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Abstract: In regenerative medicine, cell therapies using various stem cells have received attention as
an alternative to overcome the limitations of existing therapeutic methods. Clinical applications of
stem cells require the identification of characteristics at the single-cell level and continuous monitoring
during expansion and differentiation. In this review, we recapitulate the application of various
stem cells used in regenerative medicine and the latest technological advances in monitoring the
differentiation process of stem cells. Single-cell RNA sequencing capable of profiling the expression
of many genes at the single-cell level provides a new opportunity to analyze stem cell heterogeneity
and to specify molecular markers related to the branching of differentiation lineages. However,
this method is destructive and distorted. In addition, the differentiation process of a particular cell
cannot be continuously tracked. Therefore, several spectroscopic methods have been developed to
overcome these limitations. In particular, the application of Raman spectroscopy to measure the
intrinsic vibration spectrum of molecules has been proposed as a powerful method that enables
continuous monitoring of biochemical changes in the process of the differentiation of stem cells. This
review provides a comprehensive overview of current analytical methods employed for stem cell
engineering and future perspectives of nano-biosensing technologies as a platform for the in situ
monitoring of stem cell status and differentiation.

Keywords: stem cell differentiation; single-cell level monitoring; single-cell RNA sequencing; optical
spectroscopy; fluorescence; Raman; SERS

1. Introduction

Stem cells can be distinguished from somatic cells by their unique abilities to self-
perpetuate and differentiate into various cell types consisting of adult tissue or organ.
Stem cell behaviors, including self-renewal and differentiation, are significantly affected
by a multitude of physicochemical cues, such as cell–cell and cell–extracellular matrix
interactions [1], topography, and stiffness of the matrix [2,3], and cellular signaling induced
by soluble cues, such as cytokines and growth factors [4,5]. These complexities in lineage
commitments can result in the heterogeneity of differentiation in certain stem cell popu-
lations. Despite technical advances in controlling the developmental processes of stem
cells, the differentiation into unintended lineages and the existence of undifferentiated stem
cells are regarded as major obstacles to the clinical application of stem cells in regenerative
medicine. In stem cell transplantation therapies, unexpected cell types can emerge during
differentiation. These might cause critical problems, such as tumorigenesis [6,7].

To meet clinical needs, the exhaustive monitoring of biodistribution, engraftment,
viability, and differentiation into a target lineage of transplanted stem cells is required to
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ensure bio-safety and to improve their therapeutic efficacy [8,9]. Up-to-date, different anal-
ysis methods of lineage-specific marker expression, such as immunostaining, Western blot,
flow cytometry, and quantitative polymerase chain reaction (qPCR), have been widely used
to characterize and monitor the differentiation process of stem cells [10,11]. Nevertheless,
such conventional methods have some limitations due to their requirement of destructive
steps, such as cell fixation and lysis, which can disrupt the spatial information in the dif-
ferentiating cell population, thereby impeding longitudinal tracking from parental cells to
their progenies [12–14]. A limitation to precise single-cell-level analysis during in vitro and
in vivo differentiation due to the low resolution of the abovementioned methods is another
important problem encountered in the in situ monitoring of stem cell differentiation. These
limitations have compelled us to develop novel analytical methods that enable the highly
sensitive in situ monitoring of stem cell differentiation at the single-cell level without any
destructive steps.

The main purpose of this review is to recapitulate the latest advances in the devel-
opment of technologies for tracking the lineage commitment of these stem cells, along
with the necessity of monitoring their status and differentiation for clinical applications. In
particular, we specifically discuss methods for the in situ monitoring of stem cell differenti-
ation using nano-biosensing platforms, such as fluorescence-based nanotechnologies and
Raman spectroscopy.

2. Clinical Application of Various Stem Cells and Necessity of Monitoring
Differentiation Process

For clinical application, two types of stem cells have been widely studied: (1) mesenchymal
stem cells, a type of adult stem cell that includes bone marrow-derived mesenchymal stem
cells (BM-MSCs), dental pulp stem cells, (DPSCs), and adipose-derived stem cells (ADSCs);
(2) pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent
stem cells (iPSCs). Here, we elaborate the use of these stem cells in regenerative medicine
for disease treatments and the necessity of monitoring and controlling their differentiation
processes for clinical applications (Figure 1).

Figure 1. Schematic of the process of cell therapy using various stem cells and methods of tracing the
lineage of these stem cells.
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2.1. Mesenchymal Stem Cells

In a series of historic studies in the 1960s and 1970s, Friedenstein et al. identified
MSCs as a fibroblast-like non-hematopoietic population that could differentiate into bone
in the bone marrow [15,16]. Since then, MSCs have also been isolated from other tissues
such as umbilical cord blood [17,18], peripheral blood [19,20] skin and muscle [21], dental
pulp [22,23], lung [24], and adipose tissue [25]. Many comparative studies have suggested
that MSCs isolated from different tissues share common properties such as the expression
of MSC-specific genes and differentiation potential toward specific lineages despite slight
differences in the population numbers, growth rate, and therapeutic outcomes [26–28]. In
addition to their capabilities of self-renewal and differentiation into multi-cell types, MSCs
possess the abilities of migrating toward injured tissues (called a homing effect [29]), ac-
tivating resident cells, and modulating immune responses via paracrine action [30,31].
These versatile properties enable MSCs to be utilized as an appropriate resource for
regenerative medicine.

