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Abstract: In order to eliminate the harmful cyanobacterium Microcystis aeruginosa and the algal
organic matters (AOMs) produced by M. aeruginosa, the combined process of nanoscale zero-valent
iron (NZVI) and hydrogen peroxide (H2O2) has been carried out, and the removal mechanism has
also been clarified. As the initial cyanobacterial cell concentration is 1.0 (±0.05) × 105 cells·mL−1, all
the treatments of NZVI, H2O2, and NZVI/H2O2 have inhibition effects on both the Chl a contents
and photosynthetic pigments, with the Chl a removal efficiency of 47.3%, 80.5%, and 90.7% on the
5th day, respectively; moreover, the variation of ζ potential is proportional to that of the Chl a removal
efficiency. The malondialdehyde content and superoxide dismutase activity are firstly increased and
ultimately decreased to mitigate the oxidative stress under all the treatments. Compared with NZVI
treatment alone, the oxidation of the H2O2 and NZVI/H2O2 processes can effectively destroy the
antioxidant enzyme system and then inactivate the cyanobacterial cells, which further leads to the
release of photosynthetic pigments and intracellular organic matters (IOM); in addition, the IOM
removal efficiency (in terms of TOC) is 61.3% and 54.1% for the H2O2 and NZVI/H2O2 processes,
respectively. Although NZVI is much more effective for extracellular organic matters (EOM) removal,
it is less effective for IOM removal. The results of the three-dimensional EEM fluorescence spectra
analysis further confirm that both H2O2 and NZVI/H2O2 have the ability to remove fluorescent
substances from EOM and IOM, due to the oxidation mechanism; while NZVI has no removal effect
for the fluorescent substances from EOM, it can remove part of fluorescent substances from IOM , the
agglomeration. All the results demonstrate that the NZVI/H2O2 process is a highly effective and
applicable technology for the removal of M. aeruginosa and AOMs.

Keywords: Microcystis aeruginosa; algal organic matters; Fenton-like process; antioxidant enzyme
system; fluorescence properties; removal mechanism

1. Introduction

Control of harmful cyanobacterial blooms (HCBs) from lakes and reservoirs has
become a growing concern worldwide and is always challenging for global researchers [1–3].
For harmful cyanobacteria, the representative toxic cyanobacterium Microcystis aeruginosa
has received increasing attention in recent years due to the production of hazardous
cyanotoxins and secretion of algal organic matters (AOMs) [4,5], along with the potential
formation of disinfection by-products (DBPs) during drinking water treatment [6,7]. Many
methods, including physical, chemical, and biological treatments, have been adopted for
M. aeruginosa removal over the past few decades [8–10]. Although the biological treatments
are efficient for removing cyanobacteria, it takes a long time [1,8]. In consequence, the
simple and cost-effective ways are highly desired.
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It is reported that nanoscale zero-valent iron (NZVI) has been used as a potential
material for environmental pollutants remediation due to the nanoparticle size, large
specific surface area, and high surface reactivity [11], and iron-based nanoparticles such as
NZVI (Fe0), Fe2O3, and Fe3O4 are considered to have better adsorption and agglomeration
effects due to the porous structure [12,13]; Recent studies have observed that the iron-
based nanoparticles show both inhibition and promotion effects on the representative
cyanobacterium M. aeruginosa [13–15], and the effects are dependent on the exposure dose
and exposure time of the nanoparticles [16–18]. In order to minimize the aforementioned
adverse effects, recent studies have focused on the combined process of chemical reagents.

