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Abstract: Indoor air filtration received significant attention owing to the growing threat to the
environment and human health caused by air pollutants such as volatile organic compound (VOC)
gases. However, owing to the limited adsorption capacity of VOC adsorbents, such as activated
carbon, a rapid breakthrough can occur, reducing the service life of the filter. Therefore, TiO2-coated
zeolite (TiO2/zeolite) was utilized as a photo-regenerative VOC adsorbent to increase the service
life of VOC filters. In particular, with photoactive TiO2 forms on zeolite, efficient and repetitive
photo-regeneration is attainable through the dissociation of VOC molecules by the photocatalytic
reaction. We optimized the TiO2 coating amount to obtain TiO2/zeolite particles with a high surface
area (BET surface area > 500 m2/g) and high adsorption capacity. A VOC filter with an adsorption
efficiency of 72.1% for formaldehyde was realized using TiO2/zeolite as the adsorbent. Furthermore,
the TiO2/zeolite filter exhibits a photo-regeneration efficiency of >90% for the initial two regeneration
cycles using ultraviolet illumination, and >60% up to five cycles. Based on these observations, we
consider that TiO2/zeolite is a potential adsorbent candidate for photo-regenerative VOC filters.

Keywords: volatile organic compounds; photo-regeneration; ultraviolet; zeolite; titanium dioxide

1. Introduction

Recently, indoor air filtration received significant attention owing to the growing threat
to the environment and human health caused by small-size air pollutants such as volatile
organic compound (VOC) gases [1–5]. However, due to the limited adsorption capacity of
VOC adsorbents, including activated carbon, a fast breakthrough can occur, which reduces
the service life of the filters [6]. For example, in the case of activated carbon fiber (ACF)
filters, full saturation and breakthrough can occur within several hours in a 50–500 ppm
toluene environment [7]. Therefore, a new strategy that substantially extends the service
life of VOC filters is required; in this regard, the regeneration of VOC filters is a feasible
strategy. In particular, through the regeneration process, the adsorbed VOC molecules
on the filter media can be desorbed or dissociated, thereby recovering the initial filter
performance. Thus, the service life can be extended without increasing adsorption capacity.
Various adsorbents and regeneration processes were demonstrated previously. For example,
Sidheswaran et al. reported on ACF-based VOC filters regenerated via a thermal desorption
process [8]. By heating the filter at approximately 150 ◦C to provide sufficient energy to
remove the VOC molecules from the filter, 70–80% regeneration efficiency was achieved.
Lv et al. demonstrated a microwave-based regeneration process using hydrophobically
modified NaY zeolite filters [9], wherein microwave irradiation induced heating of water
molecules, which desorbed toluene molecules and restored the adsorption capacity. Further,
Coss et al. reported microwave-regenerated activated carbon filters [10], in which solvent
molecules, such as those of tetrachloroethylene, were desorbed from the inner pores of
the active carbon via microwave treatment, recovering the surface area and adsorption
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capacity. Next, Liu et al. reported hybrid TiO2/zeolite composite synthesized for H2S
removal and SO2 capture [11]. Here, regeneration was achieved by washing and calcination.
Although these previous approaches for regenerative VOC filters are significant, the thermal
regeneration process may cause serious issues, such as overheating of the filter system and
large energy consumption, hindering the implementation of these approaches in indoor air
filtration. Additionally, the microwave-based regeneration process requires a sophisticated
microwave generation unit embedded in the filter system. From this perspective, a simple
regeneration process is desired for indoor air filtration to eliminate the possible causes of
overheating, and reduce energy consumption and system complexity.