As a result of a search using “mesenchymal stem cells” as the keyword in ClinicalTrials.gov,
a total of 907 clinical trials, including completed cases, were found to be registered in
different phases. The indications registered for MSC-transplantation therapy include
neurological disorders, such as spinal cord injury [32], multiple sclerosis, and stroke [33,34],
bone and cartilage diseases, such as osteoarthritis and rheumatoid arthritis [35,36], and
cardiovascular diseases [37]. Because of their differentiation potential, the therapeutic
effect of MSC transplantation was attributed to the differentiation of MSCs engrafted in the
injured area into damaged cells and the subsequent tissue regeneration at the early stage
of clinical trials [38]. However, other studies have revealed that in vivo engraftment and
differentiation into the target lineage of transplanted MSCs is usually very inefficient for
having a therapeutic impact, suggesting that the main effect of MSC transplantation might
not be due to their differentiation [39,40]. Preferably, many reports have demonstrated that
paracrine factors secreted from transplanted MSCs play a crucial role in tissue repair and
regeneration [41,42].

In addition to the ambiguity of the mode-of-action of MSC transplantation therapies,
safety issues regarding the quality control of MSCs have been debated. Other failure cases
have also been reported in many clinical trials despite many successful outputs of preclin-
ical studies and small-scale clinical trials at the laboratory level [43,44]. One of the most
important factors attributed to the clinical failure of these therapies is the heterogeneity
in the cell population and the differentiation capability of the MSCs. Many studies have
demonstrated that MSCs obtained from different donors exhibit significant discrepancies
in the proliferation rate and potential for differentiation into specific lineages, resulting in
deviations in the clinical efficacy of MSC therapies [45,46]. The heterogeneity of MSCs is
affected by not only donors but also by the tissue source, cell isolation, culture conditions,
preservation, cell populations, and the passage number of in vitro cultures [47–49]. The
functional heterogeneity of transplanted MSCs can provoke poor engraftment and uncon-
trolled differentiation, resulting in not only insignificant therapeutic efficacy but also severe
side effects. The potential side effects of MSC transplantation include abnormal immune
responses, malignant transformation, and prothrombotic disorder [50,51].

To overcome the potential risks of MSC therapies, it is crucial to monitor the cell char-
acteristics and differentiation. In addition to the abovementioned conventional methods
such as immunostaining, Western blotting, qPCR, and flow cytometry analysis, another
generally accepted method is to examine the metabolites specific to each differentiated
cell type derived from MSCs, such as calcified matrices of osteoblasts [52], lipid droplets
of adipocytes [53], and sulfated proteoglycans of chondrocytes [54,55]. However, these
methods are destructive, with serious limitations in the analysis of in vivo differentiation.
For more precise identification of the heterogeneous cell population derived from MSCs,
the development of non-destructive analytical techniques capable of monitoring multiple
cell type-specific markers simultaneously at the single-cell level is strongly required.
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2.2. Embryonic Stem Cells and Induced Pluripotent Stem Cells

Pluripotent stem cells (PSCs) can proliferate unlimitedly and differentiate into all kinds
of lineages consisting of adult tissue. ESCs and iPSCs are included in the category of PSCs.
Since the first human ESC line was established by James Thomson and colleagues [56],
the clinical application of ESCs has been explored for several incurable diseases, such
as age-related macular degeneration, Parkinson’s Disease, and spinal cord injury [57].
To overcome the ethical dilemma of ESC-based therapy regarding the destruction of a
human embryo and the requirement of numerous eggs in the establishment of an ESC
line, a novel study delivered four specific factors to terminally differentiated somatic cells
and reprogrammed them into a new type of PSCs called iPSCs [58]. Although a study
suggested the clinical application of human iPSCs [59], they face many obstacles, such as
the tumorigenicity and heterogeneity encountered by ESCs as well.

The risk of tumorigenicity due to the remaining undifferentiated cells is considered to
be the most significant problem in the clinical application of PSC technology. Unlimited
self-renewal is an important advantage in that enough cells for transplantation can be easily
obtained. However, this property also results in a crucial problem because undifferentiated
PSCs tend to proliferate infinitely even in vivo. Even if a few residual undifferentiated PSCs
are administrated into a patient’s body, they could induce the formation of teratoma, a type
of germ tumor that contains all three germ lineages simultaneously [60]. Tumorigenesis
might also arise from incorrectly patterned PSCs. For example, it has been reported that
the epigenetic variation among human iPS cell lines is correlated with the differentiation
capacity, indicating that a PSC line with certain epigenetic characteristics is inevitably
incomplete in the differentiation into a specific lineage. The resulting differentiated cells
may induce tumorigenesis when transplanted in vivo [61]. Aside from tumorigenicity, the
functional heterogeneity among different PSC lines due to epigenetic variations might also
impede quality control for uniform and predictable therapeutic efficacy.

