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Abstract: We study the effect of the phase-change material VO2 on plasmons in metallic arm-chair
graphene nanoribbons (AGNRs) within the random-phase approximation (RPA) for intra- and inter-
band transitions. We assess the influence of temperature as a knob for the transition from the
insulating to the metallic phase of VO2 on localized and propagating plasmon modes. We show
that AGNRs support localized and propagating plasmon modes and contrast them in the presence
and absence of VO2 for intra-band (SB) transitions while neglecting the influence of a substrate-
induced band gap. The presence of this gap results in propagating plasmon modes in two-band (TB)
transitions. In addition, there is a critical band gap below and above which propagating modes have
a linear negative or positive velocity. Increasing the band gap shifts the propagating and localized
modes to higher frequencies. In addition, we show how the normalized Fermi velocity increases
plasmon modes frequency.

Keywords: plasmon; graphene nanoribbon; random-phase approximation; quantum wire; VO2;
phase-change materials; normalized Fermi velocity

1. Introduction

All modern electronic devices are based on semiconductors for which miniaturization
means increased speed for processing and transferring information [1,2]. Advances in
many areas of science and technology are intertwined with transferring and processing
information. According to Moore’s law, the density of electronic elements in a circuit is
doubled every two years. However, fundamental laws of quantum mechanics, thermo-
dynamics, and electrodynamics prevent any arbitrary size reduction [3–5]. Fiber optics
is an alternative to traditional electric circuits. By replacing electrons with light as the
information carrier, one is able to transfer information about a thousand times faster than
electronic devices [6]. This suggests that it may be possible to synergize these two tech-
nologies. However, due to the diffraction limit, which does not allow the localization of
an electromagnetic field in an area smaller than its own wavelength, their integration is
not possible [7,8].

Plasmonic waves, including plasmons, surface plasmon polaritons, as well as localized
plasmons, enable us to manipulate, route and control light in the subwavelength area [7,9–12]
though the large propagation loss of plasmonic waves limits their applications [13]. On the
other hand, dielectric materials with low confinement compared to plasmonic systems
suggest a hybrid system of these technologies [14]. The quality factor of an isolated
hybrid structure, however, is low [15–18]. This disadvantage can be resolved by using a
periodic array of hybrid structures, known as a metastructure. The periodicity in these
metastructures must be smaller than the wavelength of the external stimuli including
light, heat, electric field and so forth [19]. The unique and unprecedented properties of
metastructures depend on the size, shape, composition, and environment of individual
structures; by altering any of these factors one would be able to manipulate and control the
outgoing radiation field as the response of the metastructure [19–21] .
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It is worth pointing out that these knobs and parameters are static and do not allow
the manipulation of system responses in real time. In other words, metastructures are not
tunable dynamically. Dynamically tunable metastructures are achievable by exploiting
phase-change materials (PCMs) [22]. Due to their transition phases, from insulator to metal,
in response to external perturbations, PCMs enable us to control and manipulate the phase,
amplitude, and polarization of the outgoing electromagnetic field of the metastructure.
Among PCMs, VO2, due to its ultrafast phase change and the large discontinuity in its
optical properties at ambient pressure, has garnered tremendous interest during the last
decade [23]. The typical critical temperature (Tc) of VO2, is 340 K. Above this temperature it
is in its metallic phase [24] that varies based on the fabrication of VO2 samples [25] . In this
phase VO2 has a rutile structure, known as R, with periodic chains of vanadium ions parallel
to c-axis [26] Below Tc, it is in its insulating (semiconducting) phase with an optical gap of
the order of 0.6 eV [25]. In this phase, due to dimerized zigzag chains of vanadium ions, it
has a monoclinic structure known as M1 [27]. In addition, VO2 under uniaxial pressure or
in doped samples undergoes a transition from R phase to the monoclinic M12 and triclinic
T phases [27,28]. After five decades, the nature of these transitions due to electron–electron
(Mott) and electron–lattice (Peierls) interactions is still not fully understood [25,29]. There
are several methods for trigging the phase-transition in VO2 including electrical [30,31],
thermal [32–35], optical [36–39] , etc.