Previous studies demonstrate that advanced oxidation processes (AOPs) can gen-
erate a great quantity of reactive radicals such as hydroxyl radicals (HO•) and sulfate
radicals (SO4

−•), which may show a positive effect on inactivation by damaging cyanobac-
terial cells [19,20]. Therefore, significant attention has been focused on the use of AOPs
as cyanotoxins, and AOMs may be oxidized in the meantime [21,22]. One of the most
common uses of AOPs is to catalyze the persulfate (PS) or peroxymonosulfate (PMS) with
Fe (II)/Fe(III), in which the sulfate radical (SO4

−•) are generated [2,6]. However, this
process has some disadvantages, such as the selection of the catalyst species and sulfate
accumulation in the environment [23,24]. Hydrogen peroxide (H2O2) has been considered
to be an environmentally friendly and cost-effective chemical, since the products of H2O2
are H2O and O2 [25,26], while the rapid consumption of H2O2 makes it difficult to ensure
the effective removal of AOMs. To overcome the above drawbacks, much attention has
been focused on the Fenton and Fenton-like oxidation. For example, H2O2/Fe(II) and
H2O2/Fe(III) are effective for the removal of M. aeruginosa, as well as microcystins [20];
and a UV/H2O2-Fe(II) process is also proven to be a highly effective technology for the
M. aeruginosa and AOMs removal without secondary pollution [27].

In consideration of the Fenton-like reaction of NZVI/H2O2 showing high efficiency
in degrading organic pollutants from wastewater [11], there are reasons to believe that
NZVI/H2O2 is expected to be a promising and applicable technology to improve cyanobac-
terium removal efficiency [20]; moreover, the production of oxidizing radicals during the
reaction of NZVI with H2O2 has relatively high oxidation ability and may destroy cyanobac-
terial cells and remove AOMs. Up to now, little research is available on using NZVI/H2O2
for M. aeruginosa removal through the simultaneous agglomeration and oxidation pro-
cess, and the enhancement mechanism for cyanobacteria degradation by the NZVI/H2O2
process is also scarcely reported. In this study, NZVI is firstly employed as a moderate
catalyst to assist H2O2 for enhancing the removal of M. aeruginosa and AOMs. The specific
objectives of our research are as follows: (1) investigate the feasibility of employing the
NZVI/H2O2 process for removing M. aeruginosa and AOMs; (2) evaluate the characteristics
and the removal efficiency of AOMs during the treatment; and (3) reveal the mechanism of
the NZVI/H2O2 process’ enhanced oxidation for M. aeruginosa.

2. Materials and Methods
2.1. Cyanobacterium and Chemical Reagents

The experimental M. aeruginosa FACHB-905 is obtained from the Freshwater Algae
Culture Collection of Institute of Hydrobiology, Chinese Academy of Sciences (Wuhan,
China). Before being used as inoculant, it is cultured for 7 d to reach the exponential growth
phase, and the culture conditions are as follows: sterilized BG11 medium, 2000 lux white
light, light/dark = 14 h/10 h, 25 ± 1 ◦C [8].

NZVI (iron powder) is purchased from Xuzhou Jiechuang New Materials Technology
Co., Ltd., China (Xuzhou, China) with an average grain diameter of 100 nm and a purity of
higher than 99.9%. The hydrogen peroxide used in the present study is analytical-reagent
grade with a concentration of 30%.
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2.2. Experimental Procedures

For all experiments, M. aeruginosa cultures in the exponential growth phase are diluted
to a concentration of approximately 1.0 (±0.05) × 105 cells·mL−1 in the 500 mL sterilized
conical beakers with 250 mL BG11 medium. NZVI (50 mg·L−1) and/or H2O2 (5.4 mL·L−1)
are simultaneously added into the beakers to achieve the designed concentrations, and
then the beakers are brought to a final volume of 250 mL by the addition of BG11 medium
(pH value of 7.0–7.2). A negative control (CK) is made by adding 1.35 mL BG11 medium
into 250 mL cyanobacterial solution. The experiments are conducted in a programmable
illumination incubator (GZX-III, Shanghai Xinmiao Medical Instrument Manufacturing
Co., Ltd., Shanghai, China) under the aseptic condition, and the experiment conditions are
set per Section 2.1. All the controls and the treatments are replicated 3 times and shaken
5 to 8 times by hand each day during the incubation. The supernatant of each sample is
collected from 1~3 cm below the surface of cyanobacterial solution and is used for analysis
(the beakers are sitting for more than 1 h before sampling), and the arithmetical means
(±SD) are obtained and used as the final results.