For these reasons, precise screening is strongly required to satisfy the safety standards
for the clinical application of PSC-based therapy. To select maturely differentiated cells or
eliminate incorrectly differentiated PSCs, single-cell labeling techniques using monoclonal
antibodies for cell surface markers have been studied. In clinical studies for treating ocular
disorders, Nishida and colleagues found a novel surface marker for the elimination of both
undifferentiated human iPSCs and non-corneal epithelial cells (CECs), including other
cell types of iPSC-derived retinal lineage. As a result, the risk of tumorigenesis could be
reduced in iPSC-derived CEC transplantation therapy [62,63]. However, these methods
still could not completely eliminate undifferentiated and/or incorrectly differentiated PSCs.
Therefore, as in the case of MSCs, the development of an advanced in situ monitoring
system for PSC differentiation is necessary.

3. Latest Technological Advances in Monitoring Stem Cell Status and Differentiation
3.1. Tracing Differentiation of Stem Cells at the Single-Cell Level Using Single-Cell RNA
Sequencing (scRNA-seq)

With advances in molecular biology, the states of differentiating cells can be identified
by investigating the expression of marker genes using immunostaining or qPCR analysis.
At present, scRNA-seq capable of massive gene expression profiling at the single-cell level
provides novel opportunities to analyze stem cell heterogeneity [64,65]. scRNA-seq enables
the simultaneous investigation of transcripts in numerous individual cells, which allows for
the tracing of the differentiation trajectory in a heterogeneous cell population. In addition,
scRNA-seq can provide precise information about ‘off-target’ cell types that emerge during
differentiation. Although conventional immunostaining is useful for identifying target
cells generated through differentiation using lineage-specific markers, it is difficult to
distinguish non-differentiated cells and off-target cells, which are cell types differentiated
into other undesired lineages [66]. Reconstructing differentiation through scRNA-seq can
provide opportunities to ameliorate the differentiation protocol. Some recent studies have
mapped differentiation trajectories and found crucial molecular markers related to the
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bifurcation of lineages. By investigating a transcriptomic signature during mesendoderm
to definitive endoderm (DE) development from the pluripotent state of human ESCs by
scRNA-seq, Chu et al. identified a novel transcriptional regulator that governs the fate of
ESCs into DE [67]. The single-cell mapping of the lineage bifurcation in the ectodermal
differentiation of ESCs has revealed detailed profiles of distinct transcription factors in each
lineage that emerged during early brain development, such as forebrain and mid/hindbrain
lineages [68,69]. These results can provide strategies for the precise control of differentiation
by stimulating target lineages while suppressing off-target lineages.

3.1.1. Cell Fate Mapping by Cellular Barcoding

Recently, cellular barcoding technology has emerged as an efficient tool for the precise
lineage tracing of stem cells by scRNA-seq [70]. In this strategy, the genome of each
individual cell is tagged with a specific DNA sequence of a given number of base pairs.
According to the length of the DNA sequence, an almost infinite number of cells can be
barcoded with a distinct heritable DNA tag. The barcoding of individual cells facilitates
lineage reconstruction by identifying the progeny of a particular cell labeled with a specific
tag. To introduce heritable genetic barcodes, some strategies have been utilized. The most
widely used method so far relies on the manipulation of the vector pool encoding unique
DNA sequences, such as viruses and plasmids [71,72]. Each vector can deliver the DNA tag
into an individual cell through viral or non-viral transfection. The transfected cell is thereby
labeled by the unique DNA barcode [73–76]. Recent advances in CRISPR-based genome
editing technologies have facilitated efficient barcode generation. The initial strategy of
CRISPR/Cas9-mediated cellular barcoding relied on a repair mechanism of Cas9-induced
double-strand breaks in genomic DNA by nonhomologous end-joining with a subsequent
introduction of short random insertions and deletions (INDELs) at the repair loci [77].
These random mutations by INDELs at a parental genome play the role of a barcode for
distinguishing cells. To increase barcode diversity, Kalhor et al. proposed a strategy of
evolving DNA barcodes that can alter their genetic code gradually [78]. In this system, a
guide RNA (gRNA) is engineered to target its own locus introduced in the genome during
the delivery of external genes encoding the gRNA. As a result, a mutation is created within
the gRNA genomic locus. Subsequently, new gRNA expressed from the mutated locus
leads to another mutation at its own gRNA locus. During each cell cycle, a series of these
mutations generate highly diverse and evolving DNA barcodes that can be used to be
deciphered by scRNA-seq.

3.1.2. Challenges of scRNA-seq-Based Differentiation Tracing

Despite its feasibility as a tool for tracing the stem cell differentiation trajectories
and mapping cell fate, scRNA-seq has some limitations, including a considerable process
time and cost [79,80]. One key limitation is that most scRNA-seq procedures require the
disruption of tissue integrity and cell destruction, which can result in the loss of the spatial
information in heterogenous cell populations [81,82]. During stem cell differentiation,
each cell communicates with neighboring cells. Physicochemical interactions that trigger
lineage commitment are significantly affected by an organized microenvironment. Spatial
information that indicates which types of neighboring cells the cell to be tracked is in
contact with (e.g., cells differentiated into the target lineage or off-target cells) is also crucial
for the lineage commitment of stem cells, as is genomic or transcriptomic information. Thus,
the loss of spatial information due to the destructive nature of scRNA-seq makes it difficult
to trace cell fate and find crucial factors affecting differentiation into a specific lineage.

