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Abstract: A data-enhanced deep greedy optimization (DEDGO) algorithm is proposed to achieve
the efficient and on-demand inverse design of multiple transition metal dichalcogenides (TMDC)-
photonic cavity-integrated heterojunctions operating in the strong coupling regime. Precisely, five
types of photonic cavities with different geometrical parameters are employed to alter the optical
properties of monolayer TMDC, aiming at discovering new and intriguing physics associated with
the strong coupling effect. Notably, the traditional rigorous coupled wave analysis (RCWA) approach
is utilized to generate a relatively small training dataset for the DEDGO algorithm. Importantly,
one remarkable feature of DEDGO is the integration the decision theory of reinforcement learning,
which remedies the deficiencies of previous research that focused more on modeling over decision
making, increasing the success rate of inverse prediction. Specifically, an iterative optimization
strategy, namely, deep greedy optimization, is implemented to improve the performance. In addition,
a data enhancement method is also employed in DEDGO to address the dependence on a large
amount of training data. The accuracy and effectiveness of the DEDGO algorithm are confirmed
to be much higher than those of the random forest algorithm and deep neural network, making
possible the replacement of the time-consuming conventional scanning optimization method with
the DEDGO algorithm. This research thoroughly describes the universality, interpretability, and
excellent performance of the DEDGO algorithm in exploring the underlying physics of TMDC-
cavity heterojunctions, laying the foundations for the on-demand inverse design of low-dimensional

material-based nano-devices.

Keywords: inverse design; transition metal dichalcogenides; photonic cavity; integrated heterojunction;
strong coupling effect; deep learning; data enhancement; reinforcement learning

1. Introduction

One of the most significant current research topics in low-dimensional materials
is transition metal chalcogenides (TMDC) due to their attractive and alluring physical
properties [1], strong exciton oscillator strength associated with a large binding energy [2],
and evident valley degree of freedom [3]. These provide TMDCs with a great potential
for versatile applications in light emitting, light detection, and optical modulation [4-6].
Take monolayer (ML) WS, for instance, which not only owns a direct bandgap and an
exciton binding energy of ~0.71 eV but also demonstrates large optical absorption, high
quantum yields and a strong photoluminescence (PL) effect in the visible regime [7,8].
In practice, it is not feasible to directly use the optical properties of ML WS; in photonic
devices considering the giant nonradiative decay rates. Fortunately, the photonic cavity is
viewed as one of the promising platforms that can easily tune and engineer local optical
density states of TMDCs after their integration by means of the coupling effect between
the cavity mode and TMDC excitons [9,10], which greatly enhances the luminescence and
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absorption characteristics [7]. Especially when operating in the strong coupling regime [11],
new half-light-half-matter quasi-particles denoted as polaritons are formed, along with
the Rabi splitting behavior [12], causing a highly concentrated light field at the interface.
Moreover, the strong coupling effect can trigger tremendous novel physics phenomena
in the TMDC-cavity heterojunctions [13,14] and enrich the functionalities for polariton
devices, such as polariton lasers [15], transistors [16], and logic circuits [17].

In fact, there have been a growing number of publications focusing on the room
temperature polaritons in ML TMDC-based heterojunctions since 2017. Three independent
research groups led by A. Tartakovskii [18], N. Stern [19], and V. Menon [20], respectively,
reported their experimental observation of exciton-polariton in the distributed Bragg re-
flection (DBR) optical microcavity and ML TMDCs-integrated heterojunctions at room
temperature, demonstrating an exciting and significantly large valley degree of freedom.
Other previous works were performed at low temperatures with a corresponding val-
ley degree of freedom between 10% and 30% [21]. Room temperature operation is the
prerequisite for practical applications of such devices in novel quantum computing, com-
munications, and detection. Normally, the spin energy valley of TMDCs excitons does
not show up at room temperature, but it is realizable to observe such phenomenon when
TMDC excitons are coherently coupled with micro-cavity photons. Importantly, a variety
of photonic cavities have been employed in the exciton-polariton studies [22,23], whose
process often requires either complicated experimental measurements or conventional
numerical simulations that consume expensive computing resources. Therefore, an intel-
ligent and powerful prototyping tool that can not only characterize the optical response
of TMDC-cavity heterojunctions but also realize the on-demand inverse design of such
devices is highly desired.

