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Abstract: Silicon-based photovoltaic technology is helpful in reducing the cost of power generation;
however, it suffers from economic losses and environmental pollution caused by silicon cutting waste.
Herein, a hydrothermal method accompanied by heat treatment is proposed to take full advantage
of the photovoltaic silicon cutting waste and biomass excrementum bombycis to fabricate flake-like
porous Si@C (FP-Si@C) composite anodes for lithium-ion batteries (LIBs). The resulting FP-Si@C
composite with a meso-macroporous structure can buffer the severe volume changes and facilitate
electrolyte penetration. Meanwhile, the slightly graphitic carbon with high electrical conductivity
and mechanical strength tightly surrounds the Si nanoflakes, which not only contributes to the
ion/electron transport but also maintains the electrode structural integrity during the repeated
lithiation/delithiation process. Accordingly, the synergistic effect of the unique structure of FP-Si@C
composite contributes to a high discharge specific capacity of 1322 mAh g−1 at 0.1 A g−1, superior
cycle stability with a capacity retention of 70.8% after 100 cycles, and excellent rate performance with
a reversible capacity of 406 mAh g−1 at 1.0 A g−1. This work provides an easy and cost-effective
approach to achieving the high-value application of photovoltaic silicon cutting waste, as well as
obtaining high-performance Si-based anodes for LIBs.

Keywords: silicon–carbon composites; silicon cutting waste; excrementum bombycis; biomass; anode
materials; lithium-ion batteries

1. Introduction

Energy shortfall and environmental issues have been commonly considered as major
challenges to humanity, leading to the flourishing growth of renewable energy sources [1].
Currently, the development of silicon-based photovoltaic technology is conducive to keep-
ing the power generation cost down [2]. However, in the current photovoltaic industry,
ca. 35% of solar-grade silicon ingots have to be cut into silicon cutting waste, resulting
in more than 2.8 billion USD in losses annually in China [3,4]. Besides these, flake-like
silicon particles of ca. 1 µm size easily cause severe water and soil contamination [5].
Therefore, the effective recovery and reuse of tons of silicon cutting waste are becoming
key challenges. So far, various strategies for recycling silicon cutting waste have sprung
up, such as the preparation of silicon nitride [6], Al–Si alloys [5], and surface-modified
adsorbents for heavy metal ion removal from water [7]. In addition, silicon-based materials
as anodes for lithium-ion batteries (LIBs) are also a valuable pathway for silicon cutting
waste recovery due to their high theoretical specific capacity [8]. However, the major
shortcomings of silicon-based anodes are their low electrical conductivity and huge volume
changes during the lithiation/delithiation process, leading to electrode cracking and the
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loss of electrical contact between current collectors and active materials [9,10]. Meanwhile,
the instability of solid electrolyte interphase (SEI) layers induced by the pulverization of
silicon-based electrodes can cause rapid electrolyte depletion [11,12]. As a result, all of the
above problems would give rise to unsatisfactory cycle and rate performance, which have
restricted the development and practical application of silicon-based anodes.

In the past decades, numerous strategies have been adopted to improve the electro-
chemical performance of silicon-based anodes [13–24]. Typically, the approach has been
the utilization of nanoscale silicon particles, which can strengthen the endurance to large
volume changes, reduce the ion transport distance, and increase the contact area between
silicon-based anodes and electrolyte [13]. However, the high surface energy, unsatisfac-
tory electroconductivity, and high surface area of silicon nanoparticles can cause severe
agglomeration, low tap density, and repeated formation of SEI films, which deteriorates
their ion/electron transport kinetics, volumetric energy density, Coulombic efficiency (CE),
and cycling performance [14]. In this regard, the addition of carbonaceous matrixes such
as amorphous carbon [15,16], graphitic carbon [17,18], carbon nanotubes [19–21], carbon
nanofibers [22,23], carbon cloth [24], graphene [25,26], and graphene oxide [27,28] is con-
sidered to be an effective method to improve electrical conductivity, enhance mechanical
flexibility, and stabilize SEI formation. Compared to amorphous carbon, graphitic carbon
can not only deliver higher electroconductibility but also facilitate the transport of Li+ into
silicon nanoparticles. Unfortunately, the synthesis of these silicon–graphitic carbon com-
posites always encounters some difficulties, including harsh reaction conditions, complex
synthesis procedures, and expensive raw materials [17].