Among the various approaches for regeneration of VOC filters, light-induced photo-
catalytic regeneration (photo-regeneration) is promising, because the process is simple and
does not require complex equipment. The VOC molecules adsorbed on the filter media
can be readily desorbed or dissociated by light irradiation, owing to the photocatalytic
reaction. Therefore, the use of a heater or a microwave can be excluded. In addition,
selecting an appropriate adsorbent that can induce photocatalytic reactions is essential
for achieving a high regeneration efficiency. Among the various adsorbents, zeolites have
high adsorption efficiency for VOC gases due to their nanoporous structure and charge-
compensating cations, which promote the adsorption of polar molecules [11]. However,
zeolites are mainly composed of insulating oxides such as Al2O3 and SiO2 [12]. There-
fore, light-induced photocatalytic reactions are significantly limited. To circumvent this
limitation and realize sufficient photo-regeneration using zeolites, a combination with pho-
tocatalytic materials such as TiO2 is essential [13]. Furthermore, since TiO2 can be activated
by irradiating ultraviolet (UV) or near-UV visible light, photo-regeneration can be enabled
using the TiO2/zeolite composite as the adsorbent. For instance, Ichiura et al. prepared a
TiO2–zeolite sheet by applying a papermaking technique to perform the effective removal
of toluene and formaldehyde [14]. Also, Takeuchi et al. suggested TiO2/Y-zeolite hybrid
photocatalysts by simple impregnation to remove toluene and benzene [15]. Hydrophobic
USY zeolite enabled the smooth transfer of aromatic compounds to TiO2 surfaces, which
resulted in high adsorption efficiency. Meanwhile, acid leaching was applied to perform
high adsorption and photoactivities of TiO2/zeolite composite, according to Zhang et al.’s re-
search [16]. The dealumination and decalcification processes during the acid leaching created
more micropores, enhancing the degradation rate of RhB, MO, phenol, and HCHO [16].

To realize photo-regenerative VOC filters, we used TiO2-coated zeolite (TiO2/zeolite)
as the filter medium. TiO2 was directly formed on the zeolite particles using a sol–gel
process, which allowed uniform and conformal coating of the TiO2 layer on the zeolites.
We optimized the TiO2-to-zeolite (T:Z) ratio in the TiO2 coating process to obtain a high
surface area and adsorption capacity. UV-regenerative VOC filters were then fabricated on
corrugated paper substrates using TiO2/zeolite via spray-coating. The TiO2/zeolite VOC
filters exhibit an adsorption efficiency of 72.1% for formaldehyde; the regeneration efficiency
is above 90% for up to two regeneration cycles, and above 60% for five regeneration cycles.
These results indicate that TiO2/zeolite is a promising candidate for use as a VOC adsorbent
in photo-regenerative air filtration systems.

2. Materials and Methods

TiO2 coating on zeolite particles was carried out using a sol–gel method. Initially,
7.5 g of zeolite powder (Zeolite 13X, Jishim Tech, Cheongwon, Chungbuk, South Korea)
was added to a mixed solution of ethanol (396 mL) and deionized (DI) water (4 mL). The
solution was then stirred at 750 rpm for 30 min to form a zeolite suspension. For the TiO2
precursor solution, 2.5, 5, 10, or 15 g of titanium (IV) isopropoxide (97% gravimetric, Sigma-
Aldrich, St. Louis, MO, USA) was dissolved in 100 mL of ethanol, and mixed using a vortex
mixer. The TiO2 precursor solution was then added dropwise to the zeolite suspension.
The mixed solution of the zeolite suspension and the TiO2 precursor was stirred at 750 rpm
for 30 min, and aged for 3 h to form precipitates. The mass ratio of the TiO2 (T) precursor
solution and zeolite (Z) suspension solution varied in the range 0.5:1–2:1. Subsequently, to
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remove the excess TiO2 precursor that was not coated on the zeolite, centrifugation was
performed at 6000 rpm for 10 min. Finally, the collected particles were dried in an oven
at 80 ◦C for 12 h to remove the residual solvent and calcined at 350 ◦C for 3 h on a hot
plate. To investigate the surface morphology and specific surface area of the TiO2/zeolite
particles, field-emission scanning electron microscopy (FESEM; JSM-7600F, JEOL, Akishima,
Tokyo, Japan) and the Brunauer–Emmett–Teller (BET) method (ASAP 2460, Micromeritics,
Norcross, GA, USA) were used, respectively. The atomic composition of TiO2/zeolite was
analyzed using energy-dispersive X-ray spectroscopy (EDS).

