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Abstract: The present work analyzes the effect of process variables and the method of characterization
of cellulose micro/nanofibers (CMNFs) obtained by different treatments. A chemical pre-treatment
was performed using oxalic acid at 25 wt.% and 50 wt.%. Moreover, for mechanical pre-treatments, a
rotary homogenizer or a PFI mill refiner were considered. For the mechanical fibrillation to obtain
CMNFs, 5 and 15 passes through a pressurized homogenization were considered. The best results of
nanofibrillation yield (76.5%), transmittance (72.1%) and surface charges (71.0 µeq/g CMNF) were
obtained using the PFI mill refiner, 50 wt.% oxalic acid and 15 passes. Nevertheless, the highest
aspect ratio (length/diameter) determined by Transmission Electron Microscopy (TEM) was found
using the PFI mill refiner and 25 wt.% oxalic acid treatment. The aspect ratio was related to the gel
point and intrinsic viscosity of CMNF suspensions. The values estimated for gel point agree with
those determined by TEM. Moreover, a strong relationship between the intrinsic viscosity [η] of the
CMNF dispersions and the corresponding aspect ratio (p) was found (ρ[η] = 0.014 p2.3, R2 = 0.99).
Finally, the tensile strength of films obtained from CMNF suspensions was more influenced by the
nanofibrillation yield than their aspect ratio.

Keywords: oxalic acid; refining; rotary homogenizer; intrinsic viscosity; aspect ratio; gel point

1. Introduction

The depletion of petroleum products and the need to reduce the carbon footprint
promote the development of new biodegradable materials obtained from renewable sources.
Cellulose is the most abundant natural polymer that can provide rational solutions to these
problems. In the last decades, the production of nanocellulose obtained from the cell
walls of wood fibers and plants has gained great interest due to its interesting properties,
such as high tensile strength and stiffness, low weight, renewability, biocompatibility,
biodegradability and non-toxicity [1–3]. Consequently, cellulose nanofiber (CNF) can
be used in several applications, such as reinforcement in biocomposites [4], biomedical
application [5], strength additive in papermaking [6] and aerogels [7].

CNFs are usually prepared by applying an intense mechanical treatment, in which
the fibers are subjected to great shearing forces that fibrillate and release microfibrils. The
most common mechanical treatments include repeated steps in high-pressure homogeniz-
ers [8], microfluidizers [9], colloid mills [10], twin-screw extrusion [11] and high-intensity
ultrasonication [12].

Nevertheless, a mechanical, chemical or enzymatic pre-treatment of fibers can also be
applied to partially separate them and prevent clogging, as well as to reduce the energy
consumption in the homogenizer [3,13].

Among mechanical pre-treatments, PFI refiners were found to produce high internal
fibrillation, facilitating the subsequent mechanical treatment [8]. Ultra-turrax homogeniza-
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tion can also be used as a mechanical pre-treatment to improve nanofibrillation yields and
their dispersibility [14,15].

2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation has been widely
used as a chemical pre-treatment to obtain highly fibrillated CNFs [16–18]. However, this
reagent is very expensive. Sanchez-Salvador et al. [19] reported that TEMPO and NaBr can
be reduced by 67%, without altering the properties of the CNFs by reusing these reagents
in the oxidation of cotton and eucalyptus cellulose. However, the cost of the reagent is still
high and their disposal causes environmental concern.

Therefore, it is worth analyzing the application of other chemical pre-treatments
different from TEMPO. One alternative is the use of organic dicarboxylic acids, such as
oxalic acid. The treatment with this reagent produces carboxylation through Fischer–Speier
esterification between one carboxylic group of the oxalic acid and one hydroxyl group on
the accessible surface of the cellulose [20,21]. Oxalic acid has some advantages: it is cheap,
it can be recovered and corrosion in equipment is controllable [3]. Chen et al. [21] obtained
CNFs using oxalic acid at different concentrations, temperatures and reaction times. CNFs
showed high thermal stability and a high aspect ratio, suggesting that they could be used
as reinforcing component in biocomposites for different applications.

Normally, chemical pre-treatments different from TEMPO or the absence of chemical
pretreatment lead to two fractions: CNF and microcellulose (CMF) one. Depending on
the application considered, one of these fractions can be more useful than the other. For
instance, Hu et al. [6] considered CNFs obtained by different mechanical method to analyze
its performance as reinforcement of a recycled fiber paper. They found that CNFs with
low nanofibrillation yield can produce a clear favorable effect provided that the aspect
ratio (length/diameter) was high enough. The length of CNFs determines the probability
that fibrils can be entrapped in the fiber network and can contribute to the increase in
interfiber bonding.

Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Trans-
mission Electron Microscopy (TEM) can be used to determine the diameter of the CNFs,
but the length and, therefore, the aspect ratio is more difficult to evaluate due to entangle-
ments of nanofibers [22]. There are different methods to estimate the aspect ratio of CNFs.
Varanasi et al. [23] proposed the sedimentation method, which is based on the gel-point
concentration. The gel point is the threshold consistency at which a continuous network
of fibers in suspensions is formed. This method is an adaptation for nanocellulose of the
method proposed by Martinez et al. [24] for wood pulp fibers. Another method involves the
measurement of the intrinsic viscosity of cellulose micro/nano fiber (CMNF) suspensions.
Albornoz-Palma et al. [25] found a relationship between this rheological parameter and the
aspect ratio of enzymatic CNFs in a diluted regime. The use of simple and swift methods
such as gel point and shear viscosity methodologies can be very useful to determine aspect
ratios of these CMNFs based on dicarboxylic acid pre-treatments.

Our hypothesis is that variants in preparation conditions can have an impact in the
nanofibrillation yield, charge density and aspect ratio, which are important parameters that
define their potential applications.

The purpose of the present study was to evaluate different pre-treatments for the
production of oxalic-acid-based CMNFs. For this, the application of oxalic acid at two
concentrations (25 wt.% and 50 wt.%) and two mechanical pre-treatments (a rotary homog-
enizer type ultra-turrax and a PFI mill refiner) were considered. After these pre-treatments,
the fibers were fibrillated through the pressurized homogenizer considering 5 and 15 passes.
Characteristics of CMNF suspensions like nanofibrillation yield, transmittance and surface
charge were analyzed. The microfibrillar and nanofibrillar fractions were characterized
by measuring the dimensions by SEM and TEM, respectively. The aspect ratio of the
nanofibrillar fraction was related to two parameters of the CMNF suspension: gel point by
sedimentation and intrinsic viscosity. Finally, the tensile strength of films obtained from
CMNF suspensions was analyzed.
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2. Materials and Methods
2.1. CMNF Preparation

CMNFs were obtained from industrial bleached eucalyptus pulp (BEP) supplied by
Suzano Papel e Celulose S.A. (Aracruz, Brazil). The pulp was soaked in water for 24 h
and disintegrated for 5 min at 1.5% consistency. The pulp suspension was centrifuged and
stored at low temperature (4 ◦C) until use. The average dimensions of the hardwood fibers
determined by optical microscopy were 15.6 µm in diameter and 0.95 mm in length.

Scheme 1 shows the stages of different cellulose micro/nanofibers obtained.
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2.1.1. Chemical Pre-Treatment

The chemical pre-treatment was carried out according to the technique described by
Chen et al. [21]. In brief: 15 g of pulp were added to a reactor containing 750 mL oxalic acid
considering two concentrations: 25 wt.% and 50 wt.%. The reaction was made at 90 ◦C for
1 h under constant stirring at 250 rpm. After that, the solution was filtered and the pulp
was washed, starting with hot water to avoid the crystallization of the acid, and then, with
water at room temperature until the conductivity of the filtrate was 20 µS/cm. Finally, the
pulp was neutralized to pH 7.0 with NaOH solution, in order to obtain the sodium form of
the carboxylic groups of the pulp.

2.1.2. Mechanical Pre-Treatment

Fibers chemically treated with oxalic acid were treated with a rotary homogenizer
type ultra-turrax (Unidrive × 1000, Baden-Württemberg, Germany) at 0.75% consistency
in distilled water, for 3 min/g fiber at 15,000 rpm.

On the other hand, BEP fibers were mechanically pre-treated using a Papirindustriens
Forskningsinstitutt (PFI) mill at 10,000 revolutions and 10% of consistency in accordance
with SCAN-C 18:65 standards. Then, the pulp was chemically pre-treatmented (as ex-
plained in Section 2.1.1).

2.1.3. Mechanical Fibrillation

In all cases, the pulp was homogenized at 0.75 wt.% using a pilot scale pressurized
homogenizer (SIMES S.A, Santa Fe, Argentina) at 300 bar, using 5 and 15 passes. The
CMNFs obtained were stored at low temperature (4 ◦C) until use.

Table 1 shows the identifications of the different cellulose micro/nanofibers prepared.

Table 1. Identifications of cellulose micro/nanofibers according to the treatment made.

Samples
PFI Mill
Refining

(Revolutions)

Oxalic Acid
(wt.%)

Homogenizer Type Ultra-Turrax,
3 min/g Fiber

(rpm)

Homogenization at
300 bar (Passes)

25ox_Ut_5P — 25 15,000 5
25ox_Ut_15P — 25 15,000 15
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Table 1. Cont.

Samples
PFI Mill
Refining

(Revolutions)

Oxalic Acid
(wt.%)

Homogenizer Type Ultra-Turrax,
3 min/g Fiber

(rpm)

Homogenization at
300 bar (Passes)

50ox_Ut_5P — 50 15,000 5
50ox_Ut_15P — 50 15,000 15

R_25ox_5P 10,000 25 — 5
R_25ox_15P 10,000 25 — 15
R_50ox_5P 10,000 50 — 5

R_50ox_15P 10,000 50 — 15

2.2. Characterization of CMNFs

Before making all characterization techniques, the CMNF solutions were sonicated for
2 min using a Sonics & Materials ultrasonic homogenizer (500 W, 40% amplitude) to ensure
their adequate dispersion.