2.3. Determination of Chlorophyll and Photosynthetic Pigments

Samples (5 mL) are filtered through a 0.45 µm GF/F filter (Whatman, UK), and the
chlorophyll a (Chl a) is extracted using 10 mL of acetone (90%). The optical densities of
extracts at 630, 645, 663, and 750 nm are determined using a UV-2401 PC spectrophotometer
(Shimadzu, Japan) with 1 cm cell. The Chl a concentration is then determined according to
the method described by our previous study [8]. Phycocyanobilin (PC), allophycocyanin
(APC), and phycoerythrin (PE) are extracte by the freezing and thawing method, absorben-
cies of supernatant are determined at 565, 620, and 650 nm according to the reference [8].
The removal efficiency is calculated according to Equation (1):

Removal efficiency = (1 − Ct/C0) × 100% (1)

where C0 and Ct are the concentrations in the control and test groups at initial and time t,
respectively.

2.4. Analytical Methods
2.4.1. Determination of Zeta Potential

Samples (5 mL) are filtered through a 0.45 µm GF/F filter (Whatman, UK), and the
filtrate is used for zeta potential determination (Li et al., 2015). The zeta potential is
measured using a zeta potential analyzer (Zetasizer Nano ZS 90, Malvern, UK) [28].

2.4.2. Determination of Antioxidant Ability

Twenty-five milliliters of each culture are collected and centrifuged for 10 min at a
speed of 4000× g, and then the cyanobacterial cells are suspended with the phosphate
buffer solution (50 mM PBS, pH 7.8) and destroyed using Ultrasonic Cell Disruption System
(NingBo Scientiz Biotechnological Co., Ltd, Ningbo, China) (800 W, 5 s:5 s, 100 times) to
extract enzymes. The extracting solution is centrifuged for 10 min at a speed of 10,000× g,
and the supernatant is used for antioxidant ability analysis and intracellular organic matters
(IOM) determination. The malondialdehyde level (MDA), superoxide dismutase (SOD)
activity, catalase (CAT) activity, and peroxidase (POD) activity are measured according to
our previous study [8].

2.4.3. Total Organic Carbon Analysis

The AOMs are treated as follows, before measuring: samples (5 mL) are filtered
through a 0.45 µm GF/F filter (Whatman, UK), and the filtrate is used for extracellular
organic matters (EOM) determination [29]; IOM samples are obtained as mentioned in
Section 2.4.2 and are filtered through a 0.45 µm GF/F membrane. The concentrations
of EOM and IOM are determined as total organic carbon (TOC). TOC is measured with
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a TOC analyzer (TOC-2000, Metash, Shanghai, China). All measurements are conducted in
triplicate, and errors are less than 2%.

2.4.4. Excitation–Emission Matrix (EEM) Fluorescence Spectroscopy Analysis

The three-dimensional EEM fluorescence spectra are recorded on a F-7000 fluorescence
spectrophotometer (Hitachi, Tokyo, Japan). Three-dimensional spectra are obtained by
measuring the excitation wavelengths from 200 to 400 nm, and the emission spectra from
250 to 550 nm repeatedly. The excitation and emission slits are maintained at 10 nm, and
the scanning speed is set at 1200 nm min−1 [29].

3. Results and Discussion
3.1. Growth Inhibition of NZVI and H2O2 on M. aeruginosa

The effects of NZVI and H2O2 on the growth of M. aeruginosa (indicated by Chl a
contents and photosynthetic pigments) are shown in Figure 1. Results indicate that NZVI
and H2O2, single or combined, have significant inhibition effects on M. aeruginosa during
the exposure time (Figure 1a). The Chl a content is 186.39 ± 0.81, 98.32 ± 1.53, 36.42 ± 2.26,
and 17.41 ± 0.44 µg·L−1 for the control, NZVI, H2O2, and NZVI/H2O2 treatments after
5 days, respectively, and the removal efficiency for the three treatments is 47.3%, 80.5%
and 90.7%, respectively. The order of M. aeruginosa inhibition effect is NZVI < H2O2 <
NZVI/H2O2. This trend is similar to that observed by Zhang et al., (2020) [20], which
demonstrates that the removal efficiency of M. aeruginosa by single Fe(II) is lower than that
of by H2O2/Fe(II).
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Figure 1. Combined effect of NZVI and H2O2 on the growth of M. aeruginosa for (a) Chl a contents;
(b) PC contents; (c) APC contents; and (d) PE contents. Mean ± standard deviation of three replicates
is shown for each value.