The requirement of genetic manipulation in DNA-barcoding before scRNA-seq-based
lineage tracing and its low efficiency are other important technical obstacles. To transduce
hard-to-transfect cells, such as human PSCs, with a barcode-expressing construct, a high
multiplicity of infection and multiple rounds of infection with retrovirus or lentivirus
are required, which can result in severe cell death [83]. In the case of CRISPR barcoding
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methods, the potential off-target genetic mutations due to residual endonuclease activity
might be an important reason for disturbing the developmental dynamics of stem cells.

In addition, the incomplete detection of unique barcode sequences, which can arise
from a low signal-to-noise ratio of barcode readout or the endogenous knockout of trans-
genes, can distort the results of differentiation tracing [73]. Failure to capture and label
even only a small fraction of the entire cell population might also skew the interpretations
of scRNA-seq data [84]. Genetically unrelated cells are labeled with identical barcode
sequences (barcode homoplasy), which can also cause the failure of cell fate monitoring in
heterogeneous stem cell differentiation.

3.2. Fluorescence Spectroscopy to Monitor Stem Cell Differentiation

In the field of bioscience, the fluorescence imaging technique is widely used as a
valuable tool to monitor the expression of target proteins, cellular processes, and cell
dynamics [85,86]. It can also be used to visualize single cells, tissue, organs, or a whole
body in real-time [87,88]. Fluorophore or fluorescent proteins are essential for applying
this method to the detection of a target protein. In this method, when excitation photons
are irradiated, emission photons are emitted from the fluorophore [89,90]. Fluorescence
studies using immunohistochemistry and nanomaterials have been performed.

3.2.1. Immunocytochemistry (ICC)

ICC is the most used fluorescence protocol. It can evaluate the populations of stem
cells. In this method, the secondary antibody with fluorescent tags detects the primary
antibody bound to the target protein. For successful immunocytochemistry, it is impor-
tant to select antibodies that can specifically bind to the target [91]. Based on previous
studies, various proteins, such as TRA-1-60 [92], SSEA-4 [93,94], Sox2 [95], Oct4 [96,97],
and Sushi-containing domain 2 [98], are markers for PSCs. Antibodies suitable for such
proteins are usually used for fluorescence imaging [99]. Table 1 summarizes the studies
that have monitored the differentiation process of stem cells over the past three years using
immunocytochemistry [95,98,100–136]. ICC is a non-destructive method, different from
Western blot.

Table 1. Recent studies related to stem cell differentiation using immunocytochemistry.

Stem Cell Cell Source Target Lineage

Adipose-derived stem cell (ADSC) Human ADSC Human Schlemm’s canal cell [100]

Dental pulp stem cell (DPSC)

Human DPSC Motor neuron cell [101]

Human DPSC Osteogenic cell [102,103]

DPSC, dental follicle stem cells,
periodontal ligament stem cell Osteogenesis [104]

Embryonic stem cell (ESC)

Mouse ESC Neural crest cell [105]

Mouse ESC Neuron [106]

Mouse ESC Embryoid body [107]

Human ESC Retinal pigment epithelial [108]

Human ESC Somatic cell [98]

Induced pluripotent stem cell (iPSC)

Human iPSC Neural crest stem cell [95]

Human peripheral blood mononuclear
cell iPSC [109]

Human iPSC Neuron [110,111]

Human iPSC Neuron [112]

Human iPSC β-cell [113]

Human iPSC Cardiomyocyte [114]
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Table 1. Cont.

Stem Cell Cell Source Target Lineage

Mesenchymal stem cell (MSC)

Human adipose-derived (AD)-MSC Cardiomyocyte [115]

Human umbilical cord (UC)-MSC Retinal pigment epithelial [116]

Human UC-MSC Chondroprogenitor [117]

Human bone marrow (BM)-MSC Neuron [118]

Mouse MSC Bone [119]

Rat BM-MSC Neurosphere [120]

Rat BM-MSC Bone [121]

Human MSC Nucleus pulposus-like cell [122]

Mouse BM-MSC β-cell into pancreatic lineage [123]

Human AD-MSC Pancreatic cell [124]

Human MSC Osteogenic and chondrogenic lineage [125]

Human MSC Cardiac cell [126]

Rat BM-MSC Adipogenic and chondrogenic cell [127]

Neural stem cell (NSC)

Rat NSC oligodendrocyte [128]

NSC Neuron [112,129–131]

Premigratory neural crest stem cell Enteric neuron [99]

Monkey NSC Neuronal cell, glial cell [132]

Rat NSC Neuron [133]

Human NSC Neuron [134]

NSC/progenitor cell Neuron [135]

Parthenogenetic stem cell Mouse parthenogenetic stem cell Cardiomyocyte [136]