Herein, we develop a facile and low-cost method for the preparation of flake-like
porous Si@C (FP-Si@C) composites for high-performance anodes in LIBs using the silicon
cutting waste from the photovoltaic industry and the biomass excrementum bombycis. The
as-obtained FP-Si@C composite presents a porous structure, which can accommodate the
volume changes and facilitate electrolyte penetration. Meanwhile, a highly conductive
layer can be constructed by wrapping slightly graphitic carbon on the surface of silicon
nanoflakes, which not only contributes to the ion/electron transport but also maintains the
electrode structural integrity during the repeated lithiation/delithiation process. Benefiting
from the unique structure, the FP-Si@C composite exhibits excellent rate capacity, long
cycling life, and outstanding CE. Remarkably, this work not only provides an easy and
cost-effective approach to achieving the high-value application of photovoltaic silicon
cutting waste but also can be extended to advance other related element materials for
energy conversion and storage.

2. Materials and Methods
2.1. Material Synthesis

Pretreatment of the silicon cutting waste (P-SiCW): The raw silicon cutting waste
agglomerations (1–100 µm, Jinko Photovoltaic Power Co., Ltd., Shanghai, China) were first
put into a ball mill tank containing anhydrous ethanol and milled at 600 rpm for 4 h. After
that, the nano-silicon was washed with hydrochloric acid (0.1 M), deionized water, and
ethanol, respectively, to remove the organic residuals, then dried at 60 ◦C overnight. Finally,
the flake-like nano-silicon was obtained by heating at 600 ◦C for 1 h under nitrogen flow.

Pretreatment of the excrementum bombycis (PEB): The pretreatment of the excremen-
tum bombycis was similar to that of cutting waste silicon except for the calcination step.

Synthesis of flake-like porous Si@C composites (FP-Si@C): P-SiCW (133.3 mg) and PEB
(266.7 mg) were dispersed into deionized water (30 mL). After stirring for 1 h, the mixture
was transferred into a 50 mL Teflon container and maintained at 180 ◦C for 6 h. Afterward,
the composites were dried at 60 ◦C overnight, then transferred to a tube furnace under a
nitrogen atmosphere and heated at 700 ◦C for 1 h. The resulting flake-like porous Si@C
composite was called FP-Si@C-2. FP-Si@C-1 and FP-Si@C-3 were prepared by changing the
mass ratio of the P-SiCW and PEB to 1:1 and 1:3, respectively.
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2.2. Characterization

The morphologies of the samples were observed by scanning electron microscopy
(SEM, JEOL JSM-7800, Tokyo, Japan) and transmission electron microscopy (TEM, JEOL
JEM-2100, Tokyo, Japan). The crystalline structures of the products were examined using
X-ray diffraction (XRD, Bruker D8 ADVANCE, Berlin, German) with Cu Kα radiation. Ra-
man spectra were characterized on a Raman system (Jobin Yvon HR800, Paris, France) with
a 532 nm laser. The carbon content in the composites was determined by employing ther-
mogravimetric analysis (TGA, Netzsch STA 449 F3, Jupiter, Selb, Germany). The amount
of silicon in the P-SiCW was measured using an X-ray fluorescence spectrometer (XRF,
THERMO FISHER SCIENTIFIC ARL ADVANT’X IntelliPowerTM-4200, Waltham, MA,
USA). The surface composition of the sample was investigated using X-ray photoelectron
spectroscopy (XPS, Thermo FISHER SCIENTIFIC K-Alpha Nexsa, Waltham, MA, USA). The
N2 adsorption–desorption isotherms were tested by a gas adsorption analyzer (Micrometric
TriStar II 3020, Cumming, GA, USA). The specific surface area and pore size distribution
was calculated by the Brunauer–Emmett–Teller (BET) method and Barrett–Joyner–Halenda
(BJH) model, respectively.