Nanomaterials 2022, 12, 3017 5 of 13

Photosynthetic pigments are widely used for monitoring algal and cyanobacterial
photosystem II (PSII) activity [8]. As shown in Figure 1b, the PC removal efficiencies are
27.1%, 37.8%, and 43.1% on the 3rd day for the treatment of NZVI, H2O2, and NZVI/H2O2,
respectively, and increase to 36.1%, 40.9% and 49.2% on the 5th day, respectively, indicating
the PC could be suppressed by all treatments. It is observed that the inhibition effects of
PC are similar to that of the Chl a content. However, the results show the suppression
effects of APC and PE are different from PC (Figure 1c,d). When M. aeruginosa is treated
by H2O2 for 5 days, it shows the best APC inhibition performance among all the selected
processes, and 62.6% of the APC is removed (Figure 1c). In addition, the APC removal
efficiency is 41.3% and 59.0% for NZVI and NZVI/H2O2, respectively. For PE removal,
oxidation treatments are much better than NZVI on the 1st day, while the removal efficiency
is 75.3%, 72.5%, and 55.7% for the three treatments on the 5th day, respectively, and the APC
inhibition order is NZVI > H2O2 > NZVI/H2O2 (Figure 1d), demonstrating the oxidation
of H2O2 or NZVI/H2O2 on PE is not as good as the agglomeration by NZVI. The less
effective removal of PE by H2O2 or NZVI/H2O2 (compared with the NZVI treatment on the
5th day) is mainly due to the decomposition of H2O2 or the consummation by the Fenton-
like reaction. These results indicate that the oxidation of H2O2 or NZVI/H2O2 is good for
the removal of PC and APC, while ZNVI is the best for PE removal.

Previous studies have concluded that the microalgae removal by NZVI is size-dependent
and dosage-dependent, and it is due to the agglomeration and physical interactions [12,13,30].
In addition to the agglomeration, the oxidation of H2O2 also plays an important role in the
removal performance [25,31]. Moreover, the combined process of NZVI/H2O2 can greatly
improve the cyanobacterium M. aeruginosa removal [20]. Obviously, the enhanced removal
efficiency of M. aeruginosa by the NZVI/H2O2 process is mainly due to the oxidative
effect of H2O2 and, secondly, due to the agglomeration of NZVI. The agglomeration
process, which may facilitate cyanobacterial precipitation, has been investigated by many
researchers [5,13,24,32]. In addition, the highly reactive NZVI containing high levels of iron
oxide nanoparticles is relatively destructive to microalgae (including cyanobacteria and
algae) [12,13].

3.2. Effects of NZVI and H2O2 on the Zeta Potential

Effects of NZVI and H2O2 on the zeta potential of M. aeruginosa are presented in
Figure 2. The ζ potentials for the treatments of NZVI, H2O2, and NZVI/H2O2 are
−0.17 ± 0.05, −0.07 ± 0.00, and −2.73 ± 0.14 mV on the 1st day, respectively. With
the extension of exposure times, the ζ potentials for all treatments are considerably lower
than the control after being exposed for 120 h, which are −6.07 ± 0.10, −4.17 ± 0.14, and
−3.20 ± 1.20 mV, respectively. Interestingly, compared with the first day, the M. aeruginosa
cells for the control have a highly negative charge on the 5th day, with a ζ potential of
−0.23 ± 0.05 mV. This is most likely because more EOM is produced, and the surface
properties of the cyanobacterium are changed, during the cyanobacterial growth [9]. It
is observed that the variation of ζ potential is proportional to that of the Chl a removal
efficiency, that is, the higher the removal efficiency is, the higher the ζ potential [9,28];
moreover, the ζ potential values are higher than −15.5 mV when aluminum sulphate is
used as coagulant for cyanobacterial removal, while the ζ potentials are positive when
there is no removal efficiency [33]. The oxidation by H2O2 is also found to affect the cell
surface properties and change the membrane potential of cyanobacterial cells [25,27]. These
results are consistent with the present study: that ζ potentials are negative but higher than
−8 mV, and the Chl a removal efficiencies are increased with the increasing of ζ potentials
(Figures 1a and 2).
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3.3. Effects of NZVI and H2O2 on the Antioxidant System