Recently, tremendous literature has witnessed a prominent development of deep
learning (DL) algorithms, a significant branch of machine learning which has been uti-
lized as an attractive and widespread method in scientific research considering its giant
advances in computer technology. The DL algorithms are employed in various fields,
such as nature language processing [24—26], image recognition [27], finance [28-30], and
medicine [31-33]. Especially for the aspect of nanophotonics, the DL approach has proved
to be one of the most advanced tools to study many nonintuitive and nonlinear physics
issues [34-37], including the problem of the inverse design of photonics devices [38-45].
Peurifpy et al. [46] utilized 50,000 samples to train neural networks to design a multi-layer
dielectric spherical nanoparticle in 2018, which was regarded as the landmark in this field.
Raju et al. [47] proved the practicality of DL by fabricating plasmonic patterns designed
by the algorithm on the prepared nanolaminate in 2022. All these studies demonstrate
the apparent advantages of DL algorithms in terms of accuracy and speed, which enable
the conduction of the devices’ inverse design in a precise and much faster way compared
to frequently used conventional scanning methods. However, traditional DL algorithms
are confronted with two problems. Firstly, most traditional DL schemes often rely on
accurate modeling of the problem to make an appropriate prediction directly and neglect
a decision-making strategy. Here, “directly” in the inverse design problem means that,
by inputting the target spectra into the model, it can predict the corresponding geometry
parameters in just one step. Secondly, the DL model training process is usually highly
data-dependent, but generating a large dataset in conventional numerical simulations is
extremely time- and resource-consuming.

To address the above two issues, a data-enhanced deep greedy optimization (DEDGO)
algorithm is proposed, with two remarkable features. One is DEEP GREEDY OPTIMIZA-
TION, using the “reward function network” to iteratively accumulate improvements and
optimize the predictions rather than using a monolithic network to directly solve the prob-
lem, which demonstrates significant advantages over the random forest (RF) and deep
neural network (DNN). The models’ differences in terms of principles and operating modes
are schematically shown in Figure 1. As for the principle, the DEDGO algorithm constitutes
the combination of DL and reinforcement learning (RL), while DNN only belongs to DL,
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and RF belongs to machine learning. In terms of operating mode, RF and DNN belong to
direct prediction methods, while the DEDGO algorithm is an iterative optimization method.
The iterative optimization method mainly relies on the “reward function network” (i.e.,
“Model” in the right box). It optimizes the prediction of geometric parameters according
to the Reward Vectors (i.e., the output of the model). If the spectral error is less than the
threshold, the optimization is completed. Otherwise, the new spectra will compose new
State Vectors and continue the iteration process. This strategy realizes the inverse design
through automatic and intelligent iterations, improving the performance and robustness of
the model. The effect of this strategy cannot be achieved through iterations using the direct
prediction methods, since their predictions remain unchanged when the target spectrum
is constant. The design inspiration of the “reward function network” mainly comes from
the “reward function” in RL. Retaining some RL factors that are conducive to solving the
optimization problem in a local and greedy way is a wise choice, considering the difficulties
in training an RL model with high suitability. Here, “greedy” means that the algorithm
only makes the most beneficial choice for the current rather than the overall situation. The
other pivot is DATA ENHANCEMENT (DE), targeting enriching the dataset using “pseudo
data” to train large networks with small amounts of simulated data, decreasing the time
consumption in spectroscopic simulations, and improving the prediction performance of
the algorithm. The “pseudo data” are generated statically, which guarantees the denoising
and filtering for it before utilization, reducing the systematical errors introduced by data
enhancement. Especially, the “pseudo data” should be distinguished from the “original
data” generated by the traditional rigorous coupled wave analysis (RCWA) method.

Machine Learning

einforcement
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Figure 1. Principles and operating modes of different algorithms. The ellipses show their principles,
and the boxes reveal their operating modes, direct prediction (the left box), and iterative optimization
(the right box).
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Concretely, The DEDGO algorithm is applied to handle the inverse design problem
of TMDC-cavity heterojunctions with a three-dimensional parameter space, namely, the
incident angle 6, the structural variable g, and whether the photonic cavity is to be integrated
with the monolayer WS,. By utilizing the rigorous coupled wave analysis (RCWA) approach
and the DEDGO algorithm, the reflection spectra of multi-shaped heterojunctions with
geometrical parameters are studied. The process of the algorithm can be separated into
two phases, namely, the training that focuses on data enhancement and network training
and the testing that utilizes the reward function model to optimize the solution greedily
step by step. Importantly, comprehensive results confirm that the DEDGO algorithm is
a powerful and promising tool that can not only achieve the efficient inverse design for
multiple heterojunctions and the exploration of the underlying physics regarding strong
coupling effects in a precise (>85% effectiveness) and rapid manner (several seconds for
89 testing samples) but also has obvious advantages over traditional scanning optimization
methods and many other machine learning methods in terms of universality, accuracy, and
time consumption.

