate that the
CNW2 composite material has the potential to generate hydrogen peroxide in an anaerobic
environment and can be further used in a variety of other environmental applications,
making it a promising photocatalyst.

A coumarin solution was used as a trap to detect the ·OH radicals generated by in
situ activation, further confirming the in situ activation of H2O2. As shown in Figure 9b,c,
after adding Fe2+, the ·OH radical capture product (7-hydroxycoumarin) has a significant
peak at about 460 nm and its fluorescence intensity gradually increases with the progress
of the reaction. This shows that as the reaction develops the system continuously generates
·OH radicals, accelerating the degradation of phenol. However, in the absence of Fe2+,
the characteristic peak of 7-hydroxycoumarin at 460 nm cannot be recognized after 2 h.
This indicates that in the absence of Fe2+ the amount of ·OH radicals generated by the
photocatalytic reaction is almost undetectable. As shown in Figure 9d, the EPR spectra of
DMPO spin-trapping adducts for CNW2 dispersion with Fe2+ shows stronger signals of
·OH radicals than that without Fe2+, which is consistent with the coumarin capture experi-
ments. Fe2+ was able to promote the generation of ·OH radicals. The ·OH radical detection
experiment further proved that in combination with Fe2+, the CNW2 photocatalyst could
be used to construct an in situ photo-Fenton system for direct phenol degradation without
additional H2O2.
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Figure 9. (a) Photocatalytic H2O2 production under different conditions (including CNW2 + water,
CNW2 + 10% ethanol + O2, and CNW2 + water + O2, CNW2 + water + N2) for CNW2, fluorescence
spectra of 1 mM coumarin solution (b) with Fe2+ and (c) without Fe2+ under visible light irradiation;
(d) EPR spectra of DMPO spin-trapping adducts for CNW2 dispersion with and without Fe2+.

4. Conclusions

In this work, several WSe2/g-C3N4 photocatalysts with different composite ratios
were successfully synthesized by a hydrothermal and calcination method, then character-
ized by XRD, FTIR, SEM, and TEM. The synthesized samples were applied to photocatalytic
H2O2 production and photocatalytic degradation of phenol. Among them, CNW2 with
7% loading of WSe2 displayed the greatest photocatalytic performance with H2O2 pro-
duction of 35.04 µmol/L in two hours, which is about 14.1 times that of PCN. Meanwhile,
the phenol degradation efficiency of CNW2 reached 67%, 42% higher than that of PCN.
By constructing an in situ photo-Fenton reaction, the addition of 0.5 mM Fe2+ was able
to further promote the photocatalytic degradation of phenol to 90%. However, there are
aspects that can be further studied, such as in the removal of other organic pollutants,
the purification of actual polluted water, environmental toxicity, etc. Overall, this work
provides new insights for developing new materials for H2O2 production in pure water
and for in situ photo-Fenton reaction to degrade organic pollutants.
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