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Abstract: In this paper, the formation of rhombic ZnO microrods surrounded by ZnO nanorods was
realized on the surfaces of zinc foils using a hydrothermal method. The photocatalytic degradation
of Rhodamine B solution was used to test the photocatalytic performance of the prepared samples.
Compared with the rhombic Zn(OH)F and ZnO microrods grown on zinc foils, the hierarchical
micro/nanostructures formed by ZnO nanorods surrounding the surfaces of rhombic ZnO microrods
have better photocatalytic performance. The experimental results are mainly due to the fact that
the hierarchical ZnO micro/nanostructures formed by ZnO nanorods surrounding the surface
of the rhombic ZnO microrods have a larger surface area compared with the rhombic Zn(OH)F
and ZnO microrods. More importantly, the photocatalytic circulation experiments indicate that
ZnO nanorods grown on rhombic ZnO microrods can be recycled and have a relatively stable
photocatalytic performance.

Keywords: hierarchical ZnO micro/nanostructures; photocatalytic activity; rhombic ZnO microrods

1. Introduction

With the increasingly serious pollution problem, a variety of methods were used to
solve the problem of environmental pollution [1–8]. Among the methods used for solv-
ing the environmental pollution problem, photocatalytic technology has attracted much
attention because of the fact that clear and renewable solar energy can be used to degrade
pollutants [3–8]. Thus far, a variety of semiconductor materials, such as TiO2, ZnO, WO3,
CuO, CeO2, and their composites, have been widely studied for photocatalysis applica-
tions [9–28]. Among these materials, ZnO has been widely studied because it is non-toxic
and easy to synthesize [18–28]. Up to now, powdery ZnO in various morphologies, includ-
ing nanowires, spherical structures, and hierarchical structures, have been successfully
prepared and used to study their photocatalytic properties [18–28].

At present, those micro- and nanostructures used for photocatalytic applications are
mainly in powdery form. The problem with powdery materials is that they are difficult to
separate after photocatalysis, so the powdery photocatalytic materials are difficult to be
reused. This problem can be solved by preparing ZnO micro/nanostructures on the surfaces
of substrates. Silicon, glass, aluminum foil, and nickel foam have been used for ZnO
growth [29–32]. The obtained samples have been successfully applied in photocatalysis.
ZnO prepared on the surfaces of those substrates is usually a single structure of nanowire
or nanorod, which has been studied widely [31,32]. However, the fabrication of hierarchical
ZnO micro/nanostructures on the substrate surface for photocatalysis applications has
rarely been reported.

In this paper, the synthesis of Zn(OH)F on the surface of zinc foils was first real-
ized, and then the preparation of hierarchical ZnO micro/nanostructures is realized by
the growth of ZnO nanorods from the ZnO seed introduced on the surface of rhombic
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ZnO microrods, which is formed by calcinating Zn(OH)F microrods. The prepared ZnO
nanorods grown on rhombic ZnO microrods have been successfully applied to photo-
catalysis. The photocatalytic performance test results show that the hierarchical ZnO
micro/nanostructures grown on the surfaces of zinc foils have better photocatalytic per-
formance than the Zn(OH)F and ZnO microrods grown on the surfaces of zinc foils. The
cyclic experiment shows that the photocatalytic performance of hierarchical ZnO mi-
cro/nanostructures decreases slightly through three cyclic experiments.

2. Materials and Methods
2.1. Materials

All the chemical reagents used for the fabrication of the ZnO seed layer, Zn(OH)F
microstructures, and ZnO nanorods are of analytical grade. Ammonium fluoride was
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Zinc acetate,
ethanolamine, zinc nitrate hexahydrate, and hexamethylenetetramine (HMT) were bought
from Sigma-Aldrich (Steinheim, Germany). No further purification was carried out for all
the chemical reagents during the experimental process.

2.2. Preparation of Zn(OH)F Microstructures

The zinc foils were cleaned with deionized water and ethanol alternatively. The above
process was repeated three times. The cleaned zinc foils were transferred in a 300 mL
solution. The composition of the solution is 0.025 M zinc nitrate hexahydrate and 0.05 M
ammonium fluoride. The hydrothermal process was carried out at 120 ◦C for 4 h.

2.3. ZnO Nanorods Grown on Rhombic ZnO Microrods

In order to convert the obtained Zn(OH)F microstructures to ZnO ones and simultane-
ously form a layer of ZnO seed layer on the surface of the synthesized microstructures, the
obtained sample in the first step was immersed in an ethanol solution consisting of zinc
acetate and ethanolamine. After being totally dried, the sample was calcinated at 350 ◦C
for 1.5 h.

