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Abstract: The lithium thiophosphate (LPS) material class provides promising candidates for solid-
state electrolytes (SSEs) in lithium ion batteries due to high lithium ion conductivities, non-critical
elements, and low material cost. LPS materials are characterized by complex thiophosphate micro-
chemistry and structural disorder influencing the material performance. To overcome the length and
time scale restrictions of ab initio calculations to industrially applicable LPS materials, we develop a
near-universal machine-learning interatomic potential for the LPS material class. The trained Gaus-
sian Approximation Potential (GAP) can likewise describe crystal and glassy materials and different
P-S connectivities PmSn. We apply the GAP surrogate model to probe lithium ion conductivity and
the influence of thiophosphate subunits on the latter. The materials studied are crystals (modifications
of Li3PS4 and Li7P3S11), and glasses of the xLi2S–(100 – x)P2S5 type (x = 67, 70 and 75). The obtained
material properties are well aligned with experimental findings and we underscore the role of anion
dynamics on lithium ion conductivity in glassy LPS. The GAP surrogate approach allows for a variety
of extensions and transferability to other SSEs.

Keywords: machine learning; amorphous; Li-ion battery; high ionic conductivity solid electrolyte

1. Introduction

While lithium-ion batteries with liquid electrolytes entered the market in 1991, all-
solid-state lithium-ion batteries (ASS-LIBs), although investigated for decades, are still
not widely in use [1–6]. ASS-LIBs promise several advantages in comparison to liquid
electrolyte batteries: higher power density, minimized safety and fire hazards, longer
cycle lifetimes, more comprehensive temperature ranges, and enhanced energy density by
potential usage of Li metal anodes [1,7,8]. Solid electrolytes of the Li2S-P2S5 material class
have gained substantial attention due to their favorable properties [6,9]. First, they possess
high conductivities of up to 10−2 Scm−1, which ranks them among the most conductive
solid electrolytes such as Li10GeP2S12 or Li1.3Al0.3Ti1.7(PO4)3 [10,11]. Secondly, they are
composed of the earth-abundant elements sulfur and phosphorous enabling sustainable
applications at large scales.

However, this material class’s potential is hampered by the poor understanding of
the relevant structure-property relations. This manifests itself in huge deviations in Li-ion
conductivity between theory and experiment. As such, β-Li3PS4 serves as an illustrat-
ing example. Experimental studies report a lithium ion conductivity of approximately
10−7 Scm−1, making the material unsuitable for industrial battery applications [12]. In
contrast, an ab initio study predicts a conductivity of 10−1 Scm−1; a six orders of magni-
tude deviation from experiment that would make the material the new record holder in
solid-state lithium ion conduction [13]. Such huge discrepancies often arise from com-
putational limitations that constrain tractable system sizes and sampling times. In the
LPS case, high-resolution TEM images for instance revealed the presence of crystalline
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nanoparticles in otherwise amorphous regions, highlighting that conductivity calculations
of ideal crystals are too short-sighted for this materials class [14]. The problem is further
accentuated by the complex chemical structure of LPS [15,16]. A large structural variability
at the molecular level, more precisely different thiophosphate poly-anions, are found in
all crystalline and amorphous materials [6,17]. For a detailed description of the lithium
ion conductivity in LPS we thus need to tackle these challenges: structural complexity of
LPS glass compounds, chemical reactivity of thiophosphates, and the influence of anion
composition on the lithium ion conductivity.

Here we tackle these challenges by replacing the computationally demanding direct
first-principles calculations with a surrogate machine-learning (ML) model. Once trained,
this Gaussian Approximation Potential (GAP) model allows for an upscaling of both time
and length scale: molecular dynamics (MD) simulations covering up to several nanoseconds
and system sizes of several thousand atoms become feasible. Furthermore, the flexibility
offered by the ML approach allows one to implement a GAP model that is more versatile
and can better represent the crucial complex chemistry than a classical force field [18]. We
present a data-efficient iterative training approach to extend an earlier ML force field to
yield a near-universal description of the LPS material class [19,20].

In the first part of this work we present our data-efficient training protocol and evaluate
the GAP model on (a) its predictive accuracy for lithium ion conductivity and (b) its ability
to reproduce two known phase transitions in crystalline Li3PS4. The second part focuses
on the influence of anion composition on the lithium ion conductivity of different LPS
glass compounds.