As reported in other studies, the addition of anticyanobacterium, iron, nanoparticles
and H2O2 can generate oxidative stress and trigger antioxidant defense system responses
in cyanobacteria [5,25,34,35]. Under the different treatment conditions, the antioxidant
defense system responses of M. aeruginosa are illustrated in Figure 3. The MDA content and
SOD activity induced by the H2O2 treatment are higher than those by the NZVI treatment,
but lower than those by the NZVI/H2O2 treatment among the first 3 days (Figure 3a,b).
It shows that the higher the M. aeruginosa removal efficiencies are, the higher the MDA
content and SOD activity (Figure 1a,b). On the 5th day, the MDA content and SOD activity
in all treatments are decreased, and the MDA contents for both control and treatments are
nearly the same, while the SOD activity order is control ≈ NZVI > H2O2 > NZVI/H2O2.
The above results are consistent with the prior research, that the superoxide production in
cyanobacterial cells, which exhibits various strategies to mitigate the oxidative stress, is
proven to be first increased and then decreased under iron or H2O2 stress [5,25].

The order of POD activity is control < NZVI < H2O2 < NZVI/H2O2 on the 1st day;
whereas, with the extension of the amount of exposed time, it changes to NZVI/H2O2 <
H2O2 < control < NZVI on the 5th day (Figure 3c). This phenomenon is mainly due to
the excellent agglomeration ability of NZVI at the early stage of the experiment, and the
oxidation ability of H2O2 or NZVI/H2O2 at the end. In comparison with POD activity,
the variation of CAT activity is different (Figure 3d). Promotion of CAT activities are
observed in both H2O2 and NZVI/H2O2 on the 1st day, where CAT activities reach nearly
two-fold of the control level; however, the CAT activities for these two treatments show a
rapid decline on the 5th day, which are only half as many as that of the control (Figure 3d).
Apparently, the CAT activity for NZVI is almost the same as the control, which is because the
removal mechanism of M. aeruginosa belongs to the agglomeration, and the cyanobacterial
cell membranes are integrated during the treatment by NZVI [5,12,13,17], while they are
disrupted by H2O2 or NZVI/H2O2 with the mechanism of oxidation [20,25,31]. It is
suggested that the CAT activity is firstly to clear the excessive hydroxyl radicals produced
by H2O2 at the early stage of the experiment [25,31] and then to eliminate the accumulation
of hydroxyl radicals from the cyanobacterial cells [8,36].
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Figure 3. The variation of antioxidant enzyme activities in single and combined experiments for
(a) MDA content; (b) SOD activity; (c) POD activity; and (d) CAT activity. Mean ± standard deviation
of three replicates is shown for each value.

Generally, both iron (high concentration) and H2O2 have inhibition effects on the
growth of M. aeruginosa [13,15,31,37], and the production of antioxidant enzyme activities
suggests that the existence of iron or H2O2 could cause cyanobacterial cells to produce
reactive oxygen species (ROS), which is demonstrated by the variation of the MDA con-
tents [5,12,25]. On the one hand, NZVI induces the agglomeration and sedimentation of
M. aeruginosa, and the reduced photosynthetic activity leads to the accumulation of ROS
and the inhibition growth of cyanobacterium; on the other hand, H2O2 or NZVI/H2O2
generate hydroxyl radicals and destroys cyanobacterial membrane systems by the oxida-
tion, which then results in the decrease in SOD, POD, and CAT activities. Additionally,
the results of the combined NZVI/H2O2 process demonstrate that NZVI agglomeration
behavior promotes cyanobacterial removal, but oxidation is still the dominant function in
the entire combined inhibition effect.

