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Abstract: The interface of perovskite solar cells (PSCs) determines their power conversion efficiency
(PCE). Here, the buried bottom surface of a perovskite film is efficiently passivated by using MoS2

quantum dots. The perovskite films prepared on top of MoS2-assisted substrates show enhanced
crystallinity, as evidenced by improved photoluminescence and a prolonged emission lifetime. MoS2

quantum dots with a large bandgap of 2.68 eV not only facilitate hole collection but also prevent
the photogenerated electrons from flowing to the hole transport layer. Overall promotion leads to
decreased trap density and an enhanced built-in electric field, thus increasing the device PCE from
17.87% to 19.95%.

Keywords: perovskite; solar cell; MoS2; quantum dots; interface

1. Introduction

Perovskite solar cells (PSCs) have been widely explored in recent years due to their
low cost and high efficiency [1]. Notably, inverted-structure devices have shown neg-
ligible hysteresis and high stability due to the employment of undoped hole transport
materials [2]. However, their power conversion efficiency (PCE) still lags that of nor-
mal structure devices, mainly due to the energy and carrier losses at the interface be-
tween the hole transport layer (HTL) and the perovskite active layer [3]. Although replac-
ing the typical poly(3,4-ethylenedioxythiophene)s (PEDOT:PSS) with poly[bis (4-phenyl)
(2,4,6- trimethylphenyl)amine] (PTAA) can significantly suppress interface losses [4], there
is still a large number of voids and defects at the buried bottom surface of the perovskite
layer. This is caused by the hydrophobicity of PTAA film, which serves as a substrate
affecting the growth of perovskites. Degradation is more likely to happen at trap centers
than inside the crystal under illumination, an electric field, and humidity conditions. Thus,
buried interfacial voids and defects will serve as decomposition centers that accelerate
device efficiency decline [5].

The interface between the HTL and the perovskite layer determines the hole transfer
rate and hole collection efficiency [6], which can be significantly improved by enhancing
the coupling between layers [7]. Moreover, interface engineering with various materials,
including polymers [8–10], large organic cations [11,12], fullerene derivatives [13,14], carbon
dots [15,16], and quantum dots (QDs) [17], can also block the undesired charge carrier flow,
passivate surface traps, and improve the interface contact.

Molybdenum disulfide (MoS2), with high charge carrier mobilities and a tunable
energy band structure, is a promising low dimensional material used in optoelectronic
applications. The lattice of MoS2 and MAPbI3 (MA, methylamine) perovskites match well
with each other, so they can form high-quality heterojunctions via epitaxy growth [18],
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being beneficial for reducing non-radiative recombination. MoS2 has been used mainly
as a hole-transporting layer or dopant in these layers [19,20]. However, it is difficult to
adjust the chemical properties of most MoS2 used in photoelectric devices [21]. Meanwhile,
stacking 2D MoS2 reduces interface contact and easily causes a void at the interface.

Rich chemistry and size effects make QDs unique 0D materials with huge possibilities
to tune their electronic properties and enhance device interface contact. Leyla et al. utilized
MoS2 QDs with reduce graphene oxide (RGO) hybrids as hole transport layers (HTLs)
and active buffer layers. The final PCE of the normal structure PSCs with MoS2 quantum
dot/graphene hybrids reached 20.12% [22]. Here, we engineer the interface between
perovskite and PTAA using MoS2 QDs, which passivates the buried defects, facilitates
interface contact, promotes the perovskite crystal quality, prevents reverse carrier flow, and
enhances hole collection. The MoS2 QDs are capped with trioctyl-phosphine oxide (TOPO).
With optimized MoS2 QD layers, the PCE of perovskite solar cells increases from 17.87% to
19.95%, demonstrating that MoS2 QDs are indeed promising materials for passivating the
buried defects of solution-processed perovskite optoelectronic devices.