2.3. Electrochemical Measurements

The working electrodes were prepared by mixing the active materials, Ketjen black (KB),
and polyvinylidene fluoride (PVDF) binder at a weight ratio of 8:1:1 in N-methylpyrrolidone
(NMP). After stirring for 1 h, the homogeneous slurries were obtained and pasted onto the
copper foil current collectors and then dried at 60 ◦C under vacuum for 12 h. After that, the
above copper foils were roll-pressed at a pressure of 10 MPa and punched into disks with a
diameter of 12 mm. The mass loading of the active materials was about 1.0 mg cm−2. The
CR2032 coin-type cells were assembled in an argon-filled glovebox using Li foils, polypropy-
lene membranes (Celgard 2400, Charlotte, NC, USA), and 1.0 M LiPF6 in ethylene carbonate
(EC)/dimethyl carbonate (DMC) (1:1 in volume ratio) as the counter electrodes, separators,
and electrolyte, respectively. The galvanostatic charging/discharging (GCD) and cyclic
voltammetry (CV) tests were conducted on the Neware battery testing system (CT-4008,
Shenzhen, China) and Gamry electrochemical workstation (INTERFACE1000E, Warminster,
PA, USA) in a voltage window of 0.01–1.50 V (vs. Li/Li+), respectively. The electrochemical
impedance spectroscopy (EIS) was performed using a Gamry electrochemical workstation
(INTERFACE1000E, Warminster, PA, USA) with a frequency range from 100 kHz to 10 mHz
at an open circuit potential with an AC perturbation of 10 mV. The galvanostatic intermit-
tent titration technique (GITT) measurements were tested using a Neware battery testing
system (CT-4008, Shenzhen, China) at a current density of 0.1 A g−1 and a pulse time of
10 min between 1 h rest intervals.

3. Results and Discussion

As illustrated in Figure S1, the FP-Si@C composites were generated from the silicon
cutting waste and excrementum bombycis biowaste. Firstly, the microsized raw silicon
cutting waste agglomerations (Figure S2a) were ball-milled, washed with hydrochloric
acid, and heat-treated under nitrogen flow to obtain the nanosized flake-like P-SiCW
(Figure S2b). The X-ray fluorescence spectrometry (XRF) results (Table S1) reveal that Si
is the main component in P-SiCW. The pretreatment process of excrementum bombycis
biowaste was similar to that of silicon cutting waste. The pretreated excrementum bombycis
(PEB) is conducive to the interfacial stabilization of the hydrothermal system and serves
as the carbon source [18]. During the hydrothermal process, P-SiCW was encapsulated by
PEB by virtue of the oxygen-containing groups [29]. Then, the mixture was carbonized
under a nitrogen atmosphere at 700 ◦C for 1 h, and the flake-like porous Si@C composite
(FP-Si@C-2) was obtained.