VOC filters were fabricated using the synthesized TiO2/zeolite particles. A 5 cm × 5 cm
corrugate-shaped paper was used as the base substrate. To prepare the solution for spray-
coating, DI water and styrene butadiene rubber were used as the solvent and binder,
respectively. After a brief stirring of DI water and the binder, the prepared TiO2/zeolite
particles were added to the solution. The TiO2/zeolite particles, binder, and solvent mixture
had a mass ratio of 10:1:30. A reference solution was fabricated using bare zeolite particles
without TiO2. Next, using spray-coating, the prepared solutions were coated on corrugated
paper substrates. Finally, the coated samples were dried at 150 ◦C for 15 min in an oven. The
coating and drying processes were repeated three times to achieve an adequate thickness
of the zeolite or TiO2/zeolite particles on the paper substrate.

The adsorption efficiencies of formaldehyde and toluene were analyzed using a closed
test chamber with a volume of ~0.19 m3. First, the fabricated VOC filter was placed inside
the chamber, where a fan was installed to circulate air. The formaldehyde or toluene solution
was evaporated by placing the solution on a hot plate (80 ◦C). The initial concentrations
of formaldehyde and toluene were measured using a gas detection tube (Gastec detector
tube, Gastech, Wangara, WA, Australia). Then, the fan was operated to initiate the air
circulation and adsorption of VOC gases. The gas concentration was measured periodically
to evaluate the concentration change, and the adsorption efficiency was calculated. For
the photo-regeneration of VOC filters, the tested VOC filters were exposed to additional
formaldehyde or toluene until the samples became saturated. Then, UV light with a
peak emission wavelength of ~253 nm was irradiated onto the filter using a UV lamp
(UVT-8CC, Boteck, Gunpo, Gyeonggi, South Korea) for 3 h. After regeneration, adsorption
and regeneration efficiencies were evaluated.

3. Results
3.1. Fabrication and Characterization of TiO2/Zeolite Particles

Figure 1a shows the fabrication procedure and schematic photo-regeneration process
for TiO2/zeolite-based VOC filters. The TiO2 layer was coated on bare zeolite particles
using a sol–gel process. Then, the fabricated TiO2/zeolite particles were dispersed in DI
water and spray-coated on a corrugated paper substrate. As described, the TiO2 layer
plays a crucial role in the photo-regeneration process. However, the surface structure of
zeolite can be altered during the TiO2 coating process, which may degrade its adsorption
properties [17]. Therefore, we first investigated the influence of TiO2 coating on the surface
morphology, surface area, and pore structure of the zeolites. Figure 1b–e show FESEM
images of TiO2/zeolite particles synthesized with different TiO2-to-zeolite (T:Z) ratios.
Here, the T:Z ratio represents the mass ratio of the TiO2 (T) precursor solution to the zeolite
(Z) suspension solution used for the synthesis, which varies in the range of 0.5:1–2:1. As
shown in the FESEM images, the zeolite surface becomes rougher as the T:Z ratio increases.
In particular, when the T:Z ratio is 0.5:1, the surface is relatively smooth, without large
precipitates (Figure 1b). EDS elemental mapping for Ti Ka1 (Figure 1f–i) suggests that a
relatively small amount of TiO2 is coated on the surface. By increasing the T:Z ratio, the
amount of TiO2 coated on the surface increases, which is confirmed by the EDS analysis,
and the surface of the zeolite becomes rougher, owing to the precipitates formed on the
surface. The size of the precipitates is a few hundred nanometers. Furthermore, the number
of precipitates tends to increase with the T:Z ratio, and at T:Z = 2:1, the partial agglomeration
of TiO2 particles is observed, as shown in Figure 1e.



Nanomaterials 2022, 12, 2959 4 of 11

Nanomaterials 2022, 12, 2959 4 of 11 
 

 

suggests that a relatively small amount of TiO2 is coated on the surface. By increasing the 

T:Z ratio, the amount of TiO2 coated on the surface  increases, which is confirmed by the 

EDS analysis, and the surface of the zeolite becomes rougher, owing to the precipitates 

formed on the surface. The size of the precipitates is a few hundred nanometers. 