3.2.2. Nanomaterials in Fluorescence-Based Biosensing

Nanomaterials have optical properties, such as photostability and the control of
excitation and emission wavelengths [137]. Fluorescent nanoparticles can be monitored for
a long time due to their long stability in cells. Graphene quantum dots (GQDs), a type of
nanomaterial, have been used as fluorescent materials because they can maintain excellent
photoluminescent and photostability [138,139]. To improve their biocompatibility, GQDs
have been combined with biochemically inert polyethylene glycol (PEG) [140]. Ji et al. [140]
reported that 320 µg/mL of PEG-GQDs did not affect the differentiation from rat neural
stem cells to neurons or glial cells and that PEG-GQDs composites showed adequate
bioimaging capabilities when they were internalized into neural stem/progenitor cells.
The synthesis of fluorescent polymers with high stability and a high quantum yield has
also been reported [141–143]. Jang et al. [143] reported that aggregation-induced emission
nanoparticles (AIE-NPs) can penetrate greatly into cells. AIE-NPs in cells can be retained for
a long time without altering the neuronal proliferation, differentiation, or viability in vitro.
AIE-NPs labeled neuronal grafts were tracked for one month in mouse brain striatum at
various time points after transplantation. Choi et al. [144] found that living human MSCs
(hMSCs) could be differentiated into osteogenic lineage using polydopamine-coated gold
(Au) nanoparticles (Au@PDA). To recognize a target mRNA, a hairpin DNA (hpDNA)
strand with a fluorescent tag was immobilized at the PDA shell. Fluorescent signals were
quenched by Au@PDA and recovered when the hpDNA was dissociated from the Au@PDA
by the target miRNA. Au@PDA–hpDNA displayed fluorescence in hMSCs differentiated
into primary osteoblasts. Using this phenomenon, the differentiation process could be
monitored. In addition, some recent studies using DNA nanotechnology in combination
with fluorescence spectroscopy as a tool for biosensing have been reported [145–147].
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Although fluorescence signaling using monofunctional nanoparticles could be effi-
cient for stem cell monitoring, some limitations still remain. Accordingly, studies on the
fabrication and application of multifunctional nanoparticles have been widely conducted.
Nanomaterial-based fluorescence dyes can be used in drug delivery and transplant treat-
ment through monitoring while tracking in vivo mechanisms [148–151]. Li et al. [151]
reported on a novel near-infrared (NIR) light-activated nanoplatform for the remote
control of cell differentiation and the real-time monitoring of differentiation simultane-
ously. This was attained by encapsulating a photoactivatable caged compound (DM-
NPE/siRNA) and combining a matrix metalloproteinase 13 (MMP13) cleaved imaging
peptide-tetraphenylethylene (TPE) unit conjugated with mesoporous silica-coated up-
conversion nanoparticles (UCNPs). When irradiated with NIR light, the photoactivated
caged compound was activated and the siRNA was released from the UCNPs, enabling
the controlled differentiation of stem cells by light. The MMP13 triggered by osteogenic
differentiation effectively cleaved the TPE probe peptide, enabling the real-time monitoring
of stem cell differentiation by aggregation-induced emission.

Gold nanoparticles (AuNPs) have been widely studied in medical fields, such as imag-
ing, drug delivery, and theragnostic systems [152]. Wu et al. [153] developed multifunc-
tional AuNPs to control cell fate and simultaneously detect the osteogenic differentiation
of hMSCs in real time. AuNP-polyethyleneimine-peptide-fluorescein isothiocyanate/small
molecule-interfering RNA (AuNP-PEI-peptide-FITC/siRNA) nanocomplexes to control
the osteogenic differentiation of hMSCs could be silenced by the peroxisome proliferator-
activated receptor γ (PPARγ), an adipogenesis-related gene. By measuring the activity of
the MMP13 enzyme produced during osteogenic differentiation through the recovery of
FITC fluorescence, it was demonstrated that AuNP nanocomplexes could control cell differ-
entiation. They could be used as a nanoprobe for the real-time detection of the osteogenic
differentiation of hMSCs.

3.3. Profiling and Tracing of Stem Cell Differentiation Using Raman Spectroscopy

Raman spectroscopy is a powerful method that can characterize cell information at
the molecular level while obtaining images of stem cells at the same time [154–156]. It is
based on inelastically scattered photons with different frequencies from excitation photons.
It is the change in the wavelength of the scattered photon that provides the chemical
and structural information [157]. Therefore, Raman spectroscopy reflects the fingerprint
region of the target [158–161]. Raman spectroscopy is suitable for the long-term monitoring
of cellular processes due to its advantages such as light stability [161] and no need for
antibodies [162].

3.3.1. Raman Spectroscopy for Identification of Stem Cell Differentiation

Monitoring the stem cell differentiation process by Raman spectroscopy has been very
actively studied in the last decade. Generally, the Raman spectrum of a cell is described as a
typical fingerprint including the nucleic acid (at 720–820 and 1080–1100 cm−1), lipid (1310
and 1440 cm−1), protein (1030, 1170–1210, and 1610–1660 cm−1), and amino acid residue
(e.g., phenylalanine, 1002 cm−1) (Figure 2) [163–165]. However, the position and intensity
of the Raman bands are different for each cell because the cell components are different.
The analysis of a Raman spectrum of a stem cell that contains various chemical compounds
is very complicated. Therefore, multivariate analyses, such as principal component anal-
ysis (PCA), have been applied to identify and distinguish the differentiation of stem cell
processes [166–168].