The morphological characteristics of the FP-Si@C-2 composite were investigated by
scanning electron microscopy (SEM) and transmission electron microscopy (TEM). As
shown in Figure 1a and Figure S3b, the FP-Si@C-2 composite is composed of nanoflakes,
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retaining the morphology of P-SiCW (Figure S2b), but forming abundant pores caused by
the pyrolysis of excrementum bombycis. These pores can not only provide buffer spaces
to effectively accommodate the volume changes of Si during the lithiation–delithiation
process, leading to high structural integrity and an enhanced cycling life, but also facil-
itate the penetration of electrolyte, contributing to the Li+ transfer kinetics and the rate
performance [30,31]. To obtain a better understanding of the structure of the FP-Si@C-2
composite, high-resolution TEM (HRTEM) with selected area electron diffraction (SAED)
and energy-dispersive X-ray spectroscopy (EDX) were performed. As shown in Figure 1b,
Si nanoflakes are wrapped by the graphitic carbon layers derived from the carbonized
excrementum bombycis, which would guarantee superior electronic conductivity as well
as facile strain relaxation to promote the electron transfer kinetics and provide a more
stable solid electrolyte interphase (SEI) layer [32]. More clearly, HRTEM in Figure 1c shows
that the lattice spacing of 0.313 nm is consistent with the crystalline Si (111) plane. The
crystallinity of Si can be further confirmed by the diffraction spots and rings indexed to the
(111), (220), and (311) planes of crystalline Si in the SAED pattern (Figure 1d). In addition,
the homogeneous distribution of Si and C as shown in EDX elemental mapping (Figure 1e)
is in agreement with the uniform carbon layers coated onto Si nanoflake surfaces, and
the weight ratio of Si to C is 83.93:16.07 (Figure S4). The carbon content in FP-Si@C-2
composite further revealed by thermogravimetric analysis (TGA, Figure S5) was calculated
as 11.3 wt.%, which is almost consistent with the result of the EDS spectrum in Figure
S4. In order to optimize the carbon content, the FP-Si@C-1 and FP-Si@C-3 composites
were prepared. Compared with the FP-Si@C-2 composite, the FP-Si@C-1 and FP-Si@C-3
composites display the same morphology (Figure S3a,c) but possess different weight ratios
of carbon (8.2 wt.% for FP-Si@C-1 and 24.3 wt.% for FP-Si@C-3, Figure S5). To further study
the surface composition of FP-Si@C-2, X-ray photoelectron spectroscopy (XPS) was carried
out. The XPS full survey scan in Figure S6a displays Si 2s, Si 2p, and C 1s peaks. The
XPS Si 2p spectrum includes three peaks corresponding to Si–Si (99.8 eV), Si–C (100.8 eV),
and Si–O (104.6 eV), respectively, showing the presence of pure Si and SiO2 (Figure S6b).
However, based on the analysis results of the EDS spectrum (Figure S4), the content of SiO2
is low. Therefore, the existence of SiO2 may be caused by surface oxidation. In addition,
the XPS C 1s spectrum is assigned to three peaks at 284.7, 286.2, and 289.0 eV, which are
consistent with C–C, C–O, and C=O bonds, respectively (Figure S6c).

The phase structures of P-SiCW, FP-Si@C-1, FP-Si@C-2, and FP-Si@C-3 were studied
by X-ray diffraction (XRD) analysis, as shown in Figure 2a and Figure S7. Obviously, five
distinct diffraction peaks at 28.3◦, 47.1◦, 56.0◦, 69.0◦, and 76.0◦ can be found in all the
samples, which are assigned to the (111), (220), (311), (400), and (331) plans of crystalline
Si (JCPDS No. 27-1402), respectively. No other peaks are observed in P-SiCW, indicat-
ing that the impurities such as residual organics have been effectively treated, which is
consistent with the XRF results (Table S1). A broad peak around 22.5◦ and a feature diffrac-
tion peak at 26.4◦ in the FP-Si@C-1, FP-Si@C-2, and FP-Si@C-3 composites matched with
the amorphous carbon and the 2H(002) plane of graphite, respectively, indicating their
disordered structures with a low graphitization degree [33]. To gain better insight into
the structures of carbon in the FP-Si@C composites, Raman spectroscopy was carried out
(Figure 2b and Figure S8). Besides a sharp crystalline Si peak around 518 cm−1, there are
two characteristic peaks of carbon at 1350 cm−1 and 1590 cm−1, corresponding to the D
band assigned to the disordered/defective carbon with graphitic sp3-hybridization and the
G band associated with the graphitic carbon derived from the E2g vibratory mode of sp2

bond, respectively [34]. Moreover, the intensity ratio of the D and G peak (ID/IG) can be
applied to evaluate the graphitization degree of carbonaceous materials [35]. The ID/IG
values for FP-Si@C-1 FP-Si@C-2, and FP-Si@C-3 were calculated as 0.947, 0.975, and 0.959,
respectively, where the decreased ratio suggests an enhanced graphitization degree, thereby
resulting in strengthened electrical conductivity to boost the Li+ transport.
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Due to the addition of slightly graphitic carbon, the type of N2 adsorption–desorption
curves for the FP-Si@C-2 composite is type IV (Figure 2c), suggesting the existence of meso-
macropores on the FP-Si@C-2 surface (Figure 2d). The meso-macroporous structure could
alleviate the morphology changes derived from the large volume changes of Si by ensuring
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the structural integrity and strain relaxation during the discharging/charging process, thus
enhancing the cycling stability [30,31,36]. Additionally, the Brunauer–Emmett–Teller (BET)
specific surface area (SSA) of the FP-Si@C-2 composite is decreased from 113.50 m2 g−1 of
the P-SiCW to 61.76 m2 g−1, and the pore volume of the P-SiCW and FP-Si@C-2 is 0.24 and
0.14 cm3 g−1, respectively (Table S2), which is conducive to reducing the side reactions,
consequently resulting in a promoted Coulombic efficiency (CE) [14].