2.2.1. Esterification and Carboxylation

Cellulose carboxylation by the oxalic acid treatment was identified by Fourier Trans-
form Infrared (FTIR) spectroscopy system (Shimadzu FTIR-8000 Spectrometer, (Shimadzu
Co., Kyoto, Japan)). Samples of original fibers and the CMNF films were triturated and
mixed with potassium bromide (KBr). Then, they were pressed into tablets. The spectra
were recorded at the wavelength range of 400–4000 1/cm with a resolution of 8 1/cm. Each
sample was scanned 40 times.

The carboxylic group content of the bleached eucalyptus pulp (BEP) and the CMNFs
obtained with 25 wt.% and 50 wt.% oxalic acid treatment were determined by conducto-
metric titration. For the original pulp, the technique proposed by Katz et al. [26] was used.
For CMNFs, the determinations were made in a similar way to the method described by
Ovalle-Serrano et al. [27]: a suspension was prepared by mixing 50 mg of CMNF in 400 mL
of water. The pH was adjusted to 3.0 by adding 0.01M HCl solution to ensure a complete
protonation of carboxyl groups. Conductometric titrations were performed using 0.01M
NaOH solution as titrant under a nitrogen atmosphere.

2.2.2. Nanofibrillation Yield, Transmittance and Surface Charges

The yield of nanofibrillation was determined by centrifuging (4000 rpm, 2809 g) an
aqueous suspension of 0.14 wt.% CMNF for 20 min according to Schnell et al. [28]. The
dry weight of the supernatant, CNF, was obtained from the difference between the initial
weight (Wi) and the centrifugation sediment (Wf) which was considered as CMF according
to Equation (1):

Yield (%) =

[Wi − W f

Wi

]
∗ 100 (1)

Transmittance readings of 0.1 wt.% CMNFs suspensions were performed at 800 nm
using CECIL 3055 spectrophotometer and distilled water as reference.

Surface charges of CMNFs were determined by polyelectrolyte titrations using stream-
ing current measurements (Chemtrac ECA equipment, Norcross, GA, USA). A solution
of 0.3 meq/L of cationic polyelectrolyte, poly(diallyldimethylammonium chloride) (Mw
400,000–500,000 Da) from Sigma Aldrich was used as titrant. The pH of CMNF suspensions
(0.04 wt.% dissolved in 1 mM NaCl solution) was previously adjusted to 7.0.

2.2.3. Morphologies
Measurements of Diameter and Length Distributions by Microscopy

The diameter and length distributions of CMNF fraction of diameter greater than
1 µm were obtained by optical microscopy (Leica Microsystems Instrument). Samples were
diluted to 0.1 wt.%, and a single drop of the suspension was cast on a glass support and
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dried at room temperature. Then, 500 diameter and 50 length measurements were made
using, for both, 40× and 100× lens.

The diameter distributions of CMF were examined using a Phenom Pro scanning
electron microscope (SEM) (Eindhoven, Netherlands) at accelerating voltages of 5 KV
and 10 KV, with a working distance of 2.5 ± 0.5 mm. The nanofibrillated fraction was
removed by centrifugation, and the sediment was used for preparing suspensions of approx.
0.015 wt.%. The suspension was sonicated, lyophilized and the swollen CNF film formed
was coated with gold. More than 75 diameter measurements were made using Image J
processing software. The length measurements were not possible due to high entanglement
of fibers.

The diameter and length distributions of CNF were determined by transmission
electron microscopy (TEM) (JEOL, JEM-2100 Plus, Tokyo, Japan). Observations were made
in HRTEM mode, with an acceleration voltage of 100 kV. The nanofibrillated fraction was
removed by centrifugation as indicated above in Section 2.2.2. An aliquot of 0.001 wt.% of
CNF suspensions was mounted on a carbon coated Cu grid. A number of 300 diameters
and 75 length measurements were performed using Image J processing software.

Sedimentation

According to the method proposed by Varanasi et al. [23], different concentrations
of CMNFs were prepared (from 0.01 wt.% to 0.07 wt.%), the suspensions were stirred for
5 min and poured into graduated cylinders to reach an original suspension height (h0).
After 48 h, the height of sediment in the cylinder (hs) was measured. The initial solid
concentrations of CMNFs (C0) were plotted versus (hs/h0) and the data were adjusted to a
quadratic equation. Then, the first derivate of the curve at the y-intercept gives the gel point
(Cc). For this method, the density of the cellulose nanofibers was assumed 1500 kg/m3.
Then, the aspect ratio (A) can be estimated using Crowding Number theory (CN) with the
following equation:

A = 6 Cc
−0.5 (2)

This theory considers that the CNF are shaped like straight cylinders.