In this work we study plasmon modes in an AGNR on a VO2 substrate as sketched
in Figure 1. The paper is organized as follows. In Section 2 we present the Lindhard
polarization function and the RPA permittivity of AGNRs for SB and TB transitions. We
also indicate briefly how to include the effect of a substrate on the plasmon modes and
give the permittivity of VO2 obtained approximately in Reference [40]. Section 3 discusses
the obtained results for localized and propagating plasmon modes in the presence and
absence of VO2 for SB and TB transitions. In Section 4, we study the influence of a band
gap, induced by a VO2 substrate, on the dielectric function and plasmon modes. The
influence of renormalized Fermi velocity has been discussed in Section 5. A summary
follows in Section 6.
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Figure 1. An AGNR on a VO2 substrate.

2. Formalism

The main motivation to investigate plasmons in metallic AGNRs is that the conduction
and valence bands of these systems, within the two-band approximation, are linear [41]. In
general, to obtain the plasmon spectrum of a quantum system, one needs to find the roots
of the real part of its permittivity [42]. It is worth pointing out that two types of plasmons
exist; localized and propagating. The imaginary part of permittivity represents plasmon
dissipation. Furthermore, the amount of dissipation for localized modes is much higher
than for the propagating ones. Here, we limit our calculation to the RPA and we neglect
the exchange–correlation effect which can be introduced by a local field factor, for example,
in the Hubbard approximation [43]. The permittivity, also known as the dielectric function
in the momentum and frequency domains within the RPA, is given by [42]:

εRPA(~q, ω) = 1−V(~q)χ(~q, ω), (1)

where V(~q) and χ(~q, ω) are the matrix elements of the Coulomb potential and the Lindhard
polarization function, respectively. The linear eigenvalues of metallic AGNRs support two
sorts of transitions; intra-band and inter-band transitions, also known as single-band (SB)
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2. Formalism

The main motivation to investigate plasmons in metallic AGNRs is that the conduction
and valence bands of these systems, within the two-band approximation, are linear [41]. In
general, to obtain the plasmon spectrum of a quantum system, one needs to find the roots
of the real part of its permittivity [42]. It is worth pointing out that two types of plasmons
exist; localized and propagating. The imaginary part of permittivity represents plasmon
dissipation. Furthermore, the amount of dissipation for localized modes is much higher
than for the propagating ones. Here, we limit our calculation to the RPA and we neglect
the exchange–correlation effect which can be introduced by a local field factor, for example,
in the Hubbard approximation [43]. The permittivity, also known as the dielectric function
in the momentum and frequency domains within the RPA, is given by [42]:

εRPA(~q, ω) = 1−V(~q)χ(~q, ω), (1)

where V(~q) and χ(~q, ω) are the matrix elements of the Coulomb potential and the Lindhard
polarization function, respectively. The linear eigenvalues of metallic AGNRs support two
sorts of transitions; intra-band and inter-band transitions, also known as single-band (SB)
and two-band (TB) transitions, respectively. To distinguish between the plasmon modes
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for these transitions, we use the corresponding polarization functions χSB and χTB from
Reference [44], namely:

χSB(q′, ω′) =
1

2πh̄v∗F

×


2q′2

ω′2−q′2 + iπq′[δ(q′ + ω′)− δ(q′ −ω′)] q ≤ kF,

2q′

ω′2−q′2 +
1
2 Ln

[
(2+ω′)2−q′2

ω′2−q′2

]
+ iπ[δ(q′ + ω′)− δ(−q′ + ω′)] q > kF,

(2)

χTB(q′, ω′) =
1

2πh̄v∗F

×


2q′2

q′2−ω′2 +
1
2 Ln

(
9q′2−ω′2

q′2−ω′2

)
+ iπq′[δ(q′ −ω′)− δ(q′ + ω′)] q ≤ kF,

2q′

q′2−ω′2 +
1
2 Ln

(
(2+q′)2−ω′2

q′2−ω′2

)
+ iπ[δ(q′ −ω′)− δ(q′ + ω′)] q > kF,

(3)

where q′ = q/kF, ω′ = h̄ω/EF , and v∗Fare the dimensionless wave vector, frequency, and
renormalized Fermi velocity respectively. One should notice that any substrate modifies the
Fermi velocity of graphene ribbons, and it can be obtained through the THz-TDS measurement
schemes [45] . It is worth pointing out that any substrate can introduce a gap in the energy
spectrum of AGNRs similar to graphene on hBN or any TMDC material [46–49]. In general, this
introduced gap will not alter the polarization function for SB transitions. In addition, one can
take into account this effect for TB transitions by replacing ω′ with ω′ + ∆′ with ∆′ ≡ ∆/EF
being the gap energy. First, we consider ∆′ = 0 and in Section 4 take ∆′ 6= 0.