2. Materials and Methods
2.1. Heterojunctions with Different Structures

The main aim of this work is to achieve the on-demand design of cavity-TMDC-
based heterojunctions utilizing relatively few reflection spectra generated by traditional
RCWA simulations. More specifically, the schematic illustration of the monolayer (ML)
WS,-photonic cavity-integrated heterojunction is presented in Figure 2. One can easily
discern the light-matter interaction between the heterojunction and an incident light with
an incident angle of 6. Herein, five different categories of cavity-TMDC-based heterojunc-
tions are studied in this work, whose geometrical structures are shown in Figure 2a—e,
respectively: (1) Figure 2a represents a Fabry—Perot (FP) microcavity containing two silver
mirrors and an LiF integrated with ML WS, that is inserted in the middle of the LiF layer,
whose hybrid structure is referred to as S1. (2) The WS;-based heterojunction denoted as
52 is illustrated in Figure 2b, whose cavity is similar to the S1 cavity, with the structural
difference being the distributed Bragg reflector (DBR) consisting of four layers of SiO, and
TiO,. (3) Figure 2c shows a S3 heterojunction possessing ML WS, that is sandwiched be-
tween a one-dimensional (1D) periodically PMMA photonic crystal (PhC) and a passivated
silver substrate. (4) The 54 heterojunction comprising ML WS, and a Tamm-plasmon cavity
is displayed in Figure 2d, in which the top mirror is a 40 nm silver film and the bottom
mirror is a 10-layer DBR (S5iO, and TiO, pairs). (5) Figure 2e shows a S5 heterojunction
whose structure is akin to S3 but with waveguide type changes from strip to rib in 1D PhC.
It is significant to emphasize that altering the geometrical parameters of photonic cavities
allows for the control and engineering of cavity photonic modes, which then affect the
coupling effect between the cavity and ML WS,. Thus, we also change the parameter g of
microcavities in S1-S5 heterojunctions, namely, the half-thickness of the LiF film in S1 (g1:
80-92 nm), the half-thickness of the SiO, film in S2 (¢2: 74-86 nm), the width of the PMMA
strip waveguide in S3 (¢3: 160—400 nm), the thickness of the TiO, layer in 54 (g4: 59-71 nm),
and the width of the PMMA rib waveguide in S5 (¢5: 40-160 nm). For convenience, the
thickness of the ML WS, film used in these structures is fixed to 1 nm, whilst in cases of
pure photonic cavities, the thickness of ML WS, is automatically set to 0 nm in numerical
simulations. In addition to the structural variable g, the incident angle is also an important
factor for the inverse design, which varies between —40 degrees and 40 degrees.
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Figure 2. Schematic of different WS,-photonic cavity-integrated heterojunctions. Precisely, the top
figure illustrates the light-matter interaction when the heterojunctions are irradiated by an incident
light with an angle of 6, while the bottom figures represent the heterojunction structures of S1 (a),
S2 (b), S3 (c), S4 (d), and S5 (e), respectively.

As a matter of fact, the incident angle 6 is measured in degrees, and the structural
variable g is measured in nanometers, accompanied by the different variation ranges of
g1-¢5, making it impossible to directly apply these datasets in the DEDGO training process.
Therefore, a normalization method is highly desired to make the above parameters be on
the same scale. Thus, the parameter normalization method can be represented as [45]:

X — Xmi
xnor_angle = 57;run (1)
angle
X — Xmi
Xnor_g = Tmm +1 (2)
8

where x represents the actual value, x,,;, stands for the minimum value, and J is the
distance of discrete attributes. Notably, the dataset contains only reflectance spectra with
non-negative incident angles are included in the dataset due to the symmetry feature, with
the incident angle resolution being 1°. Here, the structural variable g is regulated to be
positive integers varying between 1 and 13 after normalization, whereas the thickness of
ML WS, can only be selected between 0 and 1 for pure photonic cavity and TMDC-cavity
heterojunctions, respectively.