Lazarevic et al. [166] investigated stem cell differentiation to adipogenic, chondro-
genic, and osteogenic lineage using micro-Raman spectroscopy. The relative intensities of
bands corresponding to nucleic acids and proteins can distinguish the state of adipogenic
differentiation. During adipogenic differentiation, the intensities of the nucleic acid bands
decrease, while those of the protein and lipid bands increase. The amounts of protein and
proteoglycan increased during the chondrogenic differentiation. In the case of osteogenic
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differentiation, the spectral difference between human periodontal ligament stem cells
(hPDLSCs) and osteoblasts was due to decreases in the band intensities of amino acids and
lipids and increases in the band intensities of carbonates and phosphates.

Figure 2. (A) Raman spectra of stem cells on day 0 (blue) and day 20 (yellow). The black spectrum
shows differences. (B) Evaluation of differentiation rate using machine learning based on Raman
spectra. Adapted with permission from Ref. [163]. Copyright 2021 American Chemical Society.

During the differentiation of stem cells into neurons, the intensity of the lipid band
decreases, while that of the protein increases. Based on these results, it was found that 12%
of stem cells on day 0 already started toward neuron differentiation, whereas 10% of the cells
did not differentiate after 20 days. To improve the prediction of the differentiation rate, an
artificial neural network (ANN) was used. An ANN is a machine learning method that can
provide a non-invasive classification of cell types at the single-cell level [163]. Compared to
the Raman spectrum of a neuron cell, a band at 480 cm−1 assigned to glycogen appeared in
the Raman spectrum of the iPSC [167].

Undifferentiated myoblast cells and myoblast cells differentiated at three different
stages can be easily distinguished using deep UV resonance Raman spectroscopy combined
with chemometric techniques [168]. Mandair et al. [169] reported that bone tissue formed
in an osteogenic cell culture exhibited progressive matrix maturation and mineralization.
However, they could not fully replicate the high degree of collagen fibril order found in
native bones.

Alraies et al. [170] reported on the discrimination between different DPSCs populations
by DNA and protein using the averaged Raman spectrum of DPSCs. Simonović et al. [171]
investigated the differentiation of three dental stem cells (apical papilla (SCAP), dental
follicle (DFSC), and pulp (DPSC)) using the relative intensity ratio of the tryptophan band
versus nucleic acid observed in their Raman spectra.

3.3.2. Raman Spectroscopy for Imaging Stem Cell Differentiation

Raman spectroscopy can be used to add image contrast to visualizing structures and
dynamics in living systems and materials. Chemical composition is most commonly used
to provide contrast for determining the spatial distributions of chemical components [172].

Ravera et al. [173] reported that Raman micro-spectroscopy can contribute to the
understanding of biochemical evolution underpinning the cellular progression from an
undifferentiated state to a condensation stage and then to a terminally differentiated
state. To monitor the process of MSC differentiation into chondrocytes in vitro, Raman
micro-spectroscopy was used, providing a holistic molecular picture of cellular events
governing the differentiation. They found that the characteristic signatures of several
specific macromolecules of the extracellular matrix (ECM) were identifiable in the early
stages of condensation, including collagen type II, proteoglycans, adhesion molecules, and
several other proteins, whereas, in the latter stages, the elaboration of the lipidic content of
the ECM appeared to be the most significant. Using Raman imaging, De Bleye et al. [174]
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monitored the synthesis of ECM and its progressive mineralization during the osteogenic
differentiation process.

Raman spectroscopy can detect the osteogenic differentiation process of stem cells
more sensitively than other chemical-based staining assays. Suhito et al. [52] reported on
a new method capable of the in situ label-free quantification of stem cell differentiation
into multiple lineages, even at a single-cell level. Based on Raman images, they found
that the osteogenesis of hADSCs could be determined and quantified after 9 days of
differentiation. This result is a week earlier than the typical Alizarin Red S (ARS) staining
method. They [175] also reported a novel autofluorescence-Raman mapping integration
analysis for the ultra-fast label-free monitoring of adipogenic differentiation (Figure 3).
In this method, autofluorescence (AF) imaging based on endogenous fluorophores in
cells enables the rapid visualization of the cell morphology and cytosolic microstructure,
while Raman mapping based on a specific molecular signature can precisely identify the
biological molecules of interest. This method can avoid the erroneous characterization of
individual cells in the same batch or different batches.

Figure 3. Schematic illustration of AF-Raman mapping analysis. Reprinted with permission from
Ref. [175]. Copyright 2021 Elsevier.

Kim et al. [176] reported a 3D Raman mapping-based analytical method to identify
crucial factors responsible for inducing variability in differentiated stem cell spheroids.
They analyzed and monitored human DPSC spheroids based on three different Raman
bands of hydroxyapatite (odontogenic differentiation marker), β-carotene (precursor of hy-
droxyapatite), and proteins/cellular components (cell reference) (Figure 4). Dou et al. [177]
reported the diagnosis of the early-stage differentiation of mouse ESCs using Raman imag-
ing. Raman imaging was used to characterize the spectral features of undifferentiated
inner cells and peripheral cells of differentiated embryoid bodies. PCA was employed to
obtain more differences and discriminate between the two cell types. Kukolj et al. [178]
investigated inter-individual differences between BM-MSCs at a single-cell level by Raman
spectroscopy. Despite having a similar biochemical background, fine differences in the
Raman spectra of the BM-MSCs of each donor could be detected.