After the samples were cooled naturally to room temperature, they were transferred
into a solution containing 25 mM zinc nitrate and 25 mM HMT at 92 ◦C for 3 h. Before char-
acterization, the samples were washed with deionized water, dried at room temperature
and finally calcinated at 350 ◦C for 1.5 h.

2.4. Characterization

The morphologies of the samples obtained during the experimental process were
observed by a field emission scanning electron microscope (FESEM; Quanta 250 FEG,
Thermo Fisher Scientific, Waltham, MA, USA). The compositions of the samples were
confirmed by an energy-dispersive X-ray spectrometer (EDX; INCAX-Max 20; Oxford, UK).
X-ray diffraction (XRD) measurements were carried out on a Bruker AXS D8 ADVANCE
X-ray diffractometer, Billerica, Germany.

2.5. Photocatalytic Activity Tests

The photocatalytic decolorization of the rhodamine B (RhB) solution was used to
evaluate the photocatalytic activities of the samples. The absorbance of the photode-
graded RhB solution was recorded on a Shimadzu UV-3600 UV-Vis spectrophotometer.
During the experimental process, rod-like Zn(OH)F, rod-like ZnO, and hierarchical ZnO
micro/nanostructures grown on zinc foils with a diameter of 8 cm were placed at the
bottom of a photoreactor and immersed in 80 mL RhB solution with a concentration of
10 mg/L. The samples immersed in RhB solution were first kept in the dark environment
for 30 min to establish the adsorption–desorption equilibrium, and then the RhB solution
was placed under simulated light. The distance between the light source and sample is
16 cm. The simulated light source used in the experiment was provided by a PLS-SXE300C
Xenon lamp. In recycling experiments, the used sample was washed with deionized water,
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dried at room temperature, and reused two additional times to assess the reusability of
the catalyst.

3. Results and Discussion

The surface morphology of the zinc foil cleaned with deionized water and ethanol
is shown in Figure 1a, from which it can be seen that the surface of the zinc foil is clean.
The EDX result displayed in Figure 1b further indicates that the zinc foils used in this
experiment are very pure. The Au signal observed in the spectrum comes from the gold
film sputtered on the sample surface for SEM characterization. The XRD spectrum in
Figure 1c indicates that the diffraction peaks agree well with the hexagonal phase of Zn
(Joint Committee for Powder Diffraction Standards (JCPDS) No. 04-0831) [33,34].
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Figure 1. (a) SEM image of zinc foil, (b) EDX spectrum, and (c) XRD diffraction patterns of zinc foil.

After transferring the cleaned zinc foils into the prepared chemical solution, the
solution was then sealed in an autoclave equipped with a Teflon liner, and finally, the
autoclave was placed in a drying oven, and the autoclave was heated at 120 ◦C for 4 h.
Rod-like Zn(OH)F was prepared on the surface of zinc foil through the hydrothermal
reaction. The results are shown in Figure 2a,b. From the high-magnification SEM image
shown in Figure 2b, it can be seen that rhombus-shaped cross-sectional Zn(OH)F microrods
were synthesized. We believe that the growth mechanism of Zn(OH)F microrods can be
described as follows: Zn(OH)F nanoparticles generated by the hydrothermal reaction in
the solution first heterogeneously nucleated onto the surface of zinc foil, and then the
rhombus-shaped Zn(OH)F grows from the crystal nucleus to form rod-like Zn(OH)F, as
shown in Figure 2b [35].

After rod-like Zn(OH)F was grown on the surface of zinc foil, the composition of the
obtained samples was analyzed. The EDX spectrum is shown in Figure 2c. Compared with
the EDX spectrum in Figure 1b corresponding to the zinc foil, the new peaks of F and O
elements appearing in this spectrum should come from the growth of rod-like Zn(OH)F
on the surface of the zinc foil. From Figure 2c, it can be seen that the weight percentages
of Zn, O, and F are 58.87%, 11.09%, and 13.47%, respectively. The calculated atomic ratio
of O to F is about 1. To further investigate the crystal structure of the prepared samples,
XRD analysis was carried out, and the results are shown in Figure 2d. Compared with
the XRD spectrum demonstrated in Figure 1c, some new diffraction peaks appear. Except
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for those diffraction peaks from zinc foil, the newly appeared diffraction peaks arise from
orthorhombic Zn(OH)F (JCPDS No. 32-1469). No other diffraction peak appears; we believe
that the product prepared on the surface of zinc foil is orthorhombic Zn(OH)F.
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Figure 2. (a) Low- and (b) high-magnification SEM images of Zn(OH)F synthesized on zinc foil,
(c) EDX spectrum, and (d) XRD diffraction patterns of zinc foil with Zn(OH)F grown on its surface.