Furthermore, the number of precipitates tends to increase with the T:Z ratio, and at T:Z = 

2:1, the partial agglomeration of TiO2 particles is observed, as shown in Figure 1e. 

 

Figure 1. (a) Fabrication process and schematic photo-regeneration process of TiO2/zeolite-based 

VOC filters. FESEM images of TiO2/zeolite particles fabricated with different T:Z ratios, (b) T:Z = 

0.5:1, (c) 1:1, (d) 1.5:1, and (e) 2:1. Corresponding EDS elemental mapping images (Ti Ka1) of 

TiO2/zeolite particles fabricated with different T:Z ratios, (f) T:Z = 0.5:1, (g) 1:1, (h) 1.5:1, and (i) 2:1. 

The scale bars in the images indicate 2 μm. 

The amount of TiO2 coating based on the T:Z ratio was investigated using atomic 

composition analysis. Figure 2a and Table 1 show the atomic composition ratios of zeolite 

and TiO2/zeolite particle surfaces as a function of T:Z ratio. Ti shows an increasing 

tendency with the T:Z ratio. For instance, when the T:Z ratio changes from 0.5:1 to 2:1, the 

Ti composition ratio increases from 0.21% to 4.18%. This indicates that the amount of TiO2 

formed on the zeolite can be controlled by the T:Z ratio, which affects the degree of 

photocatalytic reaction under UV illumination. Despite this, we examined the variation in 

the specific surface area, total pore volume, and pore size of TiO2/zeolite particles 

depending on the T:Z ratio, since the formation of TiO2 can alter the surface structures of 

zeolite. Figure 2b shows the BET surface areas of the bare zeolite (T:Z = 0:1) and 

TiO2/zeolite fabricated with different T:Z ratios. Corresponding nitrogen adsorption and 

desorption isotherm data are shown in Figure 3a–e. The BET surface area of the 

TiO2/zeolite particles shows a relatively small variation when the T:Z ratio is in the range 

of 0.5:1–1.5:1, maintaining a value over 500 m2/g, which is similar to that of bare zeolite 

(514 m2/g). However, when the T:Z ratio is further increased to 2:1, the BET surface area 

decreases to 370 m2/g, implying that the surface structure of the zeolite is significantly 

altered. Furthermore, the average pore size shows a significant increase from ~3.06 nm to 

~4.15 nm when the T:Z ratio is increased to 2:1 (Figure 2c). This indicates that the surface 

bare zeolite TiO2/zeolite

sol-gel 

coating

regenerative VOC filter

corrugate paper

T:Z = 1.5:1T:Z = 1:1T:Z = 0.5:1 T:Z = 2:1

2 µm

b c d e

a

spray 

coating

solution

spray

coating

Ti Kα1

T:Z = 1.5:1T:Z = 1:1T:Z = 0.5:1 T:Z = 2:1

2 µm

f g h i

UV

regeneration

formaldehyde

Figure 1. (a) Fabrication process and schematic photo-regeneration process of TiO2/zeolite-based VOC
filters. FESEM images of TiO2/zeolite particles fabricated with different T:Z ratios, (b) T:Z = 0.5:1,
(c) 1:1, (d) 1.5:1, and (e) 2:1. Corresponding EDS elemental mapping images (Ti Ka1) of TiO2/zeolite
particles fabricated with different T:Z ratios, (f) T:Z = 0.5:1, (g) 1:1, (h) 1.5:1, and (i) 2:1. The scale bars
in the images indicate 2 µm.