Shear Viscosity

The dynamic viscosity of different CMNF suspensions was determined using a Brook-
field viscometer LVT with an Ultra Low Adapter (ULA) spindle similar to the method
proposed by Albornoz-Palma et al. [25]. In brief, viscosity measurements were made at
different concentrations (from 0.01 wt.% to 0.1 wt.%) and shear rate of 73.38 1/s. In all
cases, samples were conditioned in a thermostatic bath at 25 ◦C for 1 h, and then, they were
shaken for 1 min in a vortex before the measurement.

The critical concentration (C*) was obtained from the changes in specific viscosity as a
function of the CMNF concentration according to Tanaka et al. [29].

The intrinsic viscosity [η] was obtained in the dilute region extrapolating the linear fit
to a zero concentration.

2.3. Film Formation from CMNFs

The formation of films was performed by adding 14 g of CMNF suspension at 0.75 wt.%
in a petri dish. The samples were dried at 30 ◦C for 24 h. The thickness of the films was
measured using a micrometer with a precision of 0.001. The average of 10 measurements
of different parts of the film was reported. The mechanical properties of the CMNF films
were measured using INSTROM 3340 equipment with a 100 N cell. First, the film was
conditioned at 23 ◦C and 50%RH and then, 5 mm wide specimens were cut. For the
mechanical tests, the ASTM D882 standard was followed. The initial distance between the
grips was 22 mm and the tensile speed was 2 mm/min.
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3. Results
3.1. CMNF Characterization
3.1.1. Esterification and Carboxylation

Figure 1a shows the infrared spectra of original BEP fibers and CMNFs pretreated
with a PFI refiner and 25 wt.% and 50 wt.% oxalic acid. The spectra of the samples show
the same cellulose characteristic peaks in 3380 1/cm and 2898 1/cm regions, attributed
to the stretching vibration of hydroxyl groups (O-H) and the symmetric C–H stretching
vibration, respectively [30,31]. The peaks around 1640 1/cm can be attributed to O–H
bending vibration of the absorbed water and the peak at 899 1/cm can be assigned to
β-glycosidic linkages of glucose ring in cellulose [32,33]. For the samples of CMNFs
obtained by 25 wt.% and 50 wt.% oxalic acid treatment, a new weak peak was observed
at 1737 1/cm, corresponding to the C=O ester vibrational stretching band [33]. This can
be attributed to the reaction between the hydroxyl group on the cellulose chains and the
carboxyl group of oxalic acid through Fischer–Speier esterification of one carboxyl group
of oxalic acid (Figure 1c).

On the other hand, Figure 1b shows the carboxylic group content obtained by conduc-
tometric titration of the bleached eucalyptus pulp (BEP) and the CMNFs pre-treated with
PFI refiner and 25 wt.% and 50 wt.% oxalic acid. The total charge of CMNFs is expected to
remain unaltered by mechanical treatments. Junka et al. [34] showed that the total charge
of CNFs is independent of the number of passes through a microfluidizer. The results show
that there is an important increase of the carboxyl group content for both CMNFs, also
confirming the carboxylation of cellulose.
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3.1.2. Nanofibrillation Yield, Transmittance and Surface Charge

Table 2 shows the nanofibrillation yield, the transmittance and surface charges of
different CMNFs. The CNMFs corresponding to PFI refining pre-treatment had higher
nanofibrillation yields, transmittance and surface charges than those obtained with a
rotary homogenizer. Importantly, the refining step was carried out before the chemical
pre-treatment because after oxalic acid treatment, the obtained paste cannot withstand a
PFI refining. The mechanical pre-treatment prior to the chemical one, could have improved
the accessibility between the hydroxyl groups of the cellulose and the carboxylic groups of
the oxalic acid, thus increasing the nanofibrillation yield, transmittance and surface charges
of the CMNF obtained. Moreover, the equipment used in the mechanical pretreatment
also influences the characteristics of the CMNFs obtained. In the rotary homogenizer,
a high-speed rotor forces the fiber suspension through the slots in the stator assembly.
Minimal gap between rotor and stator produces extremely high shear forces that produces
homogenization by dispersion. Additionally, these shear forces can cause fibrillation
and fiber shortening. On the other hand, PFI mill refiner works by applying high shear
forces to the suspension of fibers that are pressed between two parallel surfaces that rotate
under constant load in the same direction. These causes internal and external fibrillation,
generation of fines, and fiber shortening [35]. For CNMF preparation, internal fibrillation
facilitates the final mechanical fibrillation process at the homogenizer. According to the
results, while that the rotary homogenizer produces a greater number of fiber cuts, the PFI
mill a greater internal and external fibrillation for these working parameters.

Table 2. Nanofibrillation yield, transmittance and surface charge of CMNFs.