In order to further analyze the composition of the prepared products, EDX element
mapping was used to analyze the samples. The results are shown in Figure 3a–d. From
the EDX elemental mappings of Zn, O, and F, which are respectively demonstrated in
Figure 3b–d, one can clearly see the distribution of elements.
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In order to realize the preparation of hierarchical micro/nanostructures, a ZnO seed
layer was introduced onto the surface of the prepared rod-like microstructures. The
samples corresponding to that shown in Figure 2a were first dipped into an ethanol
solution prepared with zinc acetate and ethanolamine. The sample was then taken out
and totally dried. Finally, the obtained sample was calcinated at 350 ◦C for 1.5 h. The
morphology of the yielded sample is shown in Figure 4a. Compared with Figure 2a, no
significant morphology changes were observed. From the high-magnification SEM image
presented in Figure 4b, it can be clearly seen that some nanoparticles appear on the surfaces
of the rod-like microstructures. We believe that these newly formed nanoparticles are
ZnO. The introduction of these nanoparticles provides the necessary conditions for the
subsequent preparation of ZnO nanorods on the surface of the rod-like microstructure.
The composition and crystal structures of the calcined samples were analyzed. The results
are shown in Figure 4c,d. From Figure 4c, it can be seen that the peak corresponding to
element F disappears. We believe that the rod-like Zn(OH)F has been decomposed into
ZnO. From the XRD results demonstrated in Figure 4d, it can be seen that all the diffraction
peaks are consistent with those of hexagonal wurtzite ZnO (JCPDS No. 36-1451), and
there are no other impurity peaks. These results further prove that rod-like Zn(OH)F is
decomposed into ZnO by calcination, and ZnO nanoparticles are introduced on the surface
of the obtained rod-like ZnO.
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loaded on its surface; (c) EDX spectrum and (d) XRD diffraction patterns of rod-like ZnO.

The introduction of ZnO nanoparticles on the surface of rod-like ZnO makes it possible
to prepare hierarchical ZnO micro/nanostructures. Transferring zinc foils with rod-like
ZnO on their surfaces into a solution containing 25 mM zinc nitrate and 25 mM HMT,
the solution was then sealed in an autoclave equipped with a Teflon liner, and finally,
the autoclave was placed in a drying oven, and the autoclave was heated at 92 ◦C for
3 h. After the hydrothermal reaction, the hierarchical ZnO micro/nanostructures can
be prepared. The results are shown in Figure 5a,b. From the high-magnification SEM
image demonstrated in Figure 5b, it can be seen that ZnO nanorods were grown on the
surfaces of rod-like ZnO, and the synthesis of hierarchical ZnO micro/nanostructures
was realized. The composition and crystal structures of the prepared hierarchical ZnO
micro/nanostructures were analyzed. The EDX results are shown in Figure 5c. From the
results, it can be seen that no other impurity elements can be observed. The XRD results
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shown in Figure 5d further prove that the prepared hierarchical ZnO micro/nanostructure
is hexagonal wurtzite ZnO.
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(c) EDX spectrum and (d) XRD diffraction patterns of hierarchical ZnO micro/nanostructures.

In order to study the photocatalytic performance of the prepared samples, the prepared
rod-like Zn(OH)F, rod-like ZnO with ZnO seed layers on their surfaces, and hierarchical
ZnO micro/nanostructures were used to test the photocatalytic performance. The pho-
todegradation of the RhB solution was applied to evaluate the photocatalytic activity of the
prepared products. During the experimental process, a small amount of the RhB solution
was taken out of the degradation solution every 20 min to test the absorbance of the solution.
Figure 6a–c, respectively, shows the absorbance of the solutions obtained by degradation of
the RhB solution with zinc foils with rod-like Zn(OH)F, rod-like ZnO, and hierarchical ZnO
micro/nanostructures on their surfaces at different time intervals. From the comparison of
the results demonstrated in Figure 6a,b, it can be seen that the photodegradation rate of
RhB with rod-like Zn(OH)F is lower than that with rod-like ZnO.