The amount of TiO2 coating based on the T:Z ratio was investigated using atomic
composition analysis. Figure 2a and Table 1 show the atomic composition ratios of zeolite
and TiO2/zeolite particle surfaces as a function of T:Z ratio. Ti shows an increasing
tendency with the T:Z ratio. For instance, when the T:Z ratio changes from 0.5:1 to 2:1,
the Ti composition ratio increases from 0.21% to 4.18%. This indicates that the amount of
TiO2 formed on the zeolite can be controlled by the T:Z ratio, which affects the degree of
photocatalytic reaction under UV illumination. Despite this, we examined the variation
in the specific surface area, total pore volume, and pore size of TiO2/zeolite particles
depending on the T:Z ratio, since the formation of TiO2 can alter the surface structures of
zeolite. Figure 2b shows the BET surface areas of the bare zeolite (T:Z = 0:1) and TiO2/zeolite
fabricated with different T:Z ratios. Corresponding nitrogen adsorption and desorption
isotherm data are shown in Figure 3a–e. The BET surface area of the TiO2/zeolite particles
shows a relatively small variation when the T:Z ratio is in the range of 0.5:1–1.5:1, maintaining
a value over 500 m2/g, which is similar to that of bare zeolite (514 m2/g). However, when the
T:Z ratio is further increased to 2:1, the BET surface area decreases to 370 m2/g, implying that
the surface structure of the zeolite is significantly altered. Furthermore, the average pore size
shows a significant increase from ~3.06 nm to ~4.15 nm when the T:Z ratio is increased to 2:1
(Figure 2c). This indicates that the surface structure is modified at this ratio, which can be
attributed to the overloading of the TiO2 precursor. Further, the total pore volume shows
a monotonous increase with the T:Z ratio, as shown in Figure 2d. Therefore, considering
the efficiency of VOC adsorption and the regeneration capability, we consider 1.5:1 as the
optimal T:Z ratio for regeneratable VOC filters.
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Figure 2. (a) Variation in atomic composition of zeolite and TiO2/zeolite particle surfaces synthesized
with different T:Z ratios (elements: O, Na, Al, Si, and Ti). T:Z ratio of 0:1 indicates bare zeolite particles.
Variations in (b) BET surface area, (c) average pore size, and (d) total pore volume of TiO2/zeolite
particles as a function of T:Z ratio.
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Table 1. Atomic compositions of zeolite and TiO2/zeolite particle surfaces synthesized with different
T:Z ratios (in %).

T:Z Ratio O Na Al Si Ti

0:1 57.27 8.59 7.82 9.52 0
0.5:1 60.50 9.21 8.20 10.03 0.21
1:1 55.16 7.55 7.13 8.85 1.10

1.5:1 56.04 7.78 7.39 9.06 1.54
2:1 59.71 7.52 7.15 9.20 4.18

3.2. Fabrication of TiO2/Zeolite-Based VOC Filters

Using the optimized TiO2/zeolite particles (T:Z ratio of 1.5:1), VOC filters were fab-
ricated using the spray-coating method. Here, corrugated paper was used as the filter
substrate. Owing to the web-like flute structure of the corrugated paper, a relatively large
area for VOC adsorption can be provided, allowing a higher adsorption capacity compared
to flat substrates. Figure 4a shows the optical images of the fabricated TiO2/zeolite-based
VOC filter. TiO2/zeolite particles were uniformly coated on the corrugated paper, includ-
ing the inner parts of the core flute, owing to the advantage of the spray-coating method.
Figure 4b shows the FESEM image of the filter surface. The TiO2/zeolite formed on the
corrugated paper has an open stacking structure. This enabled easy penetration of VOC
gases into the bottom parts of the TiO2/zeolite layer, and enlarged the adsorption area. Fur-
thermore, concerning the mechanism of photocatalytic regeneration process, the following
photocatalytic reaction can take place. Initially, when the TiO2/zeolite filter is exposed to
VOC gases, including formaldehyde (HCHO), VOC molecules are adsorbed physically or
chemically on the surface depending on the molecular structure of the VOC gas [18,19].
For instance, in the case of formaldehyde, the molecules adsorbed on the TiO2 surface can
be explained with monodentate and bidentate adsorption configurations [18]. Generally,
a monodentate configuration depicts the O atom of HCHO (OF) bound to the surface
under-coordinated Ti atom. For the five-fold Ti5 atom, binding with the OF atom shows
the adsorption energy of 0.472 eV and the bond length of 2.271 Å. For the four-fold Ti4
atom, adsorption energy of 0.907 eV and bond length of 2.168 Å are shown [18]. Based
on the Bader charge analysis, part of the electron diffuses during the interaction between
HCHO molecules and Ti atom surface. This process results in the weakening of the π