CMNF
Nanofibrillation

Yield
(%) 1

Transmittance
(800 nm)

(%)

Surface Charge
(µeq/g CMNF) 1

25ox_Ut_5P 4.5 ± 1.2 14.5 10.3 ± 0.9
25ox_Ut_15P 5.1 ± 1.6 10.6 11.8 ± 0.1
50ox_Ut_5P 19.5 ± 1.4 8.4 18.5 ± 2.1

50ox_Ut_15P 20.6 ± 1.6 10.1 30.5 ± 1.5

R_25ox_5P 11.6 ± 1.2 18.7 19.6 ± 1.9
R_25ox_15P 12.8 ± 1.8 22.4 21.7 ± 0.2
R_50ox_5P 54.3 ± 0.33 48.3 72.9 ± 0.3

R_50ox_15P 76.5 ± 0.28 72.1 71.0 ± 0.6
1 Values are the average of two replicates of the trial.

In addition, a significant increase in nanofibrillation yield was observed when the
concentration of oxalic acid was increased from 25 wt.% to 50 wt.%. This result can be
attributed to the new carboxylic groups introduced during the chemical treatment, which
produce repulsive forces that facilitate the defibrillation of cellulose during the mechanical
process [36]. Moreover, when the number of passes of the pressurized homogenizer was
increased (from 5 to 15), no significant change in nanofibrillation yield was observed, except



Nanomaterials 2022, 12, 2908 8 of 21

for the pulp treated with PFI and 50 wt.% oxalic acid (from 54.3% to 76.5%). This behavior
could be associated with the working relatively low pressure (300 bar) of the homogenizer
compared to those normally used (900–1000 bar), which hindered the increment in the
main fibrillation.

On the other hand, Table 2 also shows that the transmittance values of the CMNF
suspensions were similar and low for pulps treated with the rotary homogenizer (from
8.4% to 14.5%). However, for refined CNMFs, transmittance increased when the number of
passes of the homogenizer and the concentration of oxalic acid were increased (from 18.7%
to 72.1%). This increment is in agreement with a reduction in the residual fiber content and
an increase in the content of optically inactive nanofibrils (higher nanofibrillation yield)
in the CMNF suspensions. In addition, higher surface charges induce better stability and,
therefore, higher transmittance [31,33].

The highest surface charge content was achieved for PFI refining and 50 wt.% ox-
alic acid treatment, reaching a value of 72.9 µeq/g CMNF. Surface charges represent the
anionic nature of the fibers and have been traditionally used to determine the degree of
delamination of the pulp fibers for papermaking after disintegration [36].

3.1.3. Morphologies
Measurement of Diameter and Length Distributions by Microscopy

The CMNFs obtained with the different treatments were heterogeneous, i.e., they
present an ample wide size range. In this work, we analyzed three fractions: (a) diameter
greater than 1.0 µm, (b) CMF and (c) CNF.

Table 3 shows the results of average diameter, length and aspect ratio of CMNF fraction
of a diameter greater than 1.0 µm determined by optical microscopy (OM). The average
diameter values were similar (from 10.7 µm to 11.9 µm) when the rotary homogenizer was
used, irrespective of the chemical treatments applied. For pulps refined by PFI mill, the
average diameter values were lower (from 2.1 to 3.9 µm). In addition, Table 3 shows that
the average length and the aspect ratio decreased with increasing oxalic acid concentration
in the chemical treatment. The same effect was observed with the number of passes of the
pressurized homogenizer, for both the rotatory homogenizer and refining process. The
highest aspect ratio was obtained for R_25ox_5P treatment. Figure 2 shows the OM images
and histograms of length and diameter of samples 25ox_Ut_5P, 50ox_Ut_15P, R_25ox_5P
and R_50ox_15P. A strong morphological difference is observed between these mechanical
treatments. For the rotary homogenization process, cut fibers are observed, whereas for
the refining process, slender shavings are observed, indicating a fibrillation effect. The
OM images, diameter and length histograms of all CMFs are shown in Figure S1 in the
Supplementary Material.

Table 3. Average diameter, length and aspect ratio of original pulp and CMNF fraction of a diameter
greater than 1.0 µm determined by optical microscopy.

CMNF Average Diameter
(µm) 1

Average Length
(µm) 2

Average Aspect
Ratio

(Length/Diameter)

BEP 15.6 ± 4.0 945.3 ± 271.4 60.4

25ox_Ut_5P 11.9 ± 4.5 63.9 ± 17.2 5.4
25ox_Ut_15P 10.6 ± 3.3 42.6 ± 14.9 4.2
50ox_Ut_5P 10.9 ± 3.4 32.0 ± 7.8 2.9

50ox_Ut_15P 10.7 ± 3.3 29.1 ± 7.2 2.7

R_25ox_5P 3.9 ± 3.6 48.7 ± 28.4 14.1
R_25ox_15P 3.3 ± 2.5 25.6 ± 13.3 7.8
R_50ox_5P 2.8 ± 1.0 11.1 ± 5.5 4.0

R_50ox_15P 2.1 ± 1.0 7.7 ± 2.7 3.6
1 Values are the average of 500 measurements. 2 Values are the average of 50 measurements.
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Table 4 shows the results of average diameter of CMFs. Similar values were found
for all CMFs (from 179 ± 43 nm to 257 ± 69 nm). Images and diameter histograms of the
CMFs determined by SEM are shown in Figure 3. The presence of entangled microfibers
was observed; therefore, it was not possible to measure their length, since their beginning
and end were undistinguishable. In addition, some lamella and branches were observed,
and both elements suggest that the mechanical treatment has not been sufficient to finish
separation of the microfibrils. The SEM images and diameter histograms of all CMFs are
shown in Figure S2 in the Supplementary Material.

