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Abstract: In this work, the growth of extended tri-s-triazine units (melem units) on g-C3N4 (CN) by
hydrothermal treatment and its effect on the photodegradation efficiency of tetracycline hydrochloride
(TC) is investigated. The CN-180-x and CN-200-6 samples were prepared using different hydrolysis
times and temperatures, and they were characterized by multiple physicochemical techniques.
In addition, their photodegradation performance was evaluated under visible light irradiation.
Compared to the CN, CN-180-6 possesses remarkable photocatalytic degradation efficiency at 97.17%
towards TC removal in an aqueous solution. The high visible-light-induced photo-reactivity of
CN-180-6 directly correlates to charge transfer efficiency, numerous structural defects with a high
specific surface area (75.0 m2 g−1), and sufficient O-functional groups over g-C3N4. However,
hydrothermal treatment at a higher temperature or during a longer time additionally induces the
growth of extended melem units on the surface of g-C3N4, resulting in the inhibition of the charge
transfer. In addition, the superoxide radical is proven to be generated from photoexcited reaction and
plays a key role in the TC degradation.

Keywords: tri-s-triazine unit; hydrothermal treatment; tetracycline hydrochloride; visible light
photocatalysis; charge carrier

1. Introduction

The presence of antibiotic residues in the environment has received widespread atten-
tion due to the undesirable effects on human health and livestock security [1–4]. Tetracy-
cline hydrochloride (TC) is one of the most common pharmaceutical residues, which is in
wide usage on a global scale [5]. Therefore, a variety of methods have been developed to
remove TC from an aqueous environment, including membrane separation, biodegrada-
tion, adsorption, Fenton oxidation, and photocatalyst degradation [6–10]. Among them,
the photodegradation process is considered as a superior strategy for elimination of TC
based on its low cost, sustainable technology, and high removal efficiency [11,12].

The well-known metal-free semiconductor graphitic carbon nitride (g-C3N4) has been
demonstrated as a promising material for photocatalysis due to its suitable band gap (2.7 eV)
for visible light, high physicochemical stability, and ecological friendliness. Nevertheless,
the photocatalytic ability of g-C3N4 is restricted in terms of the high recombination of
charge carriers, low specific surface area, and inadequate usage of visible light [13,14]. To
overcome these issues, numerous attempts have been made to facilitate the photocatalytic
behavior of g-C3N4 via heterostructure construction, defects engineering, and doping
technology [15–17]. In terms of the enhancement of the overall performance of materials,
the hydrothermal process has been introduced as an effective and uncomplicated method
to significantly improve the photocatalytic properties of the g-C3N4 photocatalyst. This
facile and green method can etch numerous defects on the g-C3N4 surface and introduce
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desirable O-containing functional groups to improve photodegradation efficiency [13,18].
However, it was reported that strong hydrolysis in the method also degraded a regular
array of tri-s-triazine (melem) units in the g-C3N4 structure [17].

In this study, the extension of the melem unit and further growth of the extended
melem unit during the hydrothermal treatment and the effect on the photocatalytic behav-
iors were carefully evaluated for the photodegradation of TC in an aqueous solution under
visible light irradiation. Various hydrothermal treatment times for modifying the g-C3N4
were chosen at 3, 6, and 9 h. The photodegradation results showed that the g-C3N4 treated
hydrothermally for 6 h was the best for TC removal efficiency, resulting from changes in the
structure and properties of g-C3N4. The high specific surface area caused by the generation
of porous defects and the introduction of O-functional groups on the surface of g-C3N4
gave a positive effect on the photodegradation performance. In contrast, the appearance
of the extended melem unit and its further growth over g-C3N4 during the hydrothermal
treatment, unfortunately, had a negative influence on the charge transfer efficiency over the
g-C3N4, resulting in a high recombination rate of the photogenerated electron–hole pairs.

2. Materials and Methods
2.1. Synthesis of CN-180-x and CN-200-6

Pristine g-C3N4 was synthesized by a thermal polycondensation method. The pre-
cursor, thiourea (30 g) (CH4N2S, ≥99%, supplied by Sigma-Aldrich Korea, South Korea),
was placed in a crucible covered with aluminum foil and heated to 550 ◦C for 4 h (ramping
rate = 5 ◦C/min) in a muffle furnace, using air as the atmosphere. The as-synthesized bulk
g-C3N4 sample was named CN.