The Coulomb matrix element in Equation (1) for both SB and TB transitions is
given by [50]:

V(q) =
2e2

ε0εb

∫ 1

0

∫ 1

0
K0(WkFq′|y− y′|)dydy′, (4)

where W and K0 are the ribbon width and the zeroth order modified Bessel function
of the second kind, respectively. Note that in expression (4), the εb parameter is the
averaged permittivity defined by εb = (1 + εVO2)/2 [51]. Since the temperature strongly
affects this parameter, it can act as a knob to switch on and off the plasmon modes. One
successful method in describing the temperature dependence of VO2 is the Maxwell-Garnet
approximation explained in Reference [40]. In it the permittivity is:

εMG = εins
εmet(2F + 1) + εins(2− 2F)

εmet(1− F) + εins(2 + F)
, (5)

where F, the filling factor, is the ratio between the metallic and insulating phases. It is
given by [52]:

F(T) =
1

1 + e2(T0−T)/Tc
, (6)

with T0 = 70.5 ◦C and Tc = 4 ◦C. In Figure 2, we plot the filling factor as a function of the
temperature T. As shown, F = 0 for T < 60 ◦C. In this range, VO2 is in the insulating phase
while for T > 80 ◦C it is in the metallic phase. Moreover, for 60 < T < 80 it is in a mixture
of both phases.
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Figure 2. VO2 filling factor as a function of temperature.

In the following, we consider v∗F = vF = 106 m/s for simplicity. The influence of the
renormalized Fermi velocity will be discussed in Section 5.

3. Results and Discussion

In Figure 3a, we plot the Coulomb potential V(q′) as a function of the dimensionless
wave vector q′ = q/kF in the absence and presence of a VO2 substrate; the Fermi energy
and ribbon width dimer numbers are EF = 0.1 eV and N = 8, respectively. Here the
average dielectric constant, εb, is considered at T = 60 ◦C in which the substrate is in
insulating phase. Since the difference between these two cases is very small, we utilize the
logarithmic scale. Here bar and MG indicate the presence and absence of VO2, respectively.
As shown, the Coulomb potential in both cases shows the same trend, i.e., by increasing
the wave vector its magnitude reduces rapidly. To investigate the impact of temperature
on the V(q′), in Figure 3b we plot the difference between V(q′) at T = 60 ◦C and that at
several temperatures specified by ∆T in the figure. It is noticeable that by increasing the
temperature, which is equivalent to increasing the fraction of the metallic, the magnitude
of the Coulomb potential becomes larger. In Figure 3c we plot Coulomb potential as a
function of the temperature for several values of the wave vector. We see that V(q′) has a
lower magnitude in the insulating phase than in the metallic one. In addition, increasing
the wave vector leads to a decrease of the V(q′) magnitude.

In Figure 4a,b, we plot the real parts of Equation (1) for SB and TB transitions, respec-
tively, as functions of the dimensionless frequency ω′, in the presence and absence of VO2,
and for a typical wave vector, for example, q′ = 0.2. In addition, we plot the orange line
ε = 0 to see where the zeros of εRPA occur.

We notice that, for SB transitions, the graphs intersect the orange line at two points
which are related to localized and propagating plasmon modes in the presence and absence
of VO2. However, for TB transitions there is only one intersection point due to localized
plasmon modes. In addition, for SB transitions we see in Figure 4a that the graphs in the
presence and absence of VO2 for low frequencies increase and decrease dramatically. In
general, the magnitude of the AGNR permittivity in the absence of VO2 is higher. Moreover,
the permittivity for TB transitions, compared to that for SB transitions, shows a reverse
behavior. Indeed, for low frequency, the magnitude of the AGNR permittivity in the
presence of VO2 is higher than in its absence.
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Figure 3. (a) Coulomb potential in AGNRs in the absence (bar) and presence (MG) of VO2; (b) ∆V(q′)
for several ∆T; (c) VMG(q′) as a function of temperature for several wave vectors.

Figure 4. Real parts of εRPA, at T = 60 ◦C as functions of ω′ for SB transitions in (a) and TB transitions
in (b).