The RCWA method is a fundamental finite element analysis method to characterize
the interaction between electromagnetic waves and nanostructures, which is specifically
tailored for multilayer structures. Here, the RCWA approach is employed to calculate
the reflection response of S1-S5 heterojunctions and their corresponding pure cavities,
generating 298 reflection spectra serving as the training dataset for the DEDGO algorithm,
with a wavelength range of 500900 nm and an incident angle change from —40~40 degrees.
Notably, the whole simulation procedure of RCWA covers the structure model design, the
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optical properties implementation for each material, the boundary condition determination,
the convergence test, and the scanning simulation. The original datasets are divided into
three parts, which are used in the control and experimental groups in different proportions:
(1) 57%, 13%, and 30% for the training, validation, and testing in control groups (without
data enhancement); (2) 70%, 0%, and 30% for the training, validation, and testing in
experimental groups (with data enhancement). The validation datasets of experimental
groups are composed of “pseudo data” calculated via data enhancement.

2.2. Data-Enhanced Deep Greedy Optimization Algorithm

The working flow of the DEDGO algorithm is shown in Figure 3, which contains
two main modules. The first module is the forward prediction networks, trained for data
enhancement. The second module is the reward function networks, trained for deep greedy
optimization, which acquire angle and structural variable parameters step by step and
distinguish previous deep learning methods that attempt to obtain the structural parameter
value directly. The essential innovation of the DEDGO algorithm lies in the data source
and in the usage of reward function networks. In particular, the data enhancement method
can rapidly expand datasets and easily meet the data requirements of deep learning
methods at a low cost, improving the fitting level of the model to complex nonlinear
relationships between parameters and reflection spectra. On the other hand, the deep
greedy optimization can realize higher accurate predictions of parameters in an acceptable
speed using a simple network compared to other machine learning approaches. This is
mainly due to its “iteration” and “reset” mechanism, which can reduce the model training
difficulty by avoiding predicting parameters directly.

The exhaustive process of training is described as follows: first, a neural network
for forward predictions with seven hidden layers is trained with the original training
spectra. Notably, this work uses two slightly different network structures for the S1-55
heterojunctions to predict their reflection spectra precisely. The network takes the angle and
geometrical parameters as its input and the spectra indicating the wavelength from 500 nm
to 900 nm as its output. Furthermore, data enhancement based on this model has shown a
high reliability. Since the absolute values of reflection spectra usually vary between 0 and 1,
it is necessary to convert the spectra into a space with greater absolute values in order to
make the network extraction much easier [34]:

y/=—-1001gy 3)

where y represents the original spectra and y’ denotes the values after calculation. The
loss function of the forward prediction network is described by the mean absolute error
(MAE) [37]:

1n /s /s
Lossforward = Eiglabs (yPlred - Yt;ue ) )

where 7 is the batch size, y’,req represents the prediction of the spectra, and y’irye is the
corresponding true reflection spectra. The MAE of the results is in the 1072 order of mag-
nitude, indicating the credibility of the predicted spectra. In this instance, approximately
750 reflection spectra are generated within 0.06 s to intensify the dataset as “pseudo” spec-
tra. The angle 6 and structural variable ¢ combinations from the “pseudo” spectra are
different from the spectra created via RCWA simulations. The “pseudo” spectra are added
to the training and validation datasets in a 1:1 proportion. Note that “pseudo” spectra
are not used to test the model to avoid possible spectral errors. Additionally, the lookup
table is established to speed up the subsequent step, producing training data for reward
function networks.
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Figure 3. Schematics of the DEDGO algorithm for the efficient inverse design of multiple heterojunc-
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tions. The algorithm can be divided into two main stages, namely, training (left) and testing (right).
The first stage is applying the forward prediction networks to intensify the dataset (A,B) and training
the reward function networks for the next part (C,D). The second part is utilizing the trained reward
function networks to predict structural parameters for heterojunctions in a gradual optimization
way (LII).

To validate the effectiveness of the forward prediction network in the DEDGO model,
we illustrate the comparison results of the reflection spectra calculated by the RCWA
method and the forward prediction network for the S1, S3, 54, and S5 heterojunctions and
their pure cavity counterparts in Figure 4. Note that the reflection spectra of S1 and S2
are highly similar, so we only display the reflectance result of S1 in this figure. Here, we
randomly select the incident angle of reflection spectra to be 20°and fixed geometrical
parameters for four categories of samples. Specifically, the values of structural variable
g are given as follows: S1: LiF, 85 nm; S3: PMMA, 22 nm; S4: TiO,, 65 nm; S5: PMMA,
100 nm. One distinctive finding from Figure 4 is that the DEDGO-predicted results are in
extremely good agreement with the RCWA-simulated spectra, indicating the dependability
and high accuracy of the DEDGO network using “pseudo data”. Furthermore, it can be
easily extracted from Figure 4 that, after the integration of ML WS, with the photonic
cavity, extra reflectance resonances occur in the spectra, in contrast to the original one
main resonant peak, indicating the physical phenomena of Rabi splitting and the strong
coupling effect.
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Figure 4. Comparison of the reflection spectra calculated by the RCWA simulation (real, solid
lines) and forward prediction network (pred, dotted lines). (a—d) The reflection spectra incident at
20 degrees with different WS, thicknesses for S1, S3, S4, and S5 from top to bottom, respectively.
Concretely, the values of structural variable g are given as follows: S1: LiF, 85 nm; S3: PMMA, 22 nm;
S4: TiO,, 65 nm; S5: PMMA, 100 nm.