3.4. Effects of NZVI and H2O2 on AOMs
3.4.1. TOC Variations of AOMs

AOMs, including EOM and IOM produced by M. aeruginosa, may pose a threat to
human health, especially in the drinking water treatment that disinfects with chlorine-
containing disinfectant [3,7]. Exposure of M. aeruginosa to different treatments results in
EOM and IOM variations. As Figure 4a shows, the EOM removal efficiency in terms of
TOC is 37.8%, 27.6%, and 27.3% for NZVI, H2O2 and NZVI/H2O2 treatment on the 5th day,
respectively, while the IOM removal efficiency is 11.7%, 61.3%, and 54.1%, respectively
(Figure 4b). Compared with H2O2 and NZVI/H2O2, NZVI is much more effective for
EOM removal, but it is less effective for IOM removal. The reason for this phenomenon
may be that NZVI removes TOC by adsorption or agglomeration [13,30], while H2O2 and
NZVI/H2O2 remove TOC by oxidation [24,25].
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Figure 4. Verification of TOC for AOMs: (a) EOM and (b) IOM. Mean ± standard deviation of
three replicates is shown for each value.

A previous study indicates that the EOM concentrations in TOC decrease from ap-
proximately 5.6 to 0.9 mg/L after being treated by H2O2/Fe(II) and H2O2/Fe(III) [20]
and decrease from nearly 22.6 to 9.7 mg·L−1 after being treated by PMS/Fe(II) [6], which
demonstrate that EOM could be removed by oxidation. Our results also show that the H2O2
and NZVI/H2O2 processes cause massive damage to the cell structure of M. aeruginosa,
which are collaborated by the results of the photosynthetic pigments’ removal (Figure 1).
Moreover, in our study, IOM could be released from the cyanobacterium and then degraded
by H2O2 or NZVI/H2O2, and the removal is mainly due to the oxidation.

3.4.2. Fluorescence Properties of AOMs

Fluorescence properties have been recognized as a powerful tool for the character-
ization of AOMs secreted by cyanobacterium M. aeruginosa [28–30,38]. Here, variations
in fluorescence properties and fluorescent intensities are observed, as shown in Figure 5
and Table 1. The fluorescent peaks after being treated by NZVI and/or H2O2 are distinctly
different. For EOM fractions, there are three major fluorescent peaks in both CK and
NZVI treatments: peak A represents soluble cyanobacterial metabolic byproducts with
the Ex/Em of 278 nm/335 nm; peak B (Ex/Em of 314 nm/400 nm) and peak C (Ex/Em of
255 nm/406 nm) stand for fulvic-like acids (Figure 5a,b, Table 1); but only two peaks (peak
B and peak C) are observed in H2O2 or NZVI/H2O2 treatments (Figure 5c,d). Moreover,
the fluorescence intensities for H2O2 (NZVI/H2O2) treatment are nearly unanimous and
much lower than those observed for the CK and NZVI treatments (Table 1), with removal
efficiency of peak A, peak B, and peak C of 100% (100%), 38.0% (38.1%) and 55.2% (55.2%)
(in terms of fluorescence intensity), which is possibly due to the oxidation mechanism;
nevertheless, NZVI has no removal efficiency for fluorescent substances, as the fluorescence
intensities of NZVI are almost the same as that of CK.
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For IOM fractions, there are five major fluorescent peaks in both CK and NZVI
treatments: peak A (Ex/Em of 280 nm/334 nm) and peak D (Ex/Em of 282 nm/313 nm)
represent soluble cyanobacterial metabolic byproducts, peak E (Ex/Em of 364 nm/451 nm)
and peak F (Ex/Em of 272 nm/451 nm) represent fulvic-like acids, and peak G (Ex/Em
of 232 nm/331 nm) represents aromatic proteins II (Figure 5e,f). In contrast, there is no
fluorescent peak, except peak A (with low fluorescence intensity), in H2O2 or NZVI/H2O2
treatments (Figure 5g,h), which means the fluorescent substances in IOM fractions are
degraded by H2O2 or NZVI/H2O2, while they are probably agglomerated by NZVI due to
the decrease in fluorescent intensities (Table 1).
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Table 1. Fluorescence intensities of EOM and IOM fractions after 5 days exposure to different
treatments.