To better assess the effect of VO2’s presence on εRPA, in Figure 5a,b we plot, respec-
tively, its real and imaginary parts for SB and TB transitions with q′ = 0.2 and T = 60 ◦C.
We employ the logarithmic scale to see more clearly the subtle difference between these
transitions. It is noticeable that the permittivity diverges in all cases for ω′ = 0.2. If one
looks at the imaginary part of the permittivity at this point in Figure 5b, one can observe
that the magnitude has the highest value which indicates a maximum dissipation at this
frequency. In other words, if a plasmon excitation mode occurs at this point, due to its
high dissipation it would definitely be a localized one. We observe that the real part of the
dielectric function for both SB and TB transitions diverges at two points which are pertinent
to localized plasmon and single-body excitation modes. The difference between these
modes can be distinguished by comparing the magnitude of ImεRPA. For instance, the two
points for TB transitions in the absence of VO2 occur at ω′ = 0.2 and ω′ = 0.6. If one looks
at the magnitude of ImεRPA at these two frequencies, one can see that the magnitude at
ω′ = 0.2 is much higher than that at ω′ = 0.6. Therefore, on can conclude that the first
and second points are relevant to the localized plasmon and single-body excitation modes,
respectively. In addition, we notice that the single-body excitation mode in the presence of
VO2 occurs at a lower frequency for SB transitions. In other words, the substrate causes
a significant shift in the permittivity spectrum. However, the divergence point for TB
transitions does not shift. We notice that in Figure 5b the magnitude of ImεRPA vanishes



Nanomaterials 2022, 12, 2861 6 of 13

except at a specific point. The interesting trend is the similarity between the behaviors of
the graphs, in the presence and absence of VO2, for SB and TB transitions. In particular, the
magnitude of the imaginary part of the permittivity has the same value in the absence and
presence of VO2 regardless of the transition type.

Figure 5. Real (a) and imaginary (b) parts of εRPA as functions of ω′ for both SB and TB transitions.

To assess the influence of the temperature T on the permittivity we plot ∆εMG ≡
εRPA(T)− εRPA(60) in Figure 6a,b for SB and TB transitions, respectively. In general, we
see that increasing T causes a transition from the insulating to the metallic phase in VO2 and
the magnitude of the permittivity increases for both transitions. In addition, we observe
that the divergence points do not shift by increasing the temperature.

Figure 6. Real part of ∆εRPA as function of ω′ for (a) SB and (b) TB transitions.

In Figure 7a we plot the propagating plasmon modes for SB transition. The labels bar
and MG distinguish between including and excluding the VO2 substrate. Note that there
is no propagating plasmon modes for TB transition (see Figure 7b). The principal reason
for using these labels is to show the impact of VO2 on the Coulomb matrix elements given
by Equation (4). As shown in Figure 7a, we see that the slope of the SB-bar transition, in
the absence of a VO2 substrate, is higher than that in its presence, SB-MG. In other words,
the excitation energy of the propagating plasmon is higher than that of the SB-MG one for
the same wave vector. While the plasmon mode dispersion of SB-bar is limited to wave
vectors smaller than the Fermi wave vector, the SB-MG plasmon mode dispersion exists for
all wave vectors. In addition, the SB-MG plasmon mode energy has an unexpected upward
jump at the Fermi wave vector q′ = 1. It is also noticeable that SB-MG plasmons are absent
for q′ ≤ 0.18 though SB-bar plasmons exist in this range of wave vectors.
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Figure 7. (a) Propagating plasmon for SB transition spectrum in the absence and presence of VO2.
(b) ω′p for several ∆T.

To show the difference between propagating SB plasmon modes for different tempera-
tures, we set ∆ω′p as the difference between the plasmon frequency at temperatures T and
T = 60 ◦C in Figure 7b. In addition, we use the logarithmic scale to plot the ∆ω′p dispersion.
Figure 7b shows a similar trend for ∆ω′p spectrum in which increasing the wave vector
magnitude leads to an increase of ∆ω′p for q′ ≤ 1 whereas for q′ ≥ 1 there are no significant
changes. Furthermore, increasing ∆T results in larger ∆ω′p values. Additionally, the slope
of the dispersion decreases with the plasmon wave vector for q′ ≥ 1. In Figure 8a, we plot
the localized plasmon and single-body excitation dispersion in the presence and absence
of VO2 for SB transitions. In Figure 8b, we plot the SB spectrum in the long wavelength
limit to see their behavior more clearly. The labels bar-1 and bar-2 indicate the localized
plasmon and single-body excitation branches for SB in the absence of a VO2 substrate and
MG-1, MG-2 those in its presence. As seen, the bar-1 branch decreases rapidly by increasing
q′. However, near q′ = 0.07 there is a jump in which the energy of the localized plasmon
increases unexpectedly. Then, the previous trend in bar-1 continues but the group velocity
becomes lower . In Figure 8b, there is a degeneracy range between the bar-1 and bar-2
branches in which their spectra have the same frequency and momentum. Returning to
Figure 8a, there is another degeneracy range which begins exactly after the jumping point
in the bar-1 branch. Note that the bar-1 branch extends only for a limited range in which
the maximum wave vector is q′ = 0.2. For the bar-2 branch, we observe a similar pattern
but the jumping point in bar-1 occurs at higher q′. In the presence of VO2, the first MG-1
branch is similar to the bar-1 one in which the localized plasmon frequency is reduced by
increasing the wave vector. Nevertheless, the MG-1 frequencies are higher than those of
the bar-1 branch. In addition, we note that, in this case, there exists only one degeneracy
range, whereas in the absence of VO2 there are two ranges. As shown in Figure 8b, the
MG-2 plasmon spectrum coincides with that of the bar-2 one except in the long wavelength
limit. For TB transitions, as we mentioned in Figure 4, there are no propagating plasmon
modes and only localized plasmon modes exist whose slope is equal to one. Hence, we
have not included them here.