There are distinct differences between the forward prediction network and the reward
function network, which are mainly reflected in the network structure, input, and output.
The reward function network is a 5-hidden-layer model, whose input and output are
an 804-number and a 99-number vector, respectively. The input vector consists of three
parts, namely, the current angle 6 and structural variable g, the current spectrum, and the
target spectrum. The current angle § and structural variable g are inseparable from the
current spectrum. These two elements, together with the target spectrum, make up the
input vector called “state”, which contains two aspects of information. Firstly, it embodies
the implicit relationship between the incident angle, structural variable, and reflection
spectrum. Secondly, it provides an opportunity for the model to extract the diversity
between the two spectra, making greedy optimization possible. Here, “optimization”
means reducing the discrepancies between the current spectrum and the target spectrum to
obtain more precise used parameters by changing the incident angle and structural variable,
whose adjustment process is defined as “action”. Moreover, “greedy” indicates that the
model selects actions that better reduce the spectral differences, characterized by the usage
of mean absolute percentage error (MAPE) [45]:

1 2 yi _yi
MAPE = — ) "abs| Z_—=8r ) % 100% 5)
h i=1 Ytar

Here, “MAPE” is calculated from the target spectrum and the spectrum corresponding
to the “current parameters” in the “state vector”. Similarly, it is necessary to quantify the
actions in a proper way. Thus, the “reward” for each action can be described as follows:

—0.75, AMAPE € (—co, —7.5]
reward = { 0.1 AMAPE, AMAPE € (—7.5,7.5) (6)
0.75, AMAPE € [7.5,00)

AMAPE = MAPE,; — MAPEnew @)
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where MAPE,,; and MAPEew denote the errors before and after executing the action,
respectively. The error between the target spectrum and the spectrum corresponding to
new predicted parameters is reduced when “AMAPE” is greater than 0. Obviously, the
better the action that can narrow the spectral gap, the higher the reward that can be obtained.
According to the “greedy” principle, the algorithm will select the “action” with the largest
reward to execute. On this condition, the reward of the selected action must be greater than
or equal to 0. Notably, the reward equals 0 when the action is “changing the parameters by
0 units”. Therefore, each iteration gains some improvements and optimization. It is almost
impossible to optimize the MAPE to zero due to the potential small errors introduced
in each step. In the circumstances, the spectral error is small enough when the MAPE is
less than 0.25 for functional consideration, and the current incident angle and structural
variable can be regarded as proper target parameters. The algorithm sets up 99 actions
to achieve this goal as quickly as possible and to minimize the training difficulty of the
model. The adjustment range is —5~5 for angle 6, which is —4~4 for structural variable
8. The output vector contains the rewards for these 99 actions, during which the reward
function networks need to learn the relationship between actions and rewards in different
current spectra and target spectra.

The theme of the testing stage is to employ the trained model to calculate the cor-
responding parameters of the spectra. The current angle and structural variable are set
to 0 and 1 to ensure the validity and reliability, respectively. This preset corresponds
to “Initialize” in Figure 3II. It is indispensable to compare the initial spectrum with the
spectrum for the test and calculate their MAPE. If the MAPE is less than the threshold, the
sample can be exempted from optimization; thus, 0 and 1 are taken as the true values of the
target parameters. Otherwise, the vector is input into the trained reward function network,
and the action with the maximum reward is chosen to optimize the vector. After that,
the corresponding spectral response can be compared with the target value to calculate
the MAPE. In particular, the action is recorded to verify whether the action itself changes
the parameters by zero or whether the optimization is in a loop. Specifically, a “loop”
means that the total changes of the two parameters by several actions are both zero. The
occurrence of these two cases implies that the process is stuck in a local optimum. If the
MAPE is less than the current threshold, the inverse design is still successful. Otherwise,
it is requisite to reset the input vector to guarantee that the optimization can continue
normally. If the algorithm does not get stuck in the local extrema and the MAPE is less
than the threshold, the current parameters can be seen as target parameters. In another
case with a lager MAPE, the algorithm checks the number of steps that have been run. If
it exceeds the limit, the algorithm declares a failure; otherwise, the optimization process
continues. The limit is set to 30 in this research considering the balance of time and effect.