2. Methods
Computational Details

Reference density-functional theory (DFT) calculations are performed with the PBE
functional, default ’light’ integration grids and a ’tier 1’ basis set of numerical atomic
orbitals, as implemented in FHI-aims [21,22]. The Brillouin zone is sampled with a
1 × 1 × 1 k-grid. Initial training configurations are generated with ab initio molecular
dynamics (MD) using the Γ-point approximation for the k-grid. GAP-based MD and
Nudged-Elastic-Band (NEB) simulations are performed using the LAMMPS [23] code and
the corresponding interface to QUIP [24,25]. For training set construction and data analysis,
the atomic simulation environment ASE, SciPy and scikit-learn are used [26–28].

3. Results
3.1. Lithium Ion Mobility

We obtain the reactive GAP model used to describe the LPS class by fitting to DFT
training data computed with the FHI-aims full-potential package [22]. The underlying
approach is based on three consecutive steps: defining the anion lattice, sampling of Li-sites,
and fine-tuning the materials density. In the first place, only the dominant anion species
(e.g., PS3−

4 and P2S4−
7 ) are taken into consideration and utilized in a ratio that represents the

desired stoichiometry correctly. For a data-efficient sampling of lithium sites, we sample
Li-ion distributions on stable and meta-stable Li sites in a quasi-Monte Carlo like fash-
ion. The materials density is obtained by an iterative compression scheme. Convergence,
a detailed step-by-step description of the underlying algorithm, and numerical error assess-
ments of the training procedure are given in Sections A–C in the Supplementary Materials.
The benefit of this approach is that it allows the free tuning of stoichiometries and polyanion
ratios. In contrast to previous work on crystalline Li7P3S11 we use a purely short-ranged
GAP. In Ref. [19] we combined a GAP model with an electrostatic baseline in order to
study the role of long-range electrostatics in machine-learned interatomic potentials for
complex battery materials. We previously showed that neglecting long-range electrostatics
is unproblematic for describing lithium ion transport in isotropic bulk-like systems [19].

As a first validation of our GAP model, we turn to the Li-ion conductivity of crystalline
LPS materials (α, β, γ Li3PS4 and Li7P3S11) at finite temperature, predicted from MD
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simulations via the Nernst-Einstein equation (see section F in the Supplementary Materials
for details). Using the GAP model we evaluate the ionic conductivity from the mean-square-
displacement (MSD) sampled during 2 ns MD simulations for every crystalline compound
at various temperatures between 400 and 800 K. Room temperature (RT) conductivities
are extrapolated from a linear fit. Note that for crystalline Li7P3S11 we required longer
simulation times of up to 13 ns to reach converged conductivities, i.e., time scales that would
essentially be prohibitive for direct ab initio MD. While Li-ion conductivity in LPS is usually
dominated by diffusion of defects (Li+ vacancies), Li7P3S11 exhibits a more collective Li+

motion yielding the observed high conductivity [19,29,30]. As seen in Figure 1, a broad
range of Li-ion conductivities are exhibited in LPS.

Figure 1. (A) Computational Arrhenius plots for Li7P3S11 (red solid line) and α, β and γ phase of
Li3PS4 (blue solid lines), as well as the glasses of Li4P2S6 (orange dashed line), Li7P3S11 (red dashed
line), and Li3PS4 (blue dashed line). (B) Reference conductivity data from literature. A tabulated
form including references can be found in Table S3 in the Supplementary Materials. Solid lines refer
to nominal crystalline materials, dashed lines to glasses/ceramics.

While high RT conductivities of up to 3.6 × 10−3 Scm−1 are found for α-Li3PS4 and
Li7P3S11, β and γ-Li3PS4 exhibit poor RT conductivities of 10−5 to 10−7 Scm−1. These crys-
talline RT conductivities are in good agreement with experimental literature, although the
extrapolated RT conductivity of β-Li3PS4 is somewhat overestimated [30]. For ensemble
averaging, we generated 20 structurally uncorrelated glass geometries for each specific
temperature and stoichiometry. Hence, each data point in Figure 1 is an average over 20 MD
calculations [31]. We consider three different stoichiometries in the analysis that cover
the range from fully tetrahedral (Li3PS4) via mixed (Li7P3S11) to fully bridged tetrahedral
(Li4P2S7) thiophosphate moieties. These three dominant anion subunits are depicted below.
As apparent from Figure 1, the ion conductivity over the whole temperature range and the
extrapolated RT conductivities increase with growing Li2S content of the glass material,
almost tripling conductivity from Li4P2S7 (Li2S = 67 mol%) to Li3PS4 (Li2S = 75 mol%).
Hence, for an increasing Li2S content an increase RT conductivity is observed. These
findings are again in good agreement with experimental studies.