2. Materials and Methods

Lead iodide (PbI2), lead bromide (PbBr2), formamidinium iodide (FAI), methylamium
bromide (MABr), cesium iodide (CsI), and poly[bis(4-phenyl)(2,4,6-triMethylphenyl)aMine]
(PTAA) were purchased from Xi’an Polymer Light Technology Corp (China). Bathocuproine
(BCP) and (6,6)-phenyl C61-butyric acid methyl ester (PCBM) were purchased from Lumi-
nescence Technology Corp (Taiwan, China). N, N-dimethylformamide (DMF), dimethyl sul-
foxide (DMSO), tri-n-octylphosphine (TOP), N-methylpyrrolidone (NMP) and sulfur were
purchased from Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO, USA). Ammonium molyb-
date tetrahydrate and cysteine were purchased from Sinopharm Chemical Reagent limited
corporation (Beijing, China). Chlorobenzene (CB) was purchased from J&K Scientific Corp
(Beijing, China). Silver was purchased from commercial sources with high purity.

The MoS2 QDs were synthesized using the hydrothermal method. Ammonium molyb-
date tetrahydrate (80.4 mg) and cysteine (20 mg) were dissolved in 10 mL NMP, heated,
and stirred at 70 ◦C for 20 min. Sulfur (19.0 mg) was added into 2.5 mL TOP in a glove box
before being stirred and heated at 70 ◦C until it was fully dissolved. Then, a 333 µL sulfur
solution was added to the ammonium molybdate tetrahydrate NMP solution. Stirring
and heating continued through the addition of 30 µL HCl (0.1 M) until the solution was
transparent. The mixture was transferred to a Teflon reactor and heated continuously
at 240 ◦C for 24 h. After cooling down to room temperature in the reactor, the obtained
solution was poured into centrifuge tubes for centrifugation. The first-time centrifugation
precipitate containing sulfur and bulk MoS2 was abandoned. The solution was then mixed
with ethanol and centrifuged at 12,000 rpm for 20 min. The target product was obtained
and dispersed in DMF for device fabrication.

Perovskite precursor was prepared by dissolving 506.9 mg PbI2, 80.7 mg PbBr2,
172.2 mg FAI, and 22.4 mg MABr in 1 mL of 4:1, v/v proportion dimethylformamide
(DMF) and dimethyl sulfoxide (DMSO) mixture. The solution was heated at 70 ◦C until it
became pellucid. Next, 42.4 µL as-prepared CsI (1.5M) DMSO solution with a concentration
of 1.5 M was added to the as-mixed solution, which was left on a hotplate at 70 ◦C for
30 min. At this point, the precursor solution was ready for perovskite film preparation.

ITO substrates were cleaned using isopropyl alcohol, acetone, chloroform, acetone,
and isopropyl alcohol in sequence, and all were treated with ultrasound for 10 min. Then,
the ITO substrates were blow-dried with a dry nitrogen flow and treated with a vacuum
plasma cleaner for 15 min. The PTAA (1.5 mg mL−1, in toluene) solution was spin-coated
onto the pre-cleaned ITO substrates at 4000 rpm for 30s and heated at 100 ◦C for 10 min.
After cooling down, 30 µL MoS2 QDs in different concentrations were spin-coated on
PTAA layers at 4000 rpm for 8 s. Immediately, 70 µL perovskite precursor solution was
dropped on the prewetted substrates. A two-stage spin-coating procedure was used for
perovskite coating, 1000 rpm for 10 s and 6000 rpm for 20 s. During the second spin-coating
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step at 6000 rpm, 120 µL chlorobenzene was quickly dropped to the center of the wet
film. After annealing at 100 ◦C for 10 min and cooling down to room temperature, PCBM
(20 mg/mL) solution was dropped on the perovskite and spin-coated at 1500 rpm for 30 s
and annealed at 100 ◦C for 10 min. Then, a 40 µL BCP (0.5 mg/mL in isopropanol) solution
was dynamically dropped on the surface of the PCBM layer at a speed of 4000 rpm for
40 s. Finally, a Ag electrode was fabricated on the BCP layer using thermal evaporation
depositing. The active area could be confirmed by the ITO and Ag electrode overlapping
region of 0.047 cm−2.