To investigate the electrochemical Li+ storage performance of FP-Si@C composite in de-
tail, half-cells were assembled employing 1.0 M LiPF6 in ethylene carbonate (EC)/dimethyl
carbonate (DMC) (1:1 in volume ratio) as the electrolyte. Figure 3a shows the first three
cyclic voltammetry (CV) curves of the FP-Si@C-2 composite tested in a potential range of
0.01–1.50 V (vs. Li/Li+) at a scan rate of 0.1 mV s−1. In the first cathodic scan, two broad
reduction bumps at 0.86 and 1.07 V correspond to the irreversible reactions between Li+

and surface functional groups of Si, and the SEI formation, respectively, and then vanish in
the subsequent cycles [37]. Another reduction peak observed below 0.10 V is attributed
to the LixSi formation, while two oxidation peaks around 0.31 and 0.49 V are assigned to
the dealloying stage of LixSi [37]. In the latter cycles, obviously increased intensities of the
two oxidation peaks are found due to the activation process of FP-Si@C-2. Moreover, a
new reduction peak at 0.21 V is detected, which can be ascribed to the alloying process
of Si [38]. Importantly, the CV curves almost overlap after the second cycle, indicating
the high electrochemical reversibility of FP-Si@C-2. The CV profiles of all the FP-Si@C
composites are similar to that of P-SiCW, illustrating the electrochemical characteristic of
Si-based materials (Figures 3a and S9a–c). Figure 3b and Figure S9d–f exhibit the galvanos-
tatic charge–discharge (GCD) profiles of all the FP-Si@C composites and P-SiCW for the
initial three cycles measured at a current density of 0.1 A g−1 between 0.01 and 1.50 V
(vs. Li/Li+). The first discharge/charge specific capacity of P-SiCW, FP-Si@C-1, FP-Si@C-2,
and FP-Si@C-3 is 3581/1451, 2139/1238, 2364/1436, and 2059/1158 mAh g−1, with an ini-
tial Coulombic efficiency (ICE) of 40.5%, 57.9%, 60.7%, and 56.2%, respectively, suggesting
that the addition of a moderate amount of slightly graphitic carbon could decrease the
amount of “dead lithium” by increasing the electronic conductivity and suppressing the
fracture of Si; hence, the FP-Si@C-2 composite delivers a higher ICE [14]. Meanwhile, the
CE of FP-Si@C-2 composite can reach 93.7% at the third cycle, indicating high Li+ storage
reversibility. Therefore, as depicted in Figure 3c, the cycling stability and CE of all the
FP-Si@C composites and P-SiCW were further compared and investigated at a current
density of 0.1 A g−1. Although no discharge/charge-specific capacity can be found for the
P-SiCW with low electrical conductivity, the addition of slightly graphitic carbon noticeably
enhances the Li+ storage capability of the pure Si. Meanwhile, it is worth noting that
the corresponding capacity retention is obviously promoted by increasing the amount
of slightly graphitic carbon. The FP-Si@C-2 composite retains a high specific capacity
of 654 mAh g−1 with nearly 99.0% CE after 100 cycles, which is due to the fact that the
meso-macroporous structure and the protective carbon layer can accommodate the volume
changes of Si during the alloying–dealloying process [30–32,36]. The rate performance also
has an important impact on the practical applications of anode materials for Li+ batteries.
As shown in Figure 3c, the FP-Si@C-2 composite exhibits a high reversible capacity of
406 mAh g−1 at 1.0 A g−1, where 1322 mAh g−1 of the specific capacity at 0.1 A g−1 is
maintained. Note that when the current density is switched back to 0.1 A g−1, the specific
capacity raises to 924 mAh g−1. In sharp comparison, the discharge capacity of FP-Si@C-2
composite is higher than that of P-SiCW at each current density.
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To investigate the Li+ storage kinetics in-depth, the CV curves of all the FP-Si@C
composites and P-SiCW at different scan rates from 0.25 to 1.0 mV s−1 were recorded
(Figures 4a and S10a–c). Obviously, the CV shapes of all the samples are similar even at
a high sweep speed, including one cathodic peak and two anodic peaks. In addition, the
relationship between the peak currents (i) and the sweep rates (v) obeys the following
equation [39]:

i = avb (1)

log(i) = blog(v) + log(a) (2)

where a and b are the adjustable constants, while the b value can be calculated based on the
slope of log(i)–log(v). The b value of 0.5 or 1.0 indicates the diffusion-controlled process or
the capacitance-limited mechanism for Li+ storage behaviors, respectively. As shown in
Figure 4b, the b values of peak 1, peak 2, and peak 3 for FP-Si@C-2 composite are 0.82, 0.78,
and 0.77, respectively, implying the Li+ storage dynamics are dominated by the diffusion
control and the surface capacitive behavior simultaneously. In comparison, the b values
of P-SiCW, FP-Si@C-1, and FP-Si@C-3 are displayed in Figure S10d–f, respectively, which
demonstrates that the FP-Si@C-2 composite exhibits improved kinetics. To get an insight
into the Li+ diffusion kinetics and electrical resistance of the FP-Si@C-2 composite, elec-
trochemical impedance spectroscopy (EIS) measurements were carried out from 100 kHz
to 10 MHz As represented in Figure 4c, the Nyquist plots of all the FP-Si@C composites
and P-SiCW were fitted utilizing the equivalent circuit (Figure S11), including an inter-
cept with the Z′-axis at the high-frequency range related to the solution resistance (Rs)
between the electrolyte and separator, a midfrequency semicircle associated with the charge
transfer resistance (Rct) between the electrolyte and electrode materials, and a straight line
at low frequency involved in the Li+ diffusion impedance into the active layer, named
as the Warburg impedance (W) [40]. The Rct and Warburg values of all the samples are
summarized in Table S3. Compared with the Rct value of P-SiCW (97.8 ohm), FP-Si@C-1
(102.8 ohm), and FP-Si@C-3 (116.5 ohm), the FP-Si@C-2 composite delivers the lowest Rct
value (91.5 ohm), clarifying that the addition of an appropriate amount of slightly graphitic
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carbon facilitates the interfacial charge transfer. Additionally, the Li+ diffusion coefficient
(DLi

+) can be obtained by fitting Z′ and ω−1/2 based on the following equations [39]:

Z′ = Re + Rct + σω−1/2 (3)

DLi
+ =

R2T2

2A2n4F4C2σ2 (4)

where σ, ω, R, T, A, n, F, and C stand for the Warburg factor, angular frequency, gas con-
stant, absolute temperature, electrode surface area, transfer electron number per molecule,
Faraday constant, and Li+ molar concentration, respectively. As illustrated in Figure 4d,
the σ value of the P-SiCW, FP-Si@C-1, FP-Si@C-2, and FP-Si@C-3 is 46.9, 27.2, 25.9, and 40.2,
respectively. The DLi

+ of FP-Si@C-2 is 3.28 times higher than that of P-SiCW, indicating
that FP-Si@C-2 composite possesses much stronger interface kinetics. The DLi

+ value can
be further evaluated by the galvanostatic intermittent titration technique (GITT) with a
pulse current of 0.1 A g−1 for a pulse time of 10 min between 1 h rest intervals (Figure 4e)
and quantitatively determined based on Fick’s second law [39]:

DLi+ =
4
πτ

(
mBVM

MBS

)2( ∆ES

∆Eτ

)2
(5)

where τ, mB, MB, VM, and S represent the constant current time, active mass, molar mass,
molar volume, and active surface area, respectively. ∆ES and ∆Eτ mean the voltage change
between steps and the voltage varying between pulse time, respectively (Figure S12). As
shown in Figure 4f, the DLi

+ change of FP-Si@C-2 composite during the alloying and
dealloying process displays a “W”-type profile with two minimum ranges associated with
the strong attractions between the Li+ and active materials, or some ordered–disordered
transitions [41,42]. Notably, the DLi

+ value is comparatively high at the start of lithiation,
which can be ascribed to the coating of slightly graphitic carbon on the surface of Si
facilitating the Li+ into the host matrix [18]. As a result, the DLi