3.2. Li3PS4 Phase Transition

As a final validation step, we test the GAP’s predictive power on the known phase tran-
sitions in Li3PS4. As we show in Figure S8 in the Supplementary Materials, the Arrhenius
curves of β and γ-Li3PS4 exhibit a change of slope at roughly 700 K. Above 700 K, conduc-
tivities of β and γ-Li3PS4 even match those of α-Li3PS4. This change of slope is caused by
the phase transition to α-Li3PS4, involving a rotation of 25 % of the PS3−

4 tetrahedra by 180◦

for both structures [18].
We can probe the phase transition quantitatively by studying the radial distribution

functions (RDFs) of the sulfur sublattice as a function of simulation temperature (Figure 2).
The β- and γ-phase share a HCP (hexagonal close-packed) sulfur sublattice, which is
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transformed to a BCC (body centered cubic) lattice in the α-phase [18]. For both sublattices,
the S-S RDF displays a distinct peak at 3.4 Å, attributed to the intramolecular S-S distance.
In the HCP sublattice, a second distinct peak at 4.3 is observed. The latter is missing
in the BCC structure. Both β- and γ-phase show the characteristic double-peak in the
low-temperature RDF, while the second peak vanishes for temperatures above 650 K.
This same phase transition has also been observed in experimental studies and ab initio
simulations [32,33]. Conceptually, these three phases can be distinguished by their different
arrangement of PS3−

4 . These are either all pointing in the same direction (γ), are arranged
in a zig-zag fashion in one (α) or two directions (β) in space. A visualization can be found
in Figure S6 in the Supplementary Materials [32]. The here obtained temperature between
600 and 700 K for the phase transition again matches fairly well with the experimentally
reported 746 K [33].

Figure 2. S-S radial distribution functions (RDFs) for MD snapshots of α-Li3PS4 (left panel), β-Li3PS4

(middle panel), and γ-Li3PS4 (right panel) at different temperatures. The disappearance of the peak
at 4.3 Å, occurring for β and γ at 700K, corresponds to the phase transition to the α-phase.

3.3. The Role of Anion Composition in Li2S-P2S5 Glasses

Concluding that we can correctly describe the lithium ion dynamics and structural
changes in crystalline Li3PS4 we now turn to the influence of anion composition on the
lithium ion conductivity in LPS glasses. As shown above, the RT conductivity generally
increases with Li2S content of the glass material. The increasing Li-ion conductivity is partly
attributable to the lithium mass percentage increase at equal densities. This larger con-
centration of charge carriers yields higher conductivities for similar diffusion coefficients,
accounting for an increase in conductivity of ∼30%. As this is much less than the above
described rough tripling of the conductivity, we suspect the different anion compositions
in the sulfur sub-lattice to be another, dominant factor.

Existing data on the origin of ion conductivity suppression by the anion lattice is quite
ambiguous. For example, experimental studies report a strong conductivity suppression by
P2S4−

6 , attributed to meso-scale precipitation of the non-conducting Li2P2S6 phase [34,35].
On the contrary, density of state calculations report that P2S4−

7 should suppress ion conduc-
tion at the atomic scale [36]. The charge transfer along the covalent bond between the P
and the bridging S lowers the positive partial charge of the P centers, which supposedly
attracts Li+ ions to the P2S4−

7 anions more strongly than the other thiophosphate anions.
These are just two illustrative examples discussed as possible origins of ion conductivity
suppression by the anion lattice.

First, we analyse the anion composition at different temperatures for all three stoi-
chiometries. Violin plots depicting the building block distributions at different temper-
atures within the structure ensembles are displayed in Figure 3. For the Li3PS4 glass,
the simple PS3−

4 ortho-thiophosphate is as intuitively expected the predominant species
over the whole temperature range. Hypo-thiodiphosphate P2S4−

6 occurs only in small
concentrations ≤10 at.% and shows no strong temperature dependence. Up to 25 at.% of
pyro-thiodiphosphate P2S4−

7 occur at the lower temperature but gradually disappear be-
tween 600 and 700 K. These anion ratios are in agreement with experimental ratios found for
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Li3PS4 [37]. In both, the Li7P3S11 and Li4P2S7 glasses, the P2S4−
6 content instead increases

between 400 and 700 K, even though the increase is not too pronounced in comparison to
the width of the distribution in the ensemble. The found P2S4−

6 contents in Li7P3S11 and
Li4P2S7 are slightly higher compared to experimental data [17].

Figure 3. Top: Dominant anions in the Li2S–P2S5 material class. Bottom: Anion compositions for
different MD temperatures, displayed for Li3PS4 (left panel), Li7P3S11 (middle panel), and Li4P2S7

(right panel) glasses.