X-ray diffraction (XRD) patterns were measured with a D8 Advance-Bruker AXS
X system (Bruker AXS, Karlsruhe, Germany). Transmission electron microscopy (TEM)
images were taken with a JEM 2100F TEM (Japan Electronics Co., Ltd, Japan). X-ray pho-
toelectron spectroscopy (XPS) spectra were characterized with ESCALAB 250 (Thermo
Fisher Scientific, Waltham, MA, USA). A previously reported method was referred to for
the characterization of the interface [6]. Scanning electron microscope (SEM) images were
taken using a Hitachi SU8000 SEM (Hitachi Limited, Tokyo, Japan) at 5 kV accelerating
voltage. Steady-state photoluminescence spectra (PL) were acquired using an Ocean In-
sight USB4000 (Ocean Optics, Dunedin, FL, USA) with a 365 nm laser as the excitation
light source. Absorption spectra were measured with a Shimadzu UV-1700 spectrometer
(Shimadzu corporation, Kyoto, Japan). Fourier-transform infrared spectroscopy (FTIR)
was conducted using a Nicolet IS50 FT-IR (Thermo Fisher Scientific, Waltham, MA, USA).
Current density–voltage (J-V) and space-charge-limited current (SCLC) curves were mea-
sured using a Keithley 2400 Source Meter (Tektronix, Beaverton, OR, USA). All the current
density-voltage measurements were conducted using a solar simulator (Class AAA solar
simulator, Newport Technologies, Inc., Irvine, CA, USA) External quantum efficiency (EQE)
curves were measured using a Crowntech QTest Station 1000 AD (Crowntech, INC., Indi-
anapolis, IN, USA). Capacitance–voltage (C-V) curves were tested at a constant frequency
of 100 kHz. Electrochemical impedance spectroscopy (EIS) was measured using an Admi-
ral electrochemical workstation (Admiral Instruments, Tempe, AZ, USA) from 10 Hz to
1000 kHz frequency with 0.89 V bias voltage in dark conditions.

3. Results and Discussion
3.1. Characterization of MoS2 QDs

The MoS2 QDs were prepared hydrothermally, wherein the deionized water was
replaced by NMP. Due to the strong stripping ability of NMP, the formation of bulk MoS2
can be suppressed during the synthesis [23]. Tri-n-octylphosphine (TOP) was oxidized to
Tri-n-octylphosphine oxide, capping the MoS2 QDs and further restricting the size of the
quantum dots.

A transmission electron microscopy (TEM) image is given as Figure 1a, showing the
morphology of MoS2 QDs. The uniformly dispersed MoS2 QDs indicates their excellent
polydispersity in DMF. The high-resolution TEM image (Figure 1b) shows the interplanar
spacing of 2.26 Å of a near-spherical particle, which is assigned to the (103) plane of MoS2.
The X-ray photoelectron spectroscopy (XPS) spectra were characterized to determine the
chemical states and the element composition of the as-prepared MoS2 QDs. The peaks
of Mo, S, P, and C are clearly observable in the survey spectrum (Figure 1c). Figure 1d
shows characteristic peaks at 162.05 eV and 160.9 eV, which are relevant to S 2p 1/2 and
S 2p 3/2 orbitals, respectively. Two strong peaks located at 228.05 eV and 231.35 eV in
Figure 1e are assigned to Mo 3d 5/2 and Mo 3d 3/2 orbitals, respectively, proving the
existence of Mo4+. There are two peaks at 234.8 and 235.95 eV assigned to Mo6+ 3d5/2 and
Mo6+ 3d3/2. The higher valance resulted from the partial oxidation of MoS2 QD with the
remaining oxygen in the Teflon-lined stainless-steel autoclave during the reaction [24,25].
Moreover, the atomic ratio of S to Mo is calculated as ~1.89. In addition, the P element
from TOP can also be detected from the XPS, as shown in Figure 1g,h. The P 2p and the
O 1s signal prove the formation of the oxidation product of TOP. As shown in the Fourier
transform infrared (FTIR) spectrum of MoS2 QDs (Figure 1f), the four dominating peaks at
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3347, 2928, 2856, and 1706 cm−1 can be observed, corresponding to NH2, CH2, CH3, and
C=O groups, respectively. The peaks at 1117 and 1014 cm−1 are assigned to P=O [26,27],
indicating that the oxidation product of TOP serves as the surface ligand of MoS2 QDs,
which is in line with the XPS results.
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Figure 1. (a) TEM image, (b) high-resolution TEM images, (c) FTIR spectrum of the MoS2 QDs.
(d) XPS survey spectrum of the MoS2 QDs. (e) High-resolution peak-fitting XPS spectrum of Mo 3d.
(f) High-resolution peak-fitting XPS spectrum of S 2p. (g) High-resolution peak-fitting XPS spectrum
of O 1s. (h) High-resolution peak-fitting XPS spectrum of P 2p.
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Figure 2 shows the UV-visible absorption and photoluminescence (PL) spectra of MoS2
QDs. The PL peak and absorption peak are located at 518 nm and 343 nm, respectively.
The band gap of MoS2 QDs can be calculated from the absorption spectrum according to
Lambert–Beer’s law, which is described as:

(αhν)2 = BK2 (hν−Eg) (1)

where B and K are proportionality constants, α is the absorption coefficient, Eg is the band
gap energy, and hν is the energy of incident photons. Based on the quantum confinement
effect [28], the Eg of the as-prepared MoS2 QDs is about 2.68 eV.
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Figure 2. Absorption and PL spectra of MoS2 QD colloid.

3.2. Characterization of Perovskite Films

To determine the influence of MoS2 QDs on perovskite films, the top-view SEM images
shown in Figure 3 were compared. It was noted that the film with MoS2 QD modifica-
tion exhibits more homogeneous grains, and some light-colored particles are distributed
on top of the films, which can be observed as PbI2 by X-ray diffraction (XRD) patterns
in Figure 4a [6].
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Figure 3. SEM images of perovskite films. (a) The control perovskite film. (b) Perovskite film treated
with 0.075 mg/mL MoS2 QDs. (c) Perovskite film treated with 0.10 mg/mL MoS2 QDs. (d) Perovskite
film treated with 0.15 mg/mL MoS2 QDs. Scale bar: 1 µm.
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The XRD patterns of the perovskite films deposited on the PTAA and PTAA/MoS2 QD
substrate are shown in Figure 4a. The perovskite films both present characteristic diffraction
peaks [29]. There are no perovskite peak position shifts, indicating that the Mo or S atom did
not diffuse into the perovskite crystal and enable doping. Compared with the control film,
the perovskite film deposited on the PTAA/MoS2 QD substrate suggests a peak at 12.5◦

belonging to (001) crystal planes of PbI2, which is consistent with the SEM analysis [30–32].
Moreover, the increased intensity of the peaks corresponding to perovskites evidently
indicates a higher quality of perovskite films and crystal-oriented growth. The promoted
peak intensity can be attributed to the interaction between MoS2 QDs and perovskites.
MoS2 QDs served as a growth template and induced crystal growth [33]. The FTIR spectra
of the perovskite film with MoS2 QDs and without are shown in Figure 4c. The peak shifts
from 1175 to 1191 cm−1, which overlaps P=O peaks. Moreover, there is a new peak at
1096 cm−1 belonging to P=O. Compared to the QD FTIR spectrum, the peak shifts from
1014 cm−1 to 1096 cm−1.

To determine the chemical effects of MoS2 QD modification, the buried interfaces
were characterized using XPS [6]. The XPS results of the MoS2-QD-modified perovskite
and control film are shown in Figure 4d. According to the XPS spectra of the Pb 4f region,
the binding energy decreased from 136.58 eV and 141.45 eV to 136.40 eV and 141.28 eV,
respectively. The lower binding energy of Pb could be ascribed to the strong interaction
between the QD modification and Pb through the Lewis acid–base interaction. The XPS
results confirm the interaction between the MoS2 QD layer and perovskite films, indicating
increased electron density [34]. The XPS results confirm the interaction between the MoS2
QD layer and perovskite films.

To further characterize the effects of MoS2 QDs on the photophysical properties of per-
ovskites, we observed the steady-state PL spectra of the perovskite films with and without
MoS2 QDs, as shown in Figure 4b. It is noted that the PL peak blue-shifts from 761 nm to
759 nm with the assistance of MoS2 QDs, indicating a lower density of trap states [35,36].
Meanwhile, the perovskite film with MoS2 QDs presents a much higher PL intensity, which
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means less nonradiative recombination losses [37]. Combined with the XPS results, the
Pb 4f peaks shift toward the lower binding energy, demonstrating that the suppressed
nonradiative recombination in the perovskite films is related to the interaction between the
QDs and perovskites, which is responsible for the reduced traps and improved PL.