The mentioned neural network in the DEDGO algorithm is coded using an open-
source artificial intelligent framework, namely, TensorFlow2, and run on an RTX 3090
graphic card and an i9-10900X CPU. The Adam optimization algorithm is chosen as the
optimizer to train the networks.

3. Results and Discussion
3.1. Inverse Design of the Heterojunctions

In this section, the DEDGO algorithm is utilized to achieve the efficient and on-
demand inverse design of TMDC-cavity-based heterojunctions, intending to signify the
model’s superiority. For comparison, RF and DNN algorithms are also applied in the
testing stage, indicating the effectiveness of the DEDGO algorithm in inverse design. More
specifically, RF uses the original spectra as its input, since processing the spectra according
to Equation (3) has little or even negative effects on this method. DNN employs the same
hidden layer structure as the reward function network for a better comparison. In particular,
the above two methods attempt to directly predict the parameters of the 401-bit testing
spectra, which can, however, be regarded as an acceptable prediction in the case where the
MAPE of the testing spectrum and the spectrum corresponding to predicted parameters
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is less than the threshold. The testing dataset for each heterojunction is 89 randomly
selected samples from the original spectra composed of 298 items. The number of samples
with different WS, thicknesses varies slightly, because sampling is conducted with a total
number criterion. The typical results of inverse design with the DEDGO algorithm are
shown in Figure 5. To demonstrate the reasonableness of the threshold selection and the
effectiveness of the DEDGO algorithm, the spectral comparison of true and predicted values
for the S1-S5 heterojunctions (1 nm) and their pure cavity counterparts (0 nm) is shown
as Figure 5a—e, revealing that the inverse design results can satisfy the optical functional
demands when the error is less than the threshold. The reliability of this conclusion is
guaranteed by the randomly selected 10 sets of geometrical parameters. Notably, we present
the original reflectance spectra calculated via RCWA and the spectra of inverse-designed
low-dimensional structures for a vivid comparison. One significant finding from the left
panels of Figure 5 is that the relevant inverse design results are consistent with the input
data, indicating the strong and powerful inverse design ability of DEDGO. Furthermore,
the quantified design results are shown in Figure 5fj, which can be divided into four
groups according to the thickness of WS; and whether data enhancement is used.

Two indicators, namely, the success rate and computing time, are chosen to describe
the performances of the three algorithms. Here, “success rate” refers to the proportion
of predictions that hit the true value accurately or whose spectral errors are less than the
threshold, revealing the effectiveness of the algorithm. “Time” records the computational
time needed to complete the inverse design process on the testing dataset. It can be easily
found from Figure 5f— that the DEDGO algorithm owns a much larger success rate than
RF and DNN for all S1-S5 heterojunctions and the corresponding pure cavities. The
relative difference is at least 15% to 30%, especially for cases without data enhancement.
Furthermore, an at least 85% success rate can be reached by the DEDGO algorithm for all
types of samples with data enhancement, revealing its powerful capability. Concretely,
the success rate for S1, 52, and S5 is almost 100%, while that for S3 and S4 is slightly
lower (85~95%). Note that the S3 group obtains the most performance improvement, while
the S5 group gets the least, probably due to the difficulty of feature extraction. As the
difficulty increases, the advantages of the DEDGO algorithm outperform the other two
algorithms. Nevertheless, this performance improvement comes, in part, at the cost of a
larger time consumption due to the two characteristics, namely, “iteration” and “reset”,
which introduce extra operations compared with the other two algorithms. The inverse
design consumed times of the RF and DNN algorithms are both less than 0.5 s, while it
changes from 1.21 to 5.52 s for the DEDGO algorithm. Even though the DEDGO algorithm
is a little inferior in this respect, it is still far faster than traditional iterative methods,
which pre-configure a parameter combination, calculate the corresponding spectrum, and
constantly adjust the parameters until the spectral error is less than the threshold, usually
taking tens of minutes or even hours to design a sample [48-50]. Therefore, the DEDGO
algorithm is confirmed to be an excellent method for the inverse design of TMDC-cavity
heterojunctions. Further insight regarding the average success rate and time consumption
of the DEDGO, RE, and DNN algorithms is explicitly presented in Table 1.
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Figure 5. Typical results of inverse design with the DEDGO algorithm. (a—e) Spectral comparison
of true (real, solid lines) and predicted values (pred, dotted lines) for S1-S5 heterojunctions (1 nm)
and their pure cavity counterparts (0 nm). (f—j) The predicted success rate and time consumption for
samples in different categories based on the DEDGO algorithm. (a—e) Concretely, the MAPE of the
spectra are shown as follows: S1: 0 nm, 0.22; 1 nm, 0.23; S2: 0 nm, 0.24; 1 nm, 0.22; S3: 0 nm, 0.18;
1nm, 0.25; S4: 0 nm, 0.22; 1 nm, 0.24; S5: 0 nm, 0.21; 1 nm, 0.24. Notably, the 0 nm thickness for the
WS; film indicates the case of a pure photonic cavity, unless otherwise specified.
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Table 1. The average success rate and time consumption of different algorithms.
RF DNN DEDGO
Group Success Time Success Time Success Time
Rate Consumption Rate Consumption Rate Consumption
WS, thickness = 0 nm, 30.16 0.07s 21.08 0.17 s 86.82 3545
without DE
WS, thickness =0 nm, 51.22 0.07s 54.84 0.16s 92.98 271s
with DE
WS, thickness = 1 nm, 4132 0.07s 4756 0.16s 89.88 235
without DE
WS, thickness =1nm, 61.94 0.07's 76.32 0.16 s 95.54 1.87s
with DE