The photodegradation experiment can be divided into two stages [36]. In the first
stage, the sample was immersed in rhodamine B solution, and the solution was kept in a
dark environment. During this process, a small part of the dye will be adsorbed by the
catalyst surface. This process is physical adsorption and does not involve photodegradation.
In the second stage, under the irradiation of the simulated light source, the catalyst will
absorb photon energy to generate electron-hole pairs, and the photogenerated electrons
will interact with adsorbed O2 molecules to form •O2

−. Moreover, the holes can react with
OH− or H2O to form active •OH radicals [37,38]. The produced •O2

− and •OH radicals can
degrade dye molecules for the formation of H2O, CO2, and less dangerous products [39].

As we all know, the photocatalytic performance of a catalyst is related to the dimen-
sion, morphology, and surface area of micro/nanostructures [40]. Previous studies have
shown that the band gap of Zn(OH)F and ZnO is about 3.2 eV [41,42]. Consequently, the
band gap of Zn(OH)F before and after heat treatment does not change too much [41,42].
In addition, compared with the rhombic Zn(OH)F microrods shown in Figure 2b, the
morphology of ZnO microrods demonstrated in Figure 4a does not change significantly.
Therefore, the band gap and morphology of Zn(OH)F microrods before and after heat
treatment do not change much, which should not be the main reason for the improvement
of photocatalytic activity. Yang et al. have reported that Zn(OH)F has photocatalytic activity,
and its photocatalytic ability is affected by heat treatment temperature [41]. When Zn(OH)F
is thermally decomposed into ZnO, the photocatalytic performance of the obtained mi-
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cro/nanostructure is improved [40]. Thus, we believe the increase in photocatalytic activity
may be due to the structural changes induced by calcination [40].
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By comparing the results demonstrated in Figure 6b,c, it can be seen that the photo-
catalytic performance of ZnO micro/nanostructures is improved after the growth of ZnO
nanorods on the surface of rhombic ZnO microrods. We believe that the growth of ZnO
nanorods on the surfaces of rhombic ZnO microrods can increase the amount of ZnO loaded
on the surface of zinc foil. The surface area of hierarchical ZnO micro/nanostructures is the
sum of the surface area of rhombic ZnO microrods and the surface area of ZnO nanorods.
Therefore, compared with the rhombic ZnO microrods shown in Figure 4a, the surface area
of hierarchical ZnO micro/nanostructures demonstrated in Figure 5a is increased. There-
fore, the photocatalytic performance of the prepared hierarchical ZnO micro/nanostructure
is improved. This study provides a new way to improve the photocatalytic performance of
ZnO micro/nanostructures.

In order to further demonstrate the degradation ability of the obtained micro/
nanostructures (rod-like Zn(OH)F, rod-like ZnO, and hierarchical ZnO micro/nanostructures),
the kinetic curves corresponding to the photodegradation of RhB with different micro/
nanostructures are fitted by the following equation, ln(C0/C) = Kt. In this equation, C0
and C are the initial and real-time concentrations of the RhB solution. The results are
demonstrated in Figure 6d. The slope of the fitted line shown in Figure 6d represents
the photocatalytic performance of the sample. From the results demonstrated in this
figure, it can also be seen that the photocatalytic activity of the obtained samples is ac-
cording to the following order: rod-like Zn(OH)F < rod-like ZnO < hierarchical ZnO
micro/nanostructures.

It is worth mentioning that the samples used in this work were all grown on zinc
foils. Therefore, the obtained samples can be easily recycled and reused. The conventional
powdery photocatalyst needs to be separated from the solution if it needs to be reused,
which is disadvantageous for practical applications. In order to study the reusability and
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stability of the obtained photocatalysts, photocatalytic circulation experiments were carried
out. The results corresponding to the three cycling runs of the photodegradation ability of
the hierarchical ZnO micro/nanostructures are shown in Figure 6e. From these results, it
can be seen that the photocatalytic performance of the prepared samples does not decline
too much through the three cycling runs of the photodegradation of RhB. The results
indicate that the obtained products are suitable for photocatalytic applications.

4. Conclusions

In summary, rod-like Zn(OH)F, rod-like ZnO, and hierarchical ZnO micro/nanostructures
were prepared on zinc foils. The photocatalytic properties of the obtained micro/nanostructures
were compared and studied. The hierarchical ZnO micro/nanostructures have better pho-
tocatalytic properties. The preparation of hierarchical ZnO micro/nanostructures increases
the amount of ZnO loaded on the surface of the zinc foil. Therefore, the unique structural
characteristics of hierarchical ZnO micro/nanostructure make it have a significantly enhanced
photocatalytic performance. In addition, the hierarchical ZnO micro/nanostructures prepared
on the surface of zinc foil also have the characteristics of reusability and stability.
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