To evaluate the effects of MoS2 QDs on the carrier dynamics, time-resolved photolumi-
nescence (TRPL) measurement was employed. As shown in Figure 5a, TRPL curves were
fitted using a bi-exponential function described as:

I(t) = I0 + A1 exp(−t/τ1) + A2 exp(−t/τ2) (2)

where τ1 and τ2 represent the fast decay time constant and the slow time constant, respec-
tively, and A1 and A2 are the amplitudes of the fast and slow decay processes [38,39]. The
average carrier lifetime (τave) was acquired through equation τave = τ1·f 1+ τ1·f 2.
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The fitting relevant parameters are summarized in Table 1. The proportion of the fast
decay component τ1 representing the surface trap-assisted nonradiative recombination
decreased from 52% to 40.5%. Moreover, the prolonged average carrier lifetime (398.8 ns)
compared with that of the control film (175.3 ns) further demonstrates the promoted
photophysical properties of suppressing the nonradiative recombination processes.

Table 1. Relevant parameters fitted using the TRPL curves.

Samples τ1 (ns) f 1 (%) τ2 (ns) f 2 (%) τave (ns)

Without MoS2 11.7 52.6 354.6 47.4 175.3
With MoS2 11.5 40.5 662.5 59.5 398.8

We also noted the formation of PbI2 on the surface and at the grain boundaries. The
PL peaks were compared to further understand the influence of PbI2 in Figure 5b. When
the PCBM film as electron transport layer (ETL) was deposited on top of the perovskite
films, the sample with QDs showed significantly weaker PL, demonstrating that carriers
were extracted more efficiently the pure perovskite film. It is reported that the PbI2 located
at the surface of the perovskite film could heal the halide vacancy forming type-I band
alignment and reduce the trap state density [36,40–43].

3.3. Perovskite Solar Cell Performances

Typical perovskite solar cells (PSCs) were fabricated with the structure of
ITO/PTAA/perovskite/PCBM/BCP/Ag, as shown in Figure 6a. A cross-section SEM
of the device is shown in Figure 6b.



Nanomaterials 2022, 12, 3079 8 of 15

Nanomaterials 2022, 12, x FOR PEER REVIEW 8 of 15 
 

 

at the surface of the perovskite film could heal the halide vacancy forming type-I band 
alignment and reduce the trap state density [36,40–43]. 

 

 
(a) (b) 

Figure 5. (a) TRPL curves of perovskite films deposited on the substrates with and without MoS2 
QDs. (b) The PL spectra of perovskite films with and without MoS2 QDs, where the schematic dia-
gram of the test detail is given as an inset. 

Table 1. Relevant parameters fitted using the TRPL curves. 

Samples τ1 (ns) f1 (%) τ2 (ns) f2 (%) τave (ns) 
Without MoS2 11.7 52.6 354.6 47.4 175.3 

With MoS2 11.5 40.5 662.5 59.5 398.8 

3.3. Perovskite Solar Cell Performances 
Typical perovskite solar cells (PSCs) were fabricated with the structure of 

ITO/PTAA/perovskite/PCBM/BCP/Ag, as shown in Figure 6a. A cross-section SEM of the 
device is shown in Figure 6b. 

 
(a) (b) 

Figure 6. (a) A schematic diagram of the PSCs structure. (b) Cross-sectional SEM image of the con-
trol device. 

The current density–voltage (J–V) curves of the devices are provided in Figure 7a, 
while the device parameters are summarized in Table 2. As expected, due to the QDs’ 
passivation effect, the Voc (open circuit voltage) and Jsc (short circuit current) were en-
hanced from 1.05 to 1.08 V and 23.25 mA/cm2 to 23.79 mA/cm2, respectively. Conse-
quently, a relatively superior performance with a power convention efficiency (PCE) from 
17.87% to 19.95% was achieved. Figure 7c shows the statistic efficiency distribution. The 
current densities integrated from the incident photon to converted electron spectra (IPCE) 
increased from 21.67 to 22.15 mA/cm2 with the MoS2 modification, which is consistent 
with the increased Jsc. The enhancement of IPCE (Figure 7b) in the short wavelength part 

Figure 6. (a) A schematic diagram of the PSCs structure. (b) Cross-sectional SEM image of the
control device.