Table 5 shows average diameter, length and aspect ratio of CNF determined by TEM.
No significant differences were observed in the average diameters of any CNFs (from
12 ± 3.0 nm to 16 ± 4.8 nm). However, a decrease in the average lengths was observed for
50% oxalic acid treatment (approx. 725 nm) compared to those obtained by 25% oxalic acid
treatment (approx. 1250 nm). This result indicates that the chemical pre-treatment with
higher concentration of oxalic acid reduced the CNF length, generating a decrease in their
aspect ratio.
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Table 4. Average diameter of CMF fraction determined by SEM.

CMNF Average Diameter
(µm) 1

25ox_Ut_5P 179 ± 43
25ox_Ut_15P 257 ± 69
50ox_Ut_5P 220 ± 74

50ox_Ut_15P 180 ± 71

R_25ox_5P 186 ± 40
R_25ox_15P 252 ± 68
R_50ox_5P 193 ± 95

R_50ox_15P 226 ± 69
1 Values are the average of 200 measurements.
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Table 5. Average diameter of CNF determined by TEM.

CNF Average Diameter
CNF (nm) 1

Average Length
(nm) 2

Average Aspect
Ratio

(Length/Diameter)

25ox_Ut_5P 16.0 ± 5.0 1262 ± 443 78.9
25ox_Ut_15P 16.0 ± 4.8 1250 ± 430 78.0
50ox_Ut_5P 12.0 ± 3.0 725 ± 248 60.4

50ox_Ut_15P 12.6 ± 3.7 727 ± 322 57.7

R_25ox_5P 12.5 ± 4.2 1204 ± 298 96.3
R_25ox_15P 13.2 ± 3.5 1298 ± 569 98.3
R_50ox_5P 12.0 ± 3.5 793 ± 227 66.1

R_50ox_15P 12.5 ± 3.0 707 ± 183 56.6
1 Values are the average of 300 measurements. 2 Values are the average of 75 measurements.

In addition, pulps treated with PFI showed a higher aspect ratio than those treated
with the rotatory homogenizer, and the number of pressurized homogenizer passes did
not influence the morphology of the CNFs obtained. Figure 4 shows the TEM images
and histograms of CNF samples 25ox_Ut_5P, 50ox_Ut_15P, R_25ox_5P and R_50ox_15P,
respectively. The TEM images and diameter histograms of all CNFs are shown in Figure S3
in the Supplementary Material.
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Sedimentation

Figure 5 shows initial concentrations of CMNFs as a function of the ratio of initial
(ho) to final height (hs) of CMNF after 48 h. Data were fitted with a quadratic equation.
The first derivative of the curve at the y-intercept gave the gel point (Cc) and the aspect
ratio (A) was estimated using Equation (2) (Table 6). For CMNFs corresponding to 25 wt.%
oxalic acid, aspect ratio did not change with increasing number of passes through the
homogenizer. In addition, the CNMF obtained by PFI mill shows a higher aspect ratio than
the CNMF obtained by rotary homogenizer. The aspect ratio indicated by sedimentation
gel point agrees with those measured by TEM (Table 5). It should be noted that, for the
sedimentation procedure, both the CMF and CNF fractions were involved, but for TEM,
only CNF fractions were considered. This result can be explained by the existence of a
similar aspect ratio between the microfibrillar and nanofibrillar fractions. Results indicate
that a simple technique such as sedimentation can be used to estimate the aspect ratio of
these CNFs.
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Table 6. Sedimentation data fitted with a quadratic equation, gel point (Cc) and aspect ratio (A) of
CMNFs according to CN theory.

CMNF Y = Ax2 + Bx (*) Gel Point (Cc)
(wt.%) (**)

Aspect Ratio (A)
(Length/Diameter)

25ox_Ut_5P y = −1.861x2 + 0.794x 0.794 67.3
25ox_Ut_15P y = 10.99x2 + 0.793x 0.793 67.4

R_25ox_5P y = 0.178x2 + 0.361x 0.361 99.9
R_25ox_15P y = −0.044x2 + 0.401x 0.401 94.8

* R2 higher than 0.99 for all case, where Y is initial solid concentration and X is (hs)/(h0). ** The first derivate of
the curve at the y-intercept gives the gel point (Cc).