Figure 4. (A) Schematic illustration of 3D Raman mapping-based analytical method. (B) Characteristic
peak of HA, β-carotene, cell, and medium. (C) 3D Raman mapping using specific peaks. Adapted
with permission from Ref. [176]. Copyright 2021 American Chemical Society.



Nanomaterials 2022, 12, 2934 11 of 22

3.3.3. Surface-Enhanced Raman Spectroscopy (SERS)

Although Raman spectroscopy can be used for the identification and imaging of
stem cells, it also has some limitations due to its low cross-section [179]. The low cross-
section attenuates the signal-to-noise ratio, leading to an increase in measurement time. An
extended measurement time not only causes serious damage to the cells but also makes it
difficult to measure a large number of cells [180]. Another limitation of Raman scattering
is the difficulty of measuring subtle changes in the proteins and minerals. SERS is a
promising technique that can compensate for this shortcoming. SERS is a phenomenon that
can significantly enhance the Raman signal when molecules are absorbed or approached
near the surface of metal nanoparticles [181]. It can detect even single molecules and is
suitable for long-term monitoring [182]. Although roughed gold, silver, and copper metal
surfaces have been used as typical SERS active substrates [183], recently, a SERS substrate
was expanded with semiconductors, graphene, and quantum dot, which also show strong
SERS enhancement [184]. For various purposes, SERS substrates can be fabricated in
different sizes, shapes, and coatings [185].

There are two SERS strategies—labeled and label-free methods for detection with
and without biomarkers, respectively. The label-free SERS method provides rich stem cell
information for identification without labeling the analytes [186–192]. In this method, the
information of the biomacromolecules, such as the protein structure, nutrient amounts,
and biological processes occurring at the cellular level that change during differentiation,
can be detected. Milewska et al. [189,192] reported on the differentiation of BM-MSCs
using label-free SERS. They examined the bands of cholesterol, proteins, collagen back-
bone, proline, calcium hydroxyapatite, and a phospholipid alkyl chain for SERS mapping
(Figure 5) [192]. BM-MSCs cultured on a biocompatible nanostructured gold substrate for
7 and 21 days revealed different stages of the differentiation spectrum of individual cells,
such as molecular species and chemical events on the cellular membrane [189,192].

Figure 5. Schematic illustration of label-free SERS monitoring differentiation of BM-MSCs using gold
substrate. Adapted with permission from Ref. [192]. Copyright 2021 American Chemical Society.

SERS can also be applied to biological processes occurring inside stem cells [191]. The
profiling of molecular changes in the nucleus of a single DPSC was monitored by AuNPs
functionalized with a cell-penetrating peptide. Wang et al. [191] identified the differen-
tiation process of DPSCs stimulated by drugs. Using label-free SERS, they found that
two pivotal differentiation biomarkers, alkaline phosphatase (ALP) and dentin sialophos-
phoprotein (DSPP), were overexpressed during the process. The corresponding trans-
formation of the DNA/RNA backbone vibrational modes was also observed during the
differentiation process, indicating the occurrence of the replication or transcription of
the DNA.
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Indirect SERS methods have also been widely studied because label-free SERS spectra
are too complex for analyzing specific targets [179,193]. Choi et al. [194] developed a
graphene oxide (GO)-hybrid nano-SERS array to detect dopamine (DA) that can character-
ize the differentiation of neural stem cells (Figure 6). During neural differentiation, the DA
was complexed with a DA-binding DNA aptamer conjugated with Raman dye and released
from the hybrid nano-SERS array. As a result, the degree of differentiation of the neural
stem cells was evaluated from the decreased SERS signal. This developed SERS-based
detection method can investigate single-cell signaling pathways associated with DA or
other neurotransmitters and their roles in neurological processes.

Figure 6. (A) Schematic illustration of characterization of neural differentiation using GO-hybrid
nano-SERS array. (B) SERS mapping imaging before and after neural differentiation. Adapted with
permission from Ref. [194]. Copyright 2020 American Chemical Society.

Gold nanostructures (AuNPs), such as nanocages and nanostars, can be easily ad-
justed to expand the localized surface plasmon resonance (LSPR) to near-infrared (NIR).
Nanocages facilitate efficient drug delivery to stem cells through a biocompatible interior
hollow space [195]. Cao et al. [196] reported an ultrasensitive SERS method for the long-
term detection and imaging of miR-144-3p in the osteogenic differentiation of BM-MSCs.
They detected miR-144-3p, an osteogenic differentiation biomarker of BM-MSCs, using Au
nanocage-hairpin DNA. They found that these nanoprobes were capable of the long-term
tracking of the dynamic expression of miR-144-3p (21 days) in differentiating BM-MSCs.

In addition, nanostars not only have many sharp tips that can produce highly sensitive
signals by forming strong LSPR, but also have a large surface area, allowing various
biomolecules to connect to the surface [197,198]. Hua et al. [197] fabricated a gold nanostar
(Au-Star)-based second near-infrared window (NIR-II) fluorescence/SERS dual-modal
imaging probe for the labeling and precise tracking of stem cells. Using this imaging
approach, stem cells in hypodermic and myocardial infarction models can be tracked with
high resolution and depth-independent imaging capabilities.