One gram of CN powder was dissolved in 100 mL of DI water and then sonicated
for 2 h at room temperature. The 150 mL Teflon™ autoclave containing the CN-180-x
samples (x = 3, 6, or 9 h where x was the hydrothermal period) was heated in an oven to
180 ◦C (ramping rate = 5 ◦C/min). In comparison with the CN-180-6, the CN-200-6 was
synthesized in 6 h at 200 ◦C. The resulting materials were repeatedly rinsed with DI water
after cooling to room temperature before being freeze-dried for the photocatalytic activity
test and further characterization. The schematic procedure for CN and catalysts synthesis
was illustrated Figure 1.

Figure 1. The synthesis of CN and photocatalysts.

2.2. Characterization

A QUADRASORB™ SI surface area instrument (Quantachrome Instruments, Boynton
Beach, FL, USA) and N2 adsorption-desorption isotherms were applied to measure the
Brunauer–Emmett–Teller (BET) specific surface areas. The morphologic changes of the
CN-180-x and CN-200-6 were determined by transmission electron microscopy (TEM)
Tecnai G2 F20 X-TWIN (FEI, Austin, TX, USA). A Cu K X-ray source with a wavelength of
1.5415 (scan rate of 2◦ (2θ)/min) was used to study the X-ray diffraction (XRD) patterns of
the photocatalytic samples using a D/MAZX 2500 V/PC high-power diffractometer from
Rigaku (Tokyo, Japan). A Fourier transform infrared (FTIR) transmittance spectrometer
(Nicolet™ 380 spectrometer, Nicolet™ iS5 with an iD1 transmission accessory by Thermo
Scientific™, Waltham, MA, USA) was employed to determine the functional groups of the
produced photocatalysts. X-ray photoelectron spectroscopy (XPS) was carried out using
Thermo Scientific’s K-Alpha system.
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A UV–Vis diffuse reflectance spectrometer (UV-DRS) (SPECORD® 210 Plus spectro-
scope; Analytik Jena, Germany) examined the optical characteristics of the photocatalysts.
The electrochemical impedance spectroscopy (EIS) data was conducted on an impedance
analyzer (VSP series; Bio-Logic Science Instruments, Seyssinet-Pariset, France). A fine
powder mixture containing 20 mg catalyst sample and 2 mg of active carbon was added
into 100 µL isopropanol 99.7% and 30 µL Nafion 5 wt% (both from Sigma-Aldrich Korea,
Gyeonggi, South Korea). The electrolyte for the three-electrode electrochemical cell con-
sisted of 10 mL of a 1 M NaOH solution. While a RE-1BP (Ag/AgCl) electrode was the
reference electrode, the platinum wire was the counter electrode, and the working electrode
was a 6 mm standard glassy carbon electrode. To measure the EIS, 10 µL of the obtained
mixture was carefully coated onto the glassy carbon electrode. Then, setting a frequency
range of 0.01 Hz to 100 kHz with a 10 mV amplitude and a direct current potential of
+0.8 VSCE was utilized. For additional verification of the charge carrier recombination rate,
time-resolved photoluminescence (PL) spectra were analyzed by an FS5 spectrofluorome-
ter (Edinburgh Instruments Ltd., Livingston, UK) under 400 nm laser excitation and the
emission decay was fitted with tri-exponential functions.

2.3. TC Photodegradation Test

The photocatalytic activities were conducted by an Oriel’s Sol1A™ Class ABB system
with a 140 W xenon lamp and UV cut-off filter (λ > 420 nm) as the light source. In a typical
photodegradation, 10 mg of as-prepared samples were suspended in 50 mL of 20 ppm
TC. Before the photocatalytic reaction, the suspension was stirred for 60 min in the dark
phase to achieve adsorption–desorption equilibrium and then was irradiated for 2.5 h at
the ambient temperature. At 30 min intervals, 3 mL of the solution was filtered through a
polytetrafluoroethylene membrane filter (Whatman GmbH, Dassel, Germany) and analyzed
by absorbance at λmax = 357 nm as a function of the amount of radiation it received, which
was measured using a SPECORD 210 Plus spectroscope. The pseudo-first-order kinetic
model was followed by the Equation (1):

ln
C
C0

= −kt (1)

where C0 (mg/L) was the initial concentration of TC before irradiation, C was the actual
TC concentration at time t, and k was the kinetic rate constant (min−1) [19,20].