It is also worthwhile to investigate the role of data enhancement in these machine
learning algorithms. Firstly, it is apparent that the data enhancement groups almost always
improve the success rate for all of the S1-S5 heterojunctions and their cavity counterparts.
This is more pronounced for RF and DNN, whose success rates can even be improved by
more than 50%, since their success rate is usually low without data enhancement. In terms
of time consumption, data enhancement mainly works on the DEDGO algorithm and has
little influence on the other two algorithms, which is probably determined by the running
mechanism. As aforementioned, RF and DNN try to predict the parameters directly, which
means that more spectral data can only optimize the internal weights and biases of the
network rather than the running process of the algorithm, making it difficult to reduce
the testing time. However, since the DEDGO algorithm is an iterative method, with the
assistance of data enhancement, it can better learn the relationship between parameters,
spectra, and rewards to choose better actions, reducing time by decreasing the running
steps and restarts. The loss and running performance metrics revealing the effect of data
enhancement on the DEDGO algorithm are shown in Table 2. The train loss and validation
loss are significantly reduced in the data enhancement groups, suggesting that the network
can more accurately capture features and learn abstract relationships. In addition, the effect
of fewer running steps and restarts is more pronounced in groups with a lower success
rate, such as S3 and S4, which also have the highest drop in testing time. In contrast, this
effect is not apparent for groups with a higher success rate due to the randomness of the
neural network training process. For instance, the randomness causes more samples with
more running steps or restarts for S1 with no WS2, resulting in larger time consumption,
although the average steps and restarts are decreased. To conclude, data enhancement
makes a remarkable contribution to the DEDGO algorithm, which is an indispensable part,
as well as deep greedy optimization.

Besides its high success rate and low time consumption, the universality of the DEDGO
algorithm deserves to be mentioned. In the research, five types of heterojunctions and the
corresponding photonic cavities are studied, showing the potential of the algorithm to
design more different structures. It has a remarkable superiority over most deep learning
methods used before.
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Table 2. Loss and running performance metrics of the DEDGO algorithm.

Train Loss of Validation Loss of Average Running
. . Restarts on the

Reward Function Reward Function Steps of Testine Dataset
Group Networks (MAE) Networks (MAE) Successful Samples 8

With Without With Without With Without With Without

DE DE DE DE DE DE DE DE
S1, WS, thickness =0nm  0.0015 0.0040 0.0017 0.0046 6.57 6.65 62 65
S1, WS, thickness =1nm  0.00096  0.0022 0.0010 0.0028 5.15 5.44 10 23
52, WS; thickness =0nm  0.0020 0.0048 0.0022 0.0060 5.00 6.55 35 61
52, WS, thickness =1nm  0.00086  0.0023 0.00097  0.0032 5.88 6.63 30 54
S3, WS, thickness =0nm  0.013 0.015 0.032 0.12 3.68 5.84 75 154
S3, WS; thickness=1nm  0.011 0.014 0.019 0.048 4.76 4.93 67 87
S4, WS, thickness =0nm  0.0094 0.016 0.015 0.047 10.45 13.62 88 158
S4, WS, thickness =1nm  0.0027 0.0060 0.0030 0.0073 6.74 7.46 68 119
S5, WS; thickness =0nm  0.0011 0.0025 0.0015 0.014 5.11 6.34 47 42
S5, WS, thickness =1nm  0.0010 0.0020 0.0013 0.0033 4.85 4.71 2 10