Peak A Peak B Peak C Peak D Peak E Peak F Peak G

Ex/Em(nm/nm) 278~280/334~335 314/400 255/406 282/313 364/451 272/451 232/331

Substance

Soluble
cyanobacterial

metabolic
byproducts

Fulvic-like
acids

Fulvic-like
acids

Soluble
cyanobacterial

metabolic
byproducts

Fulvic-like
acids

Fulvic-like
acids

Aromatic
proteins II

EOM

CK 56.70 36.43 50.17 / / / /
NZVI 55.17 37.96 51.08 / / / /
H2O2 / 25.59 22.46 / / / /

NZVI/H2O2 / 25.56 22.46 / / / /

IOM

CK 321.7 / / 296.5 56.19 124.0 152.6
NZVI 274.1 / / 268.5 45.83 103.2 126.4
H2O2 20.35 / / / / / /

NZVI/H2O2 22.82 / / / / / /

AOMs from cyanobacteria are a kind of complex compound, containing polysac-
charides, amino acids, proteins, peptides, organic acids, lipids, fatty acids, nucleic acids,
cyanobacterial toxins, and so on [29,39]. This reveals that the fluorescence substances from
AOMs can be slightly removed by nanoparticles (CuO and ZnO) [30]), and only 12.5%
(in terms of fluorescence intensity) of the soluble microbial products can be coagulated by
the Fe(II) [28]). These results imply that NZVI agglomeration is ineffective for removing
protein-like compounds, which are strongly consisted with the present study.

However, numerous studies have shown that the combined processes of oxidation and
coagulation can cause the disruption of cyanobacterial cells and the release of IOM [6,20,28].
A study concerning the effect of CaO2/Fe(II) on IOM indicates that the fluorescence in-
tensities of the humic acid-like material (Ex/Em of 250~330 nm/380~375 nm) and soluble
microbial products (Ex/Em of 280/330 nm) are extensively decreased with the CaO2 dosage
increasing [28]; in another study, around 65% of the protein-like peak is declined, and no
other fluorescence peaks are observed after oxidation by PMS/Fe(II) [6]; all these conclu-
sions demonstrate that the fluorescence substances are intensively removed by oxidation.
Moreover, the TOC concentrations for EOM (IOM) show similar variation trends with the
fluorescence substances, which could be attributed to EOM (IOM) composition as well.

3.5. Discussion of the Mechanism

AOPs are used worldwide as a feasible strategy to eliminate harmful cyanobacte-
ria [40]. Strong oxidants, such as H2O2 [25,31], CaO2 [28], PMS [20], chlorine, and chlorine
dioxide [26] have shown a removal ability for cyanobacteria; and the combination of Fe(II)
or Fe(III) with H2O2 possesses a much stronger removal efficiency, which is improved
by Fe(II) or Fe(III) coagulation [20]. According to our results, as NZVI and H2O2 are
simultaneously dosed into the cyanobacterial solution, it is speculated the cyanobacte-
rial cells are firstly agglomerated by NZVI, and then Equations (2)–(6) are expected to
happen as chemical oxidation processes, with Fe(III) likely formed to effectively remove
cyanobacterial cells and AOMs [27]. Subsequently, the Fe(III) acts as a catalyst to produce
the complex [Fe-OOH]2+ (Equation (7)) and HO• (Equation (8)) [20]. After the above steps,
the cyanobacterial cells and AOMs are possible to be oxidized and agglomerated. It has
been proven that the main removal mechanism for M. aeruginosa behind such procedures is
attributed to the alteration of the cyanobacterial surface zeta potential [6], destruction of
the antioxidant enzyme system [5], and then inactivation of the cyanobacterial cells [20].
A previous study indicates that both H2O2/Fe(II) and H2O2/Fe(III) processes could reduce
the M. aeruginosa cells, allowing the cyanobacterial cells to settle down more easily with
Fe(II) or Fe(III) [20].