In addition, to confirm the reusability of the as-prepared samples, a 4-cycle experiment
was carried out for 50 min for each run under the same reaction conditions.

2.4. Reactive Species Test

The role of the reactive species in the removal of TC over the CN-180-6 samples was
determined by some specific scavengers. Specifically, 5 mM Teoa triethanolamine (TEOA)
(h+ quenching agent), 5 mM isopropyl alcohol (IPA) (•OH quenching agent), and 5 mM
p-benzoquinone (BQ) (•O2

− quenching agent) were dropped into the solution for the
quenching experiments.

3. Results and Discussion
3.1. Physicochemical Properties

The N2 adsorption–desorption isotherms of the as-prepared photocatalysts were
depicted in Figure S1 (see Supplementary Data). All the samples obviously exposed type
IV isotherms with a hysteresis curve of the type H3 pattern, confirming the mesoporous
characteristic of the catalysts. Otherwise, the specific BET surface area (SBET), pore volume
(V), and average pore diameter (L) of the samples are represented in Table 1. During the
hydrothermal treatment, the SBET and V values for the CN-180-x and CN-200-6 samples
had a volcano pattern with a maximum at CN-180-6. The highest values were 75.0 m2 g−1

of SBET and 0.60 cm3 g−1 of V, respectively, which were almost 3 times higher than those
for CN (28.5 m2 g−1 and 0.20 cm3 g−1). The high specific surface area can enhance the
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light-harvesting and improve the photodegradation performance of the photocatalyst.
However, the CN-180-9 and CN-200-6 showed lower SBET and V values due to a longer
hydrolysis time and a higher hydrothermal temperature. This could be related to the strong
hydrolysis/oxidation degree and the attachment of O-containing groups over g-C3N4,
which will be clarified later in the TEM images and XPS data.

Table 1. Specific surface area, pore volume, and average pore size of photocatalysts were determined
via N2 adsorption-desorption isotherm measurements.

Samples SBET (m2/g) V (cm3/g) L (nm)

CN 28.5 0.20 0.030
CN-180-3 59.0 0.35 0.012
CN-180-6 75.0 0.60 0.005
CN-180-9 27.5 0.11 0.002
CN-200-6 5.03 0.06 0.002

The morphological structures of the CN-180-x and CN-200-6 samples were examined
by TEM images. As displayed in Figure 2, all of the as-prepared samples exhibited a
typical two-dimensional sheet-like structure. In comparison to the clean surface of the
CN-180-3 (Figure 2a), the CN-180-9 and CN-200-6 showed the obvious pothole structure
on the surface of g-C3N4 due to the longer hydrothermal time and the higher temperature,
resulting from further hydrolysis on the g-C3N4 surface structure (Figure 2c,d). However,
the CN-180-6 displayed less pothole structure but significant unevenly porous cracks on the
surface at the high magnification, implying the highest specific surface area for CN-180-6.

Figure 2. TEM images of CN-180-3 (a), CN-180-6 (b,e), CN-180-9 (c), and CN-200-6 (d).

The crystal structures of all synthesized photocatalysts were analyzed by the XRD
measurement (Figure 3A). For pristine CN, two characteristic peaks appearing at 12.6 and
27.7◦ could be ascribed to the (100) and (002) crystal planes of the graphite-like structure of
CN, respectively (JCPDS 87-1526) [21]. The significant peak centered at 27.7◦ was related to
the interplanar staking in the g-C3N4 and the minor diffraction peak at 12.6◦ corresponded
to the in-plane tri-s-triazine unit in the g-C3N4 [22–24]. After the hydrothermal process,
the typical XRD diffraction peak at 27.7◦ for as-synthesized samples remained not notably
different, maintaining the strong crystallinity. However, with increasing hydrothermal time
and temperature, a new peak arising around 10.6◦ was increased along with the gradual
decrease of the peak at 12.6◦. First, the peak shift from 12.6 to 10.6◦ corresponded to the
extension of the in-plane staking structure (the melem unit) from 0.68 nm to 0.83 nm [25].
Second, the sharp peak at 10.6◦ could be interpreted as the growth of the extended melem