bond and the elongation of C=OF. Further, chemical changes in the O and C atoms of
formaldehyde differ with coverages [19]. At low coverages below the 0.25 monolayer, as in
the case of VOC gases, the HCHO molecule binds to surface 5-coordinated Ti atoms via the
O atom. However, after continuous exposure to formaldehyde, adsorption saturates, and a
breakthrough occurs; thus, the VOC filtration ability is lost. UV illumination was applied
to the filter to regenerate it and recover its adsorption capability. Under UV irradiation,
TiO2 induces the oxidation of formaldehyde molecules via the following reactions [20]:

HCHO + H2O + 2h+ → HCOOH + 2H+ (1)

HCOOH + 2h+ → CO2 + 2H+ (2)

dissociating the adsorbed formaldehyde molecules. In particular, under UV irradiation,
electron–hole (e–h) pairs are generated in the TiO2 layer. The photogenerated holes then
contribute to the conversion of formaldehyde into formic acid (HCOOH), and finally to
CO2 [20]. In addition, partial oxidation byproducts such as HCOOH are oxidized to CO2
with sufficient UV illumination.
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3.3. Adsorption Efficiency and Regeneration Efficiency for Formaldehyde

For the TiO2/zeolite VOC filter, the adsorption efficiency for formaldehyde was
evaluated. To analyze the adsorption efficiency, the filter was placed inside a chamber,
and the change in formaldehyde concentration (C) was measured every 1 h for up to 3 h.
Figure 5a shows the variation in formaldehyde concentration as a function of filtering
time for bare zeolite- and TiO2/zeolite-based VOC filters. Figure 5b shows the relative
concentration (C/C0) change as a function of the filtering time, where C0 denotes the
initial concentration of formaldehyde before filtering. For both filters, the concentration of
formaldehyde decreases as the filtering time increases, indicating the effective capture of
formaldehyde by the zeolite-based filters. After 3 h of filtering, the C/C0 values decrease
to 0.236 and 0.279 for the zeolite and TiO2/zeolite VOC filters, respectively. The slightly
higher C/C0 value for the TiO2/zeolite VOC filter can be attributed to the decrease in the
BET surface area after TiO2 coating. To evaluate the regeneration efficiency, both the zeolite
and TiO2/zeolite VOC filters were first saturated with formaldehyde gas by placing the
filters in a formaldehyde-rich environment. Next, UV exposure was performed for 3 h, and
the filtering tests were repeated. Figure 5c,d show the formaldehyde concentration and
C/C0 as functions of the filtering time after the first regeneration. The decrease in C/C0
for the bare zeolite filter is significantly reduced, indicating degradation of the adsorption
efficiency. In contrast, in the case of the TiO2/zeolite VOC filter, the decrease in C/C0 is
similar to that before regeneration. To evaluate the repetitive regeneration of TiO2/zeolite
VOC filters, the regeneration process was performed for five cycles. Figure 5e,f show the
C/C0 and regeneration efficiencies, respectively, for five regeneration cycles. Regeneration
efficiency is defined as the following equation:

Regeneration efficiency(%) =
adsorption efficiency after regeneration

Initial adsorption efficiency
(3)

In the absence of TiO2 (bare zeolite filter), the regeneration efficiency after the first
regeneration cycle is below 50% (Figure 5f). This indicates that UV irradiation may have
limited effects on dissociating or desorbing the formaldehyde molecules adsorbed on the
zeolite surface. However, with TiO2, the adsorption efficiency is restored close to its initial
value, particularly in the first two regeneration processes, indicating the efficient removal
of formaldehyde by the photocatalytic reaction. The regeneration efficiency is over 90%
during the first two regeneration cycles, and decreases to approximately 60% afterwards.
The decrease in regeneration efficiency after repeated cycles is attributed to non-uniform
UV irradiation on the VOC filter owing to the corrugated structure of the paper substrate.
Nevertheless, the results show that TiO2 on zeolite has a significant effect on enhancing the
regeneration efficiency of zeolite-based VOC filters.
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Figure 5. (a) Variation in formaldehyde concentration for bare zeolite and TiO2/zeolite VOC filters
as a function of filtering time. (b) Relative formaldehyde concentration (C/C0) changes as a function
of filtering time. Here, C0 and C indicate formaldehyde concentration before and during the filtering
process, respectively. (c) The variation in formaldehyde concentration and (d) C/C0 as a function of
filtering time after the first regeneration process. (e) Relative formaldehyde concentration (C/C0)
change for five regeneration processes (TiO2/zeolite filter). (f) Variation in regeneration efficiency as
a function of regeneration number.