+ value of FP-Si@C-2
composite (10−9.5–10−13 cm2 s−1) is 100 times higher than that of P-SiCW [41,42], implying
faster Li+ diffusion kinetics in the FP-Si@C-2 composite. By virtue of the above discussion,
the better cycling and rate performance of FP-Si@C-2 composite are attributable to its
unique structural features: (i) the meso-macroporous structure and the protective carbon
layer can accommodate the volume changes of Si during the alloying–dealloying process;
(ii) the meso-macroporous structure also can facilitate the electrolyte penetration and the ion
transport, leading to fast Li+ transfer kinetics during the discharge–charge process; (iii) the
addition of slightly graphitic carbon with high electrical conductivity is conducive to rapid
Li+ diffusion in/out of the active materials. Therefore, the introduction of slightly graphitic
carbon is conducive to enhancing the electrochemical performance of pure Si, which is also
an effective means of endowing other negative electrodes with overall structural integrity
and fast electrochemical kinetics for superb Li+ storage.
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4. Conclusions

To summarize, this work develops a hydrothermal approach accompanied by heat
treatment for the synthesis of flake-like porous Si@C (FP-Si@C) composite anode materials
for LIBs using photovoltaic Si cutting waste and biomass excrementum bombycis. The
abundant pores in FP-Si@C composite can not only provide efficient buffers for accommo-
dating the large volume changes of Si during the lithiation/delithiation process but also
facilitate the electrolyte penetration. At the same time, Si nanoflakes are wrapped by the
slightly graphitic carbon layer with high mechanical strength and electrical conductivity
derived from the carbonized excrementum bombycis, which is beneficial to maintaining
the electrode integrity and facilitating the electron/ion transfer. By integrating these supe-
riorities, the FP-Si@C composite exhibits excellent lithium storage performance, including
a high discharge capacity of 1322 mAh g−1 at 0.1 A g−1, remarkable cycle stability with
capacity retention of 70.8% after 100 cycles, and a superior rate capability of 406 mAh g−1

at 1.0 A g−1. Hence, this work not only marks a significant step over the high-value ap-
plication of photovoltaic Si cutting waste but also exploits a novel route to the design of
alloying-type anodes for energy storage.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12162875/s1, Figure S1: Schematic illustration of the synthesis
process for FP-Si@C composites; Figure S2: SEM images of (a) silicon cutting waste scragglomerations
and (b) P-SiCW; Figure S3: SEM images of (a) FP-Si@C-1, (b) FP-Si@C-2, and (c) FP-Si@C-3; Figure
S4: EDS spectrum of FP-Si@C-2 (Inset is the weight and atomic content of C and Si); Figure S5: TGA
curves of P-SiCW, PEB, FP-Si@C-1, FP-Si@C-2, and FP-Si@C-3; Figure S6: (a) XPS full spectrum, (b)
XPS Si 2p spectrum, and (c) XPS C 1s spectrum of FP-Si@C-2; Figure S7: XRD patterns of FP-Si@C-1
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and FP-Si@C-3; Figure S8: Raman spectra of FP-Si@C-1 and FP-Si@C-3; Figure S9: (a–c) The initial
three CV curves of P-SiCW, FP-Si@C-1, and FP-Si@C-3 at 0.1 mV s−1. (d–f) The initial three GCD
curves of P-SiCW, FP-Si@C-1, and FP-Si@C-3 at 0.1 A g−1; Figure S10: (a–c) The CV curves of P-SiCW,
FP-Si@C-1, and FP-Si@C-3 at different scan rates. (d–f) The log(i)-log(v) plots of P-SiCW, FP-Si@C-1,
and FP-Si@C-3; Figure S11: Equivalent circuit model linked with EIS curves; Figure S12: Partial
enlarged view about GITT results and marked ∆ES and ∆Eτ of FP-Si@C-2; Table S1: XRF results of
silicon cutting waste and P-SiCW; Table S2: BET specific surface area, pore volume, and BJH pore size
of P-SiCW and FP-Si@C-2; Table S3: The Rct and Warburg values of P-SiCW, FP-Si@C-1, FP-Si@C-2
and FP-Si@C-3.
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