Nanomaterials 2022, 12, 2945 5 of 13

unit during the hydrothermal treatment. Therefore, the extension of the melem unit
started at CN-180-6 and the extended melem unit was continuously grown by the further
hydrolysis process. Meanwhile, the chemical structure of the as-prepared samples was
monitored by FTIR spectroscopy (Figure 3B). The intense peak at 810 cm−1 represented
the characteristic vibration mode of the triazine unit. The absorption bands located at
1200–1600 cm−1 were assigned to the typical stretching mode of the C-N aromatic structure.
Broad bands at 3000–3600 cm−1 were the result of the uncondensed terminal amino groups
or hydroxyl groups [26,27]. The main peaks of the CN-180-x and CN-200-6 samples were
consistent with the pristine g-C3N4, confirming that the main chemical structure of graphitic
carbon nitride was maintained even after the hydrothermal treatment for a long time and
at high temperatures.

Figure 3. (A) XRD patterns and (B) FT-IR spectra of CN-180-x and CN-200-6 samples.

Additionally, the XPS measurement was employed to further probe the chemical
bonding states of all the photocatalysts. In Figure 4, the XPS data of C 1s, N 1s, and
O 1s for the CN-180-x and CN-200-6 samples are shown. In the C 1s spectra, the peak
centered at 287.8 eV was related to the sp2-bonded carbon (N–C=N), and the peak at
284.5 eV corresponded to C-C bonds [28,29]. During the hydrothermal treatment, the
deconvolution of C 1s displayed other peaks centered at 289.0 eV and 286.3 eV, which were
assigned to the –COOH species and the −NHx groups, respectively [30–33]. The N 1s
spectra of the as-prepared samples could be fitted into three characteristic peaks centered
at 398.0 eV, 398.7 eV, and 400.6 eV, relating to the pyridine N (C-N=C), the bridging N
atoms in N-(C)3, and the amino groups with H, respectively [34,35]. Meanwhile, the O
1s XPS data of the CN-180-x and CN-200-6 samples showed three prominent peaks at
530.6 eV, 531.5 eV, and 533.0 eV, which were attributed to −COOH, −OH, and the C=O
species, respectively [36–38]. After the hydrothermal process, the intensities of the peaks
at 530.6 eV and 533.0 eV were increased, indicating the addition of more O-containing
functional groups in the as-synthesized samples, which was also confirmed by the EA
results (Table 2). In Table 2, the rapid increase in the atomic ratio of O/N up to CN-180-9
implied the introduction of more O-functional groups onto the g-C3N4 surface. Even
though CN-180-9 obtained the highest ratio of O/N compared to all the photocatalysts, its
morphological structure displayed fewer defects than the CN-180-6, which was confirmed
in the TEM images. These resulted in a lower SBET value for CN-180-9 than that of CN-180-6
(Table 2).
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Figure 4. XPS data of C 1s, N 1s, and O 1s for all the photocatalysts.

Table 2. C/N and O/N atomic ratios of all prepared samples were obtained from elemental analysis.

Samples
Element Analysis

Atom (wt%) Atomic Ratio

C N O C/N O/N
CN 33.8 60.3 4.5 0.65 0.07

CN-180-3 32.3 58.2 7.6 0.65 0.11
CN-180-6 29.7 53.3 13.5 0.65 0.22
CN-180-9 28.5 50.4 17.6 0.66 0.31
CN-200-6 31.5 56.1 10.3 0.66 0.16

3.2. Optical Properties

The optical absorption properties of the as-synthesized samples were investigated by
the UV–Vis diffuse reflectance spectra (UV-DRS). As shown in Figure 5A, the absorption
edge of CN, CN-180-x and CN-200-6 were in the range of 300–520 nm, from the UV to
the visible light region [39]. In comparison to all prepared samples, CN-180-6 displayed
a red shift and broad absorption throughout the visible spectrum, corresponding to the
light-harvesting improvement for the photocatalytic reaction [40]. Additionally, the energy
band edges (Eg) of the catalysts were estimated by the Tauc plot method and displayed
in Figure 5B. The Eg values for CN, CN-180-3, CN-180-6, CN-180-9, and CN-200-6 were
estimated at 2.72, 3.09, 2.83, 3.21, and 3.11 eV, respectively, which slightly enlarged with
the integration of the O groups during the hydrothermal treatment. Moreover, the valence
bands (EVB) and the conducting band (ECB) of the CN-180-x and CN-200-6 samples were
conducted according to the empirical equation as follows [18]:

EVB = χ− Ee + 0.5Eg (2)

EVB = ECB + Eg (3)

where χ possessed the absolute electronegativity of the semiconductor (about 4.73 eV);
Ee was the energy of free electrons (about 4.5 eV). Hence, the EVB values for CN-180-3,
CN-180-6, CN-180-9, and CN-200-6 were 1.78, 1.64, 1.84, and 1.79 eV vs. NHE, while the
related ECB were −1.32, −1.18, −1.37, and −1.33 eV vs. NHE, respectively (shown in
Figure S2).
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Figure 5. (A) UV–Vis DRS absorption spectra, (B) Tauc plots for the band gap, (C) the EIS Nyquist
plots, and (D) time-resolved fluorescence decay spectra in the ns time scale with excitation 400 nm
(inset table: the calculated average fluorescence lifetime (τav)) of as-synthesized CN-180-x and
CN-200-6 samples.

Electrochemical impedance spectroscopy (EIS) was an effective analysis to access the
charge transfer efficiency of the photocatalysts. As depicted in Figure 5C, the diameter of
the arc radius for the as-prepared samples gradually declined from CN, CN-180-3, and
CN-180-6. The EIS Nyquist plot of CN-180-6 revealed the smallest semicircle arc radius,
suggesting the highest separation and transfer efficiency of the electron–hole pairs [41,42].
Interestingly, the CN-180-9 and CN-200-6 samples exhibited higher O-containing functional
groups than the pristine g-C3N4; nevertheless, the arc radius of CN-180-9 and CN-200-6
were larger than that of the bulk, which demonstrated that the growth of the extended
melem unit during the hydrothermal process could directly contribute to increasing the
g-C3N4 surface resistance, resulting in the retardation in the transfer of charge carriers.
To confirm the photogenerated electron transfer dynamics, the time-resolved PL decay
spectra were investigated and fitted by a tri-exponential function (shown in Figure 5D).
The average lifetime (τ) of charge carrier of the as-prepared samples was obtained by the
following Equation (4):

τ =
A1τ1 + A2τ2 + A3τ3

A1 + A2 + A3
(4)

where A1, A2, and A3 are the corresponding amplitude, and τ1, τ2, and τ3 are the life-
time [43]. The CN-180-6 displayed slower exponential decay kinetics and its τ value was
5.61 ns which was much higher than that for CN (5.44 ns), CN-180-3 (5.46 ns), CN-180-9
(5.15 ns), and CN-200-6 (3.73 ns). The results implied that the formation of the O-containing
melem unit during the hydrolysis/oxidation reaction initially greatly prolonged the life-
time of the photocarrier, enhancing their potential for contribution to the photocatalytic
reaction [26,44,45]. Nevertheless, the longer hydrothermal reaction time and higher tem-
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perature negatively reduced the τ value due to the continuous growth of the extended
melem unit. It was remarkable that the longer lifetime of the photocatalyst demonstrated
the reduction recombination rate of the photogenerated electron, and thus improved the
photocatalytic reaction [46,47]. In addition, the longer TRPL lifetime for CN-180-6 was
further well confirmed with its highest charge transfer efficiency (EIS results) and high
photodegradation performance.

3.3. Photodegradation Performance

Figure 6A illustrates the photocatalytic activity of the pristine g-C3N4, CN-180-x, and
CN-200-6 over the degradation of TC. Firstly, the removal of TC was investigated for
60 min under the dark phase to obtain the adsorption–desorption equilibrium. The TC
concentration remained unchanged without a light source. After that, the photodegradation
tests were conducted under visible light irradiation (λ > 420 nm). In Figure 6B, the TC
removal efficiency of the as-prepared samples was exhibited. The photocatalytic activity of
the CN-180-x and CN-200-6 was enhanced at initially in the order of CN < CN-180-3 < CN-
180-6 (67.61, 84.60, and 97.17%, respectively) and declined dramatically for the CN-180-9 >
CN-200-6 (57.91 and 23.30%, respectively).