The current density–voltage (J–V) curves of the devices are provided in Figure 7a,
while the device parameters are summarized in Table 2. As expected, due to the QDs’
passivation effect, the Voc (open circuit voltage) and Jsc (short circuit current) were enhanced
from 1.05 to 1.08 V and 23.25 mA/cm2 to 23.79 mA/cm2, respectively. Consequently, a
relatively superior performance with a power convention efficiency (PCE) from 17.87%
to 19.95% was achieved. Figure 7c shows the statistic efficiency distribution. The current
densities integrated from the incident photon to converted electron spectra (IPCE) increased
from 21.67 to 22.15 mA/cm2 with the MoS2 modification, which is consistent with the
increased Jsc. The enhancement of IPCE (Figure 7b) in the short wavelength part could
be attributed to the MoS2 QDs at the HTL interface acting as an interface passivator.
Furthermore, the increase in long wavelength conversion may be related to the passivation
effect of lead iodide at the electron collection side.
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Figure 7. (a) J–V curves of control device and devices treated with MoS2 QDs at different concen-
trations. (b) IPCE measurement of control device and device treated with MoS2 QDs. (c) Mea-
surement for PCE of devices with and without MoS2, where 22 cells were collected for each batch.
(d) Capacitance–voltage curves of control device and device treated with MoS2 QDs. (e) Nyquist
plots of control device and device treated with MoS2 QDs. Inset: An equivalent circuit model of the
devices. (f) Dark J–V curves of control device and device treated with MoS2 QDs.
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Table 2. Relevant device parameters obtained from J-V curves.

Samples Jcs (mA/cm2) Voc (V) FF (%) PCE (%)

0 mg/mL MoS2 22.89 1.05 74.35 17.87
0.075 mg/mL MoS2 23.30 1.06 73.81 18.23
0.100 mg/mL MoS2 23.79 1.08 77.64 19.95
0.125 mg/mL MoS2 23.99 1.07 72.07 18.50

To further investigate the influence of MoS2 QD modification on the carrier extrac-
tion/transport in devices, dark capacitance–voltage curves were measured, as shown in
Figure 7d. The Mott–Schottky relationship can be described as follows:

1/C2 = 2(V−Vbi−kT/e)/(εε0eND) (3)

where Vbi is the voltage of the built-in electric field, V is the applied voltage, C is the
capacitance, k is the Boltzmann’s constant, T represents the temperature, and ND is the
donor density. The fitting results show that the Vbi of the device with MoS2 QDs increased
from 0.84 V to 0.86 V. The enhanced driving force to separate photogenerated carriers
accounts for the higher Voc [44,45].

Electrochemical impedance spectroscopy (EIS) under 0.85 V bias voltage and dark condi-
tions was performed to further explore the charge transfer and recombination progress [1,46].
Nyquist plots of devices with and without MoS2 are presented in Figure 7e. An equivalent
circuit model is depicted as an inset where series resistance (Rs) and recombination resis-
tance (Rrec) represent the resistance corresponding to the behavior of carrier transport and
recombination, respectively. The plot for devices with MoS2 QDs clearly shows a larger
diameter of the semicircle than that of the control device, indicating a larger recombina-
tion resistance and chemical capacitance, which corroborates the suppression of carrier
recombination and an improvement in transfer and extraction efficiency. This phenomenon
can be ascribed to the passivation of the defects and band alignment at the interface. Dark
J–V curves were measured to confirm the buffer function of MoS2 QD modification. As
shown in Figure 7f, current leakage of the device was reduced by nearly more than one
order of magnitude with the introduction of MoS2 QDs. The remarkable decrease in the
current leakage demonstrates that MoS2 QDs as a buffer layer prevent the photogenerated
electrons from flowing to the hole transport layer [47–49].

To further individually clarify the effect of PbI2 and MoS2, we adopted the mechanical
exfoliation method to remove the PbI2 on the top surface of the perovskite films [50]. The
films without PbI2 SEM images are shown in Figure 8a–c. Based on the treated films, we
fabricated hole-only devices with and without MoS2.
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Subsequently, space-charge-limited current (SCLC) measurements were carried out 
to estimate the trap densities by employing hole-only device configurations 
(ITO/PTAA/Perovskite/Spiro-OMeTAD/Ag). According to the SCLC mode, the defect 
state density is determined by the following equation [51,52]: 

nt = (2εε0VTFL)/(eL2) (4)

Figure 8. Cont.
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Figure 8. (a,b) The films after mechanical exfoliation treatment without PbI2 morphology. (c) The
film with MoS2 and PbI2. Scale bar in the SEM images is 3 µm. (d) SCLC measurement device treated
with MoS2, with and without PbI2. Inset: the hole-only devices structure diagram.