In our study, the enhanced removal performance of cyanobacterial cells and AOMs
indicates that the NZVI is converted into Fe(II) and then Fe(III), which has a more reac-
tive surface area and higher settling property than NZVI. These results are in accordance
with the scanning electron microscope images under the H2O2/Fe(III) process [20] and
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PMS/Fe(II) process [6], demonstrating M. aeruginosa could be removed efficiently by oxida-
tion and coagulation. Based on previous studies and current results, it can be deduced that
the combined effect of NZVI/H2O2 on M. aeruginosa cells is likely caused by the agglom-
eration and oxidation process. The oxidation, which more easily releases photosynthetic
pigments and IOM, may be the main cause of the destruction of antioxidant enzyme system,
the removal of AOMs, and the rupture of cyanobacterial cells.

2Fe0 + O2 + 4H+ → 2Fe2+ 2H2O (2)

2Fe0 + H2O2 → 2Fe2+ + HO− + HO• + e− (3)

2Fe2+ + O2 + 4H+ → 4Fe3+ 2H2O (4)

Fe2+ + H2O2 → Fe3+ + HO− + HO• (5)

Fe3+ + H2O2 → Fe2+ + HO2• + H+ (6)

Fe3+ + H2O2 → Fe-OOH2+ + H+ (7)

Fe-OOH2+ → Fe2+ + HO• + O2 (8)

The oxidation process of NZVI/H2O2, as well as of H2O2/Fe(II) and H2O2/Fe(III) [20],
has been proven to be effective for harmful cyanobacterium and AOMs removal. However,
the excessive NZVI may be toxic to aquatic organisms [12,13]; moreover, the residue of
cyanobacterial cells and the released cyanotoxins still exist in the aquatic environment.
Therefore, the ecotoxicity of NZVI to other aquatic organisms and cyanobacteria removal in
the actual eutrophic water by NZVI/H2O2 should be further considered. Notwithstanding
its limitations, the present study suggests that the harmful cyanobacterium M. aeruginosa
and AOMs could be effectively removed by the NZVI/H2O2 process.

4. Conclusions

The combined effect of NZVI and H2O2 on the representative toxic cyanobacterium
M. aeruginosa is investigated in the present study. All the treatments of NZVI, H2O2,
and NZVI/H2O2 have inhibition effects on both the Chl a contents and photosynthetic
pigments, with the Chl a removal efficiency of 47.3%, 80.5%, and 90.7% on the 5th day,
respectively; moreover, the variation of ζ potential is proportional to that of the Chl a
removal efficiency, that is, the higher the removal efficiency is, the higher the ζ potential.
The malondialdehyde content and superoxide dismutase activity are firstly increased and
ultimately decreased, to mitigate the oxidative stress under all the treatments. Compared
with single NZVI or H2O2, NZVI/H2O2 is much more efficient for removing M. aeruginosa
through the simultaneous agglomeration and oxidation process. The oxidation of the H2O2
and NZVI/H2O2 processes can effectively destroy the antioxidant enzyme system and
then inactivate the cyanobacterial cells, which further leads to the release of photosynthetic
pigments and IOM; in addition, the IOM removal efficiency (in terms of TOC) is 61.3%
and 54.1% for the H2O2 and NZVI/H2O2 processes, respectively. NZVI is much more
effective for EOM removal, but it is less effective for IOM removal. The results of the
three-dimensional EEM fluorescence spectra analysis further confirm that both H2O2 and
NZVI/H2O2 have the ability to remove fluorescent substances from EOM and IOM due to
the oxidation mechanism; while NZVI has no removal effect for fluorescent substances from
EOM, it can remove part of the fluorescent substances from IOM due to the agglomeration.
All the results demonstrate that the NZVI/H2O2 process is a highly effective and applicable
technology for the removal of M. aeruginosa and AOMs.
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