However, this technique has some limitations, since the final height of sedimentation
cannot be always observed. This occurred for the CMNFs obtained by 50 wt.% oxalic acid
treatment, which has a higher content of carboxylic groups and, therefore, higher repulsive
forces can prevent their agglomeration and sedimentation.

Sanchez Salvador et al. [36] analyzed the effect of the stability reduction of a CNF
suspension and the decrease in a gel point, by changing the pH and the salt concentration
of the medium. For this purpose, a CNF of high-charge obtained with a pre-treatment with
TEMPO-mediated oxidation was used. They showed that, with the pH value under 4.8 (cor-
responding to the value of the pKa of COO−) and at a high salt concentration (≥5 mM
CaCl2), the charges decreased and the electrical double layer was compressed, respectively.

Shear Viscosity

The aspect ratio was also associated with the intrinsic viscosity of the CMNF sus-
pension. In dilute condition, the interactions between CNMFs were not significant and
the rheological properties depended mainly on the morphology of the CNMFs and their
entanglements [25,37]. The dilute region is determined by identifying the change in specific
viscosity (ηsp) as a function of the concentration of CNFs in the dispersion [37]. Moreover,
the dilute region (Newtonian behavior) and another semi-dilute region above the critical
concentration (C*) (power-law region) can be identified [25,38].

Figure 6a shows the plot of specific viscosity (ηsp) as a function of concentration for
25ox_Ut_5P. It is observed that the C* is clearly defined. The C* values of all CMNFs are
shown in Figure S4 in the Supplementary Material. Table 6 shows critical concentration
(C*) values of all CMNFs here considered. The CMNFs dispersions obtained by 50 wt.%
oxalic acid had a higher critical concentration than 25 wt.% oxalic acid ones. This result can
be attributed to the higher quantity of charges incorporated in the chemical pre-treatment.
The increase in charge content generates a greater repulsion between the nanofibrils, which
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makes it possible to increase the dilute region [25]. Furthermore, there was decrease in
interfibrillar interactions due to a decrease in the length of the fibrils.
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A relationship between the critical concentration (C*) and the aspect ratio (p) of the
CNFs determined by TEM was established (Figure 6b):

C∗
[ g

ml

]
=

2.82
p2

for aspect ratio values between 60–97. The relationship here found is in agreement with that
determined by other authors. For instance, Mason [39] found a relationship of C* = 1.5/p2

for p-values between 20–60 for rigid-rod fibers, and Tanaka et al. [29] found C* = 18/p2

for p-values between 90–330 for CNF obtained with (TEMPO)-mediated oxidation. All
the relationships show the same trend, but with different slopes. It can be concluded
that, as the aspect ratio of the CNFs increases, the slope of the relationship increases.
Moreover, Albornoz-Palma et al. [25] analyzed a mechanical CNF with enzymatic pre-
treatment and found the relationship C* = 67.0/p2 for p-values between 146–326. The slope
of this relationship was greater than that found by Tanaka et al. [29] for CNF obtained
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by chemical pre-treatment, with similar aspect ratios. They concluded that the type of
pre-treatment performed (chemical, enzymatic or mechanic) on the CNF also influences the
slope obtained.

Figure 7a shows the reduced viscosity (ηred) as a function of concentration of the CMNF
dispersions in the dilute region (Newtonian behavior) above the critical concentration.
Intrinsic viscosities were obtained by extrapolating the linear fit to zero concentration.
The intrinsic viscosity results are shown in Table 7. Higher intrinsic viscosity values
were obtained for 25 wt.% oxalic acid CMNFs compared to 50 wt.% oxalic acid ones.
No significant difference was detected in the diameters of the CNFs, but their lengths
decreased in the nanofibrillar fraction with increasing oxalic acid concentration (Table 5).
This length reduction decreased the effective volume of CMNF suspensions, which explains
the lower intrinsic viscosity. On the other hand, the CNMFs obtained by 25 wt.% oxalic
acid had a lower nanofibrillation yield than 50 wt.% oxalic acid ones. It can be assumed
that the nanofibrillar fraction slightly influences the viscosity when the concentration of
the suspensions tends to zero. In addition, the CMNFs corresponding to PFI refiner pre-
treatment showed a higher intrinsic viscosity than those treated with a rotary homogenizer,
for each chemical treatment applied. PFI mill CMNFs had higher surface charge, which
can generate an increase in the effective volume.
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Table 7. The critical concentration (C*) and intrinsic viscosity of CMNFs dispersions.