3.4. Other Methods for Monitoring of Stem Cell Differentiation

Although optical spectroscopy is an attractive tool for monitoring stem cell differen-
tiation, it may cause photodamage of cells [180]. To avoid the photodamage of cells, it is
necessary to extend the range of the light source or optimize the procedure to reduce the
measurement time. Here, we introduce other spectroscopic methods for monitoring stem
cell differentiation.

3.4.1. Infrared (IR) Spectroscopy

IR spectroscopy is a powerful tool to characterize each cell type and state based on
specific molecular properties represented by sensitive IR spectroscopic fingerprints. [199].
Since the energy of the excitation light source of IR spectroscopy is lower than that of Raman
or fluorescence spectroscopy, it has a lower risk of photodamage [200]. IR spectroscopy can
distinguish between stem cells and their derivatives.

Wang et al. [201] developed a single-cell Fourier transform infrared (FTIR) micro-
spectroscopy based on the method for the quantitative evaluation of cellular heterogeneity
by calculating the cell-to-cell similarity distance of IR spectral data. They obtained spec-
tral mapping images of the hMSC differentiation based on 2940–2910 cm−1 (fatty acid),
1670–1600 cm−1 (protein), and 1133–1033 cm−1 (nucleic acid) and revealed that IR pheno-
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types might reflect dynamic heterogeneity changes in the cell population during adipogenic
differentiation. This is enough to measure the MSC, which has an average diameter of 18 µm.
Gieroba et al. [202] used macro attenuated total reflection (ATR)-FTIR spectroscopic imaging
for the analysis of a ceramic-based biomaterial (chitosan/β-1,3-glucan/hydroxyapatite).
According to their study, this spectroscopic approach is very suitable for studying the
formation of new bone tissue and ECM components because sample staining and deminer-
alization are not required. Thus, this approach is rapid and cost-effective.

3.4.2. Second Harmonic Generation (SHG) Scanning

SHG is a nonlinear optical process that is sensitive to the symmetry of media [203].
SHG microscopy has been applied to various specimens, including biological samples
such as collagen, myosin, and microtubules. SHG has the advantages of no bleaching, no
blinking, no signal saturation, and a high signal-to-noise ratio compared to fluorescence.
Qi et al. [204] demonstrated the possibility of the stem cell internalization of boron-doped
graphene quantum dots (B-GQDs) as an SHG probe and showed no hindering of the central
physiological activities of the stem cells, such as differentiation.

Ibrahim et al. [205] performed structural analysis using extracellular collagen align-
ment and the mineral density in bone tissue engineered samples to evaluate the osteogenic
maturation of human hASCs. They demonstrated that altering the physical environment
and introducing a blood supply can enhance the maturity of the bone to which these cells
form. Kourgiantaki et al. [206] demonstrated that grafts based on porous collagen-based
scaffolds, similar to biomaterials utilized clinically in induced regeneration, can deliver
and protect embryonic neural stem cells (eNSCs) at spinal cord injury (SCI) sites, leading to
the significant improvement of locomotion recovery in an experimental mouse SCI model.

3.4.3. Hyperspectral Spectroscopy

Hyperspectral imaging (HSI) integrates conventional imaging and spectroscopy and
is a label-free detection method [207]. Ogi et al. [208] reported on a label-free observation
method for stem cell research that can classify neurons and glia in neural stem cell cultures
using HSI microscopy combined with machine learning. Metha et al. [209] reported on
a novel methodology using HSI combined with spectral angle mapping-based machine
learning analysis to distinguish differentiating human ADSCs from control stem cells.

4. Conclusions

Uncontrolled differentiation is one of the major obstacles in stem cell transplantation
therapies. For preventing phenotypical alterations, such as tumorigenesis and physiological
heterogeneity, methods capable of accurate in vivo characterization of transplanted stem
cells at the single-cell level are required. Recently, various strategies based on single-cell
transcriptomics, such as scRNA-seq, have been developed to monitor the status of stem
cells and predict their differentiation trajectories. Despite its excellence in facilitating
cell fate mapping by providing enormous information about the transcriptome of a large
population at the single-cell level, scRNA-seq has a crucial limitation in that it contains
a cell disruption step, hindering the spatial information of particular cells as well as the
in situ tracking of differentiation. As non-destructive alternatives, optical spectroscopies
such as fluorescence, Raman, IR, SHG, and HSI, have been studied for monitoring with
high sensitivity and accuracy at the single-cell level. Raman is a label-free method that
can screen differentiation and obtain chemical information at the molecular level of stem
cells, which can be used to discriminate stem cells according to their differentiation state.
SERS has an enhanced Raman signal, thereby facilitating the detection of biomolecules,
such as neurotransmitters, with more sensitivity. By examining Raman and SERS spectra
with PCA and machine learning, many attempts have been made to determine the degree
of stem cell differentiation and cluster each differentiation state. Although other limitations
of spectroscopy-based techniques, such as long measurement times and low sensitivity
in some cases, still remain, recent studies have attempted to overcome these limitations
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by combining two or three spectroscopy methods simultaneously or utilizing artificial
intelligence technology. In the future, technologies discussed in this review can be used
as an advanced monitoring system for in vivo and in vitro studies for clinical applications
using stem cells.
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