Figure 6. Photodegradation efficiency of TC by CN-180-x and CN-200-6 under visible light irradiation
(140W xenon lamp, λ > 420nm) (A) C/C0 vs. t (Initial condition: 20 mg L−1 TC, 0.2 g L−1 catalyst,
pH = 4.40, 20 ◦C), and (B) TC removal efficiency (%).

The reaction kinetic behaviors of the as-prepared samples were also investigated and
demonstrated in Figure 7. According to the pseudo-first-order kinetic equation, all the fitted
lines had a high linearity value (R2 > 0.98) (Figure 7A and Table S2), which showed that
the photocatalytic activity can be well modeled by the equation. The reaction rate constant
(k) values are displayed in Figure 7B. The k values of TC photodegradation for pristine
CN, CN-180-3, CN-180-6, CN-180-9, and CN-200-6 were 0.0066, 0.0118, 0.0236, 0.0058, and
0.0023 min−1, respectively. The k value for degradation of TC over CN-180-6 was about
3.7 times higher than that of CN. It was elucidated that the introduction of O-functional
groups onto the melem unit during the hydrothermal process initially increased the reaction
rate of the photodegradation, resulting in the highest photocatalytic efficiency of CN-180-6
(97.17%). However, the growth of the extended melem unit despite the abundant addition
of O-containing functional groups suppressed the TC photodegradation over CN-180-9 and
CN-200-6, which was directly correlated to the charge transfer efficiency. As displayed in
Figure 8, the recyclability and stability of the CN-180-6 were evaluated for four continuous
cycles (600 min). Under visible light, the photodegradation rate of CN-180-6 was firmly
unchanged, demonstrating high activity and stability, making it a promising photocatalyst
for TC degradation.
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Figure 7. (A) The pseudo-first-order reaction kinetics and (B) rate constants (k) of as-prepared
photocatalysts for TC photodegradation.

Figure 8. Recycling ability evaluation of CN-180-6.

To investigate the contribution of different reactive species involved in the photocat-
alytic activity, triethanolamine (TEOA), isopropyl alcohol (IPA), and p-benzoquinone (BQ)
were utilized to quench h+, •OH, and •O2

−, respectively [48–50]. As illustrated in Figure 9,
under visible light irradiation, the introduction of IPA and TEOA slightly inhibited the TC
removal efficiency from 97.17 to 80.91 and 84.18%, respectively, revealing that the •OH
and h+ played a minor role in the TC photodegradation. However, a notable decrease in
TC removal (15.86%) was obtained with the addition of BQ, suggesting that •O2

− was the
dominant species in the photocatalytic process. The electron in the CB of CN-180-6 could
be excited from the VB and then reduced the O2 to form the •O2

− radicals based on the
more negative CB potential (−1.18 eV vs. NHE) compared to the standard redox potential
of O2/•O2

− (−0.33 eV vs. NHE), which was in good agreement with the band structure
(Figure S2) [51,52].
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Figure 9. The influence of reactive species on TC removal efficiency (%).

4. Conclusions

In this work, we modified g-C3N4 via the hydrothermal treatment under different con-
ditions and applied them for the photodegradation of TC. We found that the hydrothermal
treatment induced not only the addition of sufficient O-containing groups into g-C3N4 but
also the formation of extended melem units on g-C3N4. The latter inhibited the charge
transfer on g-C3N4, resulting in a high recombination rate of photogenerated electron–hole
pairs. Moreover, the porous crack structure of the extended melem units optimized the
specific surface area, which enhanced the visible light absorption and the TC adsorption
ability in the photocatalytic degradation. The best efficiency of CN-180-6 for the TC degra-
dation under visible light irradiation was achieved at 97.17% because CN-180-6 contained
more abundant O-functional groups and less extended melem unit on g-C3N4 with the
highest specific surface area. Furthermore, from the reactive species test, •O2

− was proven
as a main reactive species involving in the TC degradation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12172945/s1, Figure S1: N2 adsorption/desorption isotherms
of as-prepared photocatalysts; Figure S2: Band diagrams of the CN-180-x and CN-200-6 photo-
catalysts; Table S1: O-groups data from XPS; Table S2: Kinetic rate constants (k) and correlation
coefficients (r2) of TC photodegradation.
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