CMNF Critical Concentration (C*)
CMNF (wt.%)

Intrinsic Viscosity
CMNF (mL/g)

25ox_Ut_5P 0.040 187.9
25ox_Ut_15P 0.048 225.4
50ox_Ut_5P 0.079 129.1

50ox_Ut_15P 0.077 108.1

R_25ox_5P 0.029 367.6
R_25ox_15P 0.038 410.5
R_50ox_5P 0.071 145.5

R_50ox_15P 0.089 115.9

Figure 7b shows that a strong relationship can be established between intrinsic viscos-
ity and aspect ratio (R2 = 0.99):

ρ [η] = 0.014 p2.3

where ρ is the density of the CMNFs (1.5 g/mL) that is included to make the intrinsic
viscosity dimensionless. This relationship has a higher exponential term than previous
records [40]): ρ [η] = 0.15 p1.9; and Albornoz-Palma et al. [25]: ρ [η] = 0.051 p1.85), indicating
greater rigidity of the nanofibers [40]. In addition, a smaller constant of the equation was
observed. This constant is related to the nature of the type of CNFs and their configuration
in the dispersion [25].

On the other hand, when the aspect ratio of the nanofibers increases, their flexibility
increases [41]. Flexible nanofibers subjected to shear stress produce higher hydrodynamic
forces (higher viscosity) than rigid nanofiber suspensions [40]. Therefore, it can be con-
cluded that the nanofibers obtained with PFI refining and 25 wt.% oxalic acid have the
highest aspect ratio, flexibility and, therefore, intrinsic viscosity.

Figure 8 represents characteristics of the CNFs obtained by different pre-treatments.
The number of steps in the pressure homogenizer is not considered because this variable
has minor effects. The results of nanofibrillation yield, surface charge, diameter and length
were considered in this illustration. The pulp treatment with 50 wt.% oxalic acid leads a
higher nanofibrillation yield and surface charges, but shorter length than those treatment
with 25 wt.% oxalic acid. This is because the chemical treatment produces two effects:
(a) a controlled partial hydrolysis that cuts the cellulose chains and weakens the fibers
that break more easily during the fibrillation process in the homogenizer; and (b) a Fischer
esterification where carboxylic groups are added to the cellulose. The negative charges of
these groups produce repulsive forces between the microfibrils that favors their subsequent
separation in the pressure homogenizer. Depending on the application of the CNF, one or
another concentration of oxalic acid in the chemical pre-treatment may be more convenient.

On the other hand, the pulp treated with a PFI mill refiner generates a higher nanofib-
rillation yield and surface charges and a slight increase in aspect ratio than those pre-treated
with a rotary homogenizer. This is because in the pre-treatment with a PFI mill, a greater
amount of internal and external fibrillation and less number of cuts are produced, compared
to the rotary homogenizer. Therefore, it is more convenient to use the PFI mill for these
working parameters.
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ical pre-treatments.

3.2. Film Formation of CMNFs

Figure 9a shows the tensile stress-strain curve of the films formed from CMNFs. The
films based on CMNF obtained with the rotary homogenizer were very brittle and it
was not possible to test them. Moreover, they were less translucent and homogeneous
(Figure 9b, 25ox_Ut_5P) than the films obtained by PFI refiner (Figure 9c, R_25ox_5P).
These physical properties can be explained because greater amounts of cut fibers were
observed for the CMNFs obtained with a rotary homogenizer, while a greater effect of
fibrillation was observed for those obtained by PFI refiner.

Films obtained from 50 wt.% oxalic acid CMNFs had higher tensile strength than films
obtained from 25 wt.% oxalic acid. This result indicates that the nanofibrillation yield has
more influence on film strength than their aspect ratio.
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Figure 9. (a) Stress and strain of the CNMF films, (b,c) photographs of 25% oxalic acid CNMF films
obtained by pre-treatments with rotary homogenizer and the PFI refiner, respectively.

Neenu et al. (2022) reported mechanical properties of the CNF nanopapers obtained
from pineapple pomace pre-treated with oxalic acid. The values obtained (stress: 64.9 MPa
and strain: approx. 9%) were similar to those reported here. Moreover, Chen et al. (2020),
reported a maximum stress of 49.1 MPa and a strain of 4.5% approximately, for a conductive
paper based on TEMPO-CNF and different dosages of silver nanowire (AgNW).

4. Conclusions

Based on the results, it was determined that the differences in the pre-treatments
strongly influenced the characteristics of the CMNFs obtained. CMNFs obtained employing
PFI mill before chemical pre-treatment had better characteristics than those obtained using
the rotary homogenizer. On the other hand, 50 wt.% oxalic acid CMNFs showed higher
nanofibrillation yield, transmittance, and total and surface charges, but lower aspect ratio
than 25 wt.% oxalic acid ones. Nonetheless, the increase in the number of passes through
the pressurized homogenizer did not produce significant changes in the characteristics of
the CMNFs. Specifically, for CMNFs obtained by 25 wt.% oxalic acid treatment, the aspect
ratios calculated by TEM agreed with the gel point values.

On the other hand, a strong relationship between the intrinsic viscosity of the CMNF
dispersions and their aspect ratio was found. Consequently, both parameters, gel point and
intrinsic viscosity, can be useful to calculate the aspect ratio of this type of CMNFs. Finally,
the tensile strength of CMNF films was more influenced by nanofibrillation yield than their
aspect ratio.
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