Figure 8. (a) Localized plasmon and single-body excitation dispersion for SB transitions in the
absence and presence of VO2; (b) As in (a) for q′ ≤ 0.15.
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4. Band Gap Effect on Polarization and Plasmon Modes

Some studies show that substrates and nanostructuring (by e.g., creating nanoribbons)
induce a band gap between the conduction and valence bands in graphene [46–49,53–57].
To account for the influence of this gap in the AGNR’s polarization function, it suffices to
change ω to ω + ∆ in the denominator of Equation (19) in Reference [44]. While the results
are the same as in Equation (2) for SB transitions, for TB transitions we obtain:

χTB(q′, ω′) =
1

2πh̄vF

×


2q′(q′+∆′)

(q′+∆′)2−ω′2 +
1
2 Ln

(
(3q′+∆′)2−ω′2

(q′+∆′)2−ω′2

)
+ iπq′[δ(q′ + ∆′ −ω′)− δ(q′ + ∆′ + ω′)] q ≤ kF,

2(q′+∆′)
(q′+∆′)2−ω′2 +

1
2 Ln

(
(2+∆′+q′)2−ω′2

(q′+∆′)2−ω′2

)
+ iπ[δ(q′ + ∆′ −ω′)− δ(q′ + ∆′ + ω′)] q > kF,

(7)

Hence, we need to focus on the influence of the substrate on the TB permittivity and
plasmon modes hereafter. In Figure 9a we show the real part of the TB dielectric function
for several ∆′ at T = 60 ◦C. As seen, all graphs show the same trend. In particular, by
increasing the gap, the localized plasmon modes occur at higher frequencies. In addition,
we find out that there is a critical ∆′c below which no propagating plasmon modes exist
while there are both localized plasmon and single-body excitation modes. For instance, we
observe that for ∆′ < 1 at q′ = 0.2 there are no propagating plasmon modes. In addition, the
frequency of the propagating plasmon modes becomes higher by increasing ∆′. Moreover,
we see that localized plasmon and single-body excitation modes shift to higher frequencies
by increasing the band gap. We plot ∆εRPA for several temperatures in Figure 9b for
∆′ = 2.0 at q′ = 0.2. While one can observe the same trend as Figure 6b, one notices that
the divergence points shift to higher frequencies.

Figure 9. (a) Real part of εRPA as functions of ω′ for TB transitions for several ∆′ at T = 60 ◦C.
(b) ∆εRPA for several temperature for ∆′ = 2.0.

We plot the propagating plasmon modes for different values of ∆′ at T = 60 ◦C for
TB transitions in Figure 10a,b when ∆′ ≤ 1 and ∆′ > 1, respectively. Figure 10a shows
that the propagating plasmon spectrum increases for higher values of ∆′. In particular,
in the long-wavelength limit, the plasmon energy increases by ∆′. In addition, the group
velocity of the plasmon modes is negative. As seen in Figure 10b, a parabolic trend of
plasmon modes of ∆′ = 1 turns to a linear one with a negative slope at q′ ' 0.4 and then,
at q′ ' 1.45, it shows again a parabolic behavior with positive group velocity. One can
note that, by increasing the ∆′, the range of the linear trend becomes shorter and its group
velocity changes from negative to positive. In addition, the linear trend vanishes. In this
case the plasmon spectrum shows a negative velocity at the beginning but by increasing
q′ at a certain point it changes its behavior and manifests a positive group velocity. We
plot the propagating plasmon dispersion, with ∆′ = 0.9, for several temperatures to asses
how shifting from insulating to metallic phase of VO2 modifies the propagating plasmon
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spectrum in Figure 10c. One notices that all the graphs have the same trend, i.e., the
propagating plasmon frequency decreases and by increasing its wave vector. In addition,
the propagating plasmon spectrum’s range is reduced by increasing the temperature.
In other words, increasing the temperature shifts the plasmon energy to lower values.
Figure 10d depicts, as we explained in Figure 10c, when the energy gap is much larger than
the Fermi energy (∆′ = 1.5). One can observe that, for all temperatures, there is a general
trend, which we mentioned in Figure 10b. However, one sees that the linear part of the
plasmon spectrum increases for higher temperatures. In addition, the slope of this linear
part of dispersion is higher for lower temperatures.