3.4. Adsorption Efficiency and Regeneration Efficiency for Toluene

In addition to formaldehyde, the toluene adsorption and regeneration efficiencies were
investigated. Similarly, adsorption efficiency was measured using a closed test chamber.
However, in this case, the change in toluene concentration was measured every 15 min for
up to 30 min, because of the relatively rapid adsorption of toluene molecules. Figure 6a,b
show the toluene concentration change and relative concentration (C/C0) variation for the
bare zeolite and TiO2/zeolite VOC filters, respectively, as a function of filtering time. Similar
to formaldehyde, the bare zeolite filter exhibits a relatively higher adsorption efficiency
before regeneration. However, after regeneration by UV exposure for 3 h, the TiO2/zeolite
VOC filter shows higher adsorption efficiency, as shown in Figure 6c,d. In particular, the
bare zeolite filter has a limited adsorption capability, with the C/C0 value saturated at
approximately 0.6. In contrast, the adsorption efficiency of the TiO2/zeolite filter is close
to that of the as-fabricated filter. The repetitive regeneration performance for toluene was
also evaluated. Figure 6e,f show the C/C0 and corresponding regeneration efficiencies of
the bare zeolite and TiO2/zeolite filters for five regeneration cycles, respectively. Similar to
that of formaldehyde, the regeneration efficiency is significantly lower for the bare zeolite
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filter, owing to the absence of the TiO2 photocatalytic layer. In particular, after the first
regeneration, the regeneration efficiency of the bare zeolite filter is 44.4%, whereas in the
case of TiO2/zeolite filters, the regeneration efficiency is above 80% during the initial two
cycles, and above 50% up to five cycles. Although further improvements in achieving a
high regeneration efficiency are still required, for example, through the optimization of the
regeneration process, the implementation of the TiO2 photocatalytic layer has a substantial
influence on improving the regeneration efficiency for various VOC gases. Also, it is of
note that the regeneration efficiency obtained by photo-regeneration is comparable to that
using thermal- or microwave-assisted regeneration processes, indicating that the synergetic
combination of TiO2/zeolite adsorbent and photo-regeneration is promising for extending
the service life of VOC filters.
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Figure 6. (a) Variation in toluene concentration for bare zeolite and TiO2/zeolite VOC filters as a function
of filtering time. (b) Relative toluene concentration (C/C0) changes as a function of filtering time. Here,
C0 and C indicate toluene concentration before and during the filtering process, respectively. (c) Variation
in toluene concentration and (d) C/C0 as a function of filtering time after the first regeneration process.
(e) Relative toluene concentration (C/C0) change for five regeneration processes (TiO2/zeolite filter).
(f) Variation in regeneration efficiency as a function of regeneration number.

4. Conclusions

In this study, we demonstrate UV-regenerative VOC filters using TiO2/zeolite ad-
sorbents. TiO2/zeolite particles with surface properties similar to those of bare zeolite
are achieved by employing a solution-based coating method and an optimized synthesis
protocol. Furthermore, using the spray-coating method, VOC filters were fabricated on a
corrugated paper membrane. From the VOC adsorption and UV-mediated regeneration
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tests for formaldehyde and toluene, the TiO2/zeolite filters show ameliorated regeneration
efficiency compared to the bare zeolite-based filters. Based on these results, we propose that
the TiO2/zeolite VOC filter is a potential adsorbent candidate for multi-use UV-regenerative
air filtration systems.
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