Next, we analyze the number of Li-positions occupied during MD simulations at finite
temperatures, by calculating the isosurface of the probability density distribution of Li-
positions (exemplary visualizations see Figure S9 in the Supplementary Materials). When
referencing the volume enclosed by the isosurface to the total volume of the simulation
cell, we identify the relative accessible volume for all Li-ions for a given stoichiometry.
As shown in the left panel of Figure 4 for the Li7P3S11 and Li4P2S7 glasses, the same relative
volume is accessed by Li, while Li3PS4 exhibits a 10 % higher accessible Li-volume at all
temperatures. This is intuitive as P2S4−

n moieties have a larger surface/volume of the anion,
allowing for a smaller number of Li-sites in the material compared to smaller PS3−

4 anions.
In order to explore the effect of the anion lattice motion on the Li-ion conductivity we

either constrain the sulfur positions, or the phosphorous positions, and compare the Li ion
conductivity obtained within MD simulations with these two frozen lattices to the uncon-
strained Li-ion conductivity. As seen in the right panel of Figure 4, the Li-ion conductivity
decreases for all three glass stoichioemetries for both frozen lattices. However, while in
the case of frozen phosphorus we observe only a slight decrease in conductivity, freezing
the sulfur degrees of freedom reduces the conductivity by approximately two orders of
magnitude. We observe the largest decrease of the conductivity for the stoichiometry
consisting of the highest PS3−

4 (Li3PS4) content, and the smallest change for the lowest PS3−
4

content (Li4P2S7). This suggests that the motion of sulfur throughout the Li-ion conduction
plays a significant role.
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Figure 4. (Left panel) Accessible volume of lithium during MD simulations at various temperatures:
Li3PS4 (blue dashed line), Li7P3S11 (red dashed line), and Li4P2S7 (orange dashed line). (Right panel)
Li ion conductivity with frozen sulfur lattice (diamonds with dotted lines), with frozen phosphor
lattice (diamonds with solid line) and without constraints on the sulfur lattice (dots with dashed line):
Li3PS4 (blue lines), Li7P3S11 (red lines), and Li4P2S7 (orange lines).

Smith and Siegel showed that in glassy Li3PS4, lithium migration occurs via a mech-
anism that combines a concerted motion of lithium ions with re-orientations of PS3−

4
anions [38]. This effect, known as the ’paddlewheel’ mechanism, can directly attribute the
increasing Li-ion conductivity with increasing PS3−

4 content. So far, the paddlewheel effect
has only been shown in Li3PS4, but our results confirm this effect occurs as long as PS3−

4 is
present. Hence, the conductivity of Li4P2S6 and Li4P2S7 decrease as well when the sulfur
lattice is frozen, but the effect is not as pronounced as in Li3PS4. As the Li-ion conductivity
of all three stoichiometries is almost identical when the sulfur lattice is frozen, this actually
suggests that the higher accessible volume of Li in Li3PS4 arises from re-orientations of
PS3−

4 anions. Hence, both effects can not be decoupled, but rather the re-orientation of PS3−
4

anions generates new Li sites. Together with the increased overall Li content, this thus fully
rationalizes why the Li-ion conductivity increases with higher Li2S content.

4. Conclusions

All of the herein described effects, collective Li-ion motion of crystalline Li7P3S11,
phase transitions of crystalline Li3PS4, and the conductivity/anion-composition relation
in glassy LPS, could not be studied before by a single interatomic potential, preventing
the relative identification of trends and common origins. While not only this can now be
achieved by our machine learning surrogate model, the general structure of the training
protocol furthermore allows for a variety of extensions, including additional selection
criteria [20,39], using an electrostatic baseline in the model [40], doping with transition
metals, and modeling of solid/solid interfaces [41,42]. We correspondingly see much
prospects in the use of ML potentials to further elucidate atomic scale processes in complex
battery materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12172950/s1, Figure S1: Anion Voronoi Tesselation, Figure S2:
Glass sampling approach, Figures S3 and S4: Sampling of P-P distances, Figures S5 and S6: Force
parity plot, Figure S7–S10: Radial distribution functions, Figure S11: Li3PS4 crystal configuration,
Figure S12: Density dependence of the conductivity, Figure S13: Computational Arrhenius plots,
Figure S14: Li accessible volume. Table S1: Technical Hyperparameters for the GAP, Table S2:
Coordination-resolved force RMSEs, Table S3: Lithium ion conductivity. References [43–49] are cited
in the supplementary materials
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