Subsequently, space-charge-limited current (SCLC) measurements were carried out
to estimate the trap densities by employing hole-only device configurations (ITO/PTAA/
Perovskite/Spiro-OMeTAD/Ag). According to the SCLC mode, the defect state density is
determined by the following equation [51,52]:

nt = (2εε0VTFL)/(eL2) (4)

where nt is trap density; VTFL represents trap-filled limited voltage; e is elementary charge; and
ε and ε0 are the permittivity of perovskite films and the vacuum permittivity, respectively.

Figure 8d suggests that the VTFL for the optimized device is 0.70 V compared to the con-
trol device’s 0.81 V. Without PbI2, the defect density is reduced from 9.6 × 1015 to 8.3 × 1015,
which could individually prove the MoS2 effects. The reduced trap density demonstrates
that the introduction of MoS2 QDs can effectively suppress carrier recombination, which
is consistent with the prolonged carrier lifetime and improved device performance. Fur-
thermore, the films with MoS2 and PbI2 show the least defective state density, which is
6.9 × 1015. These results prove the synergistic passivation of MoS2 and PbI2.

Electron-only devices were fabricated, and the trap state density for electron transfer
was calculated in Figure 9b. The defect state density decreased from 1.25 × 1016 cm−3 to
0.82 × 1016 cm−3. As shown in the schematic diagram of band energy (Figure 9a), the PbI2
on the electron transfer layer side could facilitate the extraction of electrons and reduce the
defect state density. Thus, we assume that the MoS2 on the buried interface and the PbI2
on the top interface promote hole and electron transfer, respectively.
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Figure 9. (a) Schematic diagram of band energy. (b) SCLC measurement of control device and device
treated with MoS2. Inset: the electron-only devices structure diagram. (c–f) The statistics of Voc, Jsc,
FF, and PCEs of 20 devices for each fabrication condition.

We introduced 5% excess PbI2 and reduce the 5% proportion PbI2 in the precursor on
the base of the component proportion in the manuscript and then respectively fabricated
devices, namely excessive PbI2 and insufficient PbI2. The devices with 5% excessive PbI2,
insufficient PbI2 and control device performances are compared in the Figure 10.
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modified device.

The device parameters are shown in Table 3. The device introduced to 5% excess PbI2
in the precursor showed significant current density decline, while the device with excessive
PbI2 showed enhanced open voltage compared to the other devices. The con-trol device
suggests higher current density compared to the insufficient device and ex-cess device,
which indicates that a proportion of the control devices are best without modification.

Table 3. Relevant device parameters obtained from J-V curves.

Samples Jcs (mA/cm2) Voc (V) FF (%) PCE (%)

0 mg/mL MoS2 24.07 1.085 76.39 19.95
0.075 mg/mL MoS2 23.25 1.063 73.64 18.20
0.100 mg/mL MoS2 22.35 1.049 71.01 17.29
0.125 mg/mL MoS2 21.42 1.072 72.51 16.32

Based on the above experiment and analysis, a conclusion could be drawn: the MoS2
QDs could passivate the defect through the interaction without PbI2, while the PbI2 induced
by MoS2 reduced the trap density further. Simply adding excessive PbI2 could not achieve
higher efficiency and lower trap density. The box plot statistics of Voc, Jsc, FF, and PCEs
of 20 devices for each fabrication condition are shown in Figure 9c–f. The MoS2-modified
device without PbI2 showed lower defect density. In a word, the PbI2 induced by MoS2
QDs and MoS2 both play a role in passivation. Under synergistic effects, the current density
and open voltage were both improved.

4. Conclusions

In summary, we employed MoS2 QDs as interface passivating agents to improve the
performance of perovskite solar cells. It was found that MoS2 QDs can improve perovskite
crystallinity and passivate interfacial defects, which prolongs carrier lifetimes and sup-
presses carrier recombination. Moreover, due to the wide bandgap of 2.6 eV, the MoS2
QDs served as a buffer layer, reducing the shunting paths. Benefitting from the suppressed
nonradiative recombination and reduced leakage current, the device performance of PSCs
improved from 17.87% to 19.95% after MoS2 QD modification. This work provides an
exploration of QDs for PSC applications, specifically for perovskite film modification and
buried interface passivation.
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