3.2. DEDGO Assisted the In-Depth Study of Multiple Cavity-TMDC Heterojunctions

By means of the DEDGO algorithm, we can go further to investigate the nonintu-
itive and complex relationships between the structural parameters of TMDC-cavity-based
heterojunctions and their optical properties. As aforementioned, the geometry, material
component, and relevant geometrical parameters are important and intriguing parameters
for photonic cavities that dramatically change the light-matter interactions of TMDC-
cavity-based heterojunctions. Therefore, to obtain further insight into the coupling effect
in the WS;-cavity hybrid device, we employ the DEDGO network to characterize and
measure the angle-resolved white-light reflectance spectra of S1-54 heterojunctions; the
results are shown in Figure 6. Considering the geometric similarity between the S3 and S5
heterojunctions, the reflectance spectra of S5 are not included in Figure 6. For comparison,
we have also included the wavelength—angle dispersions of pure photonic cavities in the
left panels of Figure 6 for the cases of TE polarization. It is worthwhile to mention that
all the angle-resolved reflectance calculated in this work is performed with an angular
resolution of 1° and at room temperature.

The most significant and eye-catching finding from Figure 6 is that the optical-guided
modes of photonic cavities strongly overlap with the A exciton of ML WS,, illustrated as
the horizontal line lying around 0.625 pm in Figure 6b,d,f/h, for all 51-54 hybrid devices. If
one looks deeper into the above results, it is not difficult to observe the clear and apparent
anticrossing behaviors associated with progressive dispersions of optical-guided modes
through the A excitonic transition, revealing that the hybrid WS,-cavity device operates
in the strong coupling regime. In other words, the dispersion of guided modes in S1-54
heterojunctions splits into two parts, which are denoted as the lower and upper polariton
bands, indicating the formation of half-light-half-matter quasi-particles. Evidently, the
optical guide modes of photonic cavities in S1, S2, and S4 are quite similar since they
share the F-P cavity structure, which is distinct from the 1D PhC cavity. However, due
to the different parameter selections for the photonic cavity, namely, g1 = 85 nm for the
S1 cavity, g2 = 80 nm for the S2 cavity, g3 = 220 nm for the S3 cavity, and g4 = 65 nm
for the 54 cavity, the corresponding anticrossing points locate at different incident light
angles. Another significant conclusion suggested by Figure 6 is that, after the integration
of the ML WS; film in the photonic cavities, their optical mode dispersion curves exhibit
the red-shift phenomena. Take S3 in Figure 6e,f, for instance—the original mode crossing
points locate the 1D PhC cavity around 0.6 um, which shift to around 0.61 um after placing
WS, underneath 1D PMMA PhC. One reasonable explanation for this effect is the change
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in the refractive index of the WS,-PhC heterojunction compared to pure PhC, where the
dielectric environment dominates the optical mode dispersion of the photonic cavity.
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Figure 6. Compared results of angle-resolved reflectance spectra between the individual photonic
cavities (left) and the cavity-ML WS;-integrated heterostructures. (a-h) From top to bottom, the
panels represent the categories of S1 (a,b), S2 (¢,d), S3 (e,f), and S4 (g,h), respectively.

4. Conclusions

In summary, a DEDGO algorithm based on deep greedy optimization and data en-
hancement has been established. This algorithm can fulfil the inverse design of multiple
TMDC-cavity heterojunctions in a rapid and precise way. With the aid of the RCWA method,
a relatively smaller training dataset is generated for the training process of DEDGO, fol-
lowed by a supplementary dataset created by the integral forward network. Next, the
enhanced dataset is employed to train the reward network, which played a major role in
achieving the deep greedy optimization strategy in the testing stage. The experiments show
that the DEDGO algorithm achieves a higher accuracy than the RF and DNN methods at
the cost of a little time. Furthermore, a detailed analysis of the coupling effect between
the TMDC excitons and micro-cavity photons in TMDC-based heterojunctions comprising
different cavity categories, material components, and geometrical parameters, as well as
the on-demand inverse designs, was conducted using the DEDGO algorithm, in which
the strong coupling effects and exciton-polaritons were thoroughly revealed. This work



Nanomaterials 2022, 12, 2976 15 0f 17

shows the outstanding universality and accuracy of the DEDGO algorithm, indicating its
excellent potential in the inverse design of multi-shaped heterojunctions and the fabrication
of photonic crystals.
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