Figure 10. (a,b) propagating plasmon modes for different value of ∆′ ≤ 1 and ∆′ > 1 at T = 60 ◦C for TB
transition in the presence of VO2. (c,d) plasmon spectrum for several temperature for ∆′ = 0.9 and ∆′ = 1.5.

Figure 11 shows the localized plasmon spectrum for several ∆′ at T = 60 ◦C. One
can observe that all graphs have the same slope. In addition, we see the frequency of the
localized plasmon for q′ becomes larger by increasing the energy gap. Here, we have not
included the single-body excitation spectrum since the differences in temperature and ∆′

have a negligible effect on it.

Figure 11. Localized plasmon dispersion for several ∆′ at T = 60 ◦C.
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5. Renormalized Fermi Velocity on Plasmon Modes

Indeed, the renormalized Fermi velocity of AGNRs in the presence of VO2 in both
insulating and metallic phases can be evaluated by

v∗F
vF

= 1 +
α

(4 + 2πα)
Ln
(

Λh̄vF
EF

)
, (8)

where Λ = 1.75Å−1 and α = 2.2/εb [45,58]. Here, we limit our study as an example only to
the SB case to see the influence of v∗F on the plasmon spectrum. Figure 12a shows v∗F/vF
as a function of temperature for several Fermi energies. One can notice a general trend
in which the normalized Fermi velocity has a lower value in the insulating phase than in
the metallic phase. In addition, the normalized Fermi velocity decreases by increasing the
Fermi energy. In Figure 12b, similar to Figure 7a, the labels bar-vF and MG-vF indicate the
presence and absence of VO2 when v∗F = vF. The label MG-v∗F indicates the presence of VO2
when v∗F is evaluated by Equation (8). Although the MG-v∗F plasmon spectrum behavior is
similar to that of MG-vF, the latter plasmon energy is lower than the former. In particular,
the difference between plasmon energy of MG-vF and MG-v∗F increases by q′ for q′ ≤ 1.
While this difference is constant for q′ > 1.

Figure 12. (a) Renormalized Fermi velocity as functions of temperature for several EF; (b) Comparing
SB plasmon spectrum for vF and v∗F.

6. Summary

We studied the effects of VO2 as a PCM on plasmons in metallic AGNRs within the
RPA for both SB and TB transitions. We observed that metallic AGNRs support two types
of plasmon modes: localized and propagating as well as single-body excitation modes for
SB transitions while no propagating plasmon modes exist for TB transitions ,provided the
influence of a substrate-induced band gap is negligible (∆′ ' 0). The group velocity of the
localized plasmon modes and single-body excitations decreases with the plasmon wave
vector whereas that of the propagating plasmons increases with it. We further showed
how the transition from the insulating to the metallic phase in VO2 modifies the plasmon
dispersion. For SB transitions, we noticed that the presence of VO2 results in propagating
plasmons for a range of wave vectors which do not exist in the absence of VO2. In particular,
a jumping point in the spectrum of the propagating plasmons exists at which the frequency
increases unexpectedly.

We found that the presence of VO2 leads to localized plasmon modes with a higher
frequency for SB transitions. In addition, the wave vector range becomes smaller and the
jumping point disappears. We further notice that the single-body excitation spectrum does
not change except in the long-wavelength limit. Further, we showed that the jumping point
of the single-body excitations occurs at lower wave vectors in the absence of VO2 and a
degeneracy exists between the localized plasmon and single-body excitation beyond the
jumping point of the localized mode. However, in the presence of VO2, only one jumping
point exists in the long-wavelength limit for single-body excitations. We showed that
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taking into account a substrate-induced band gap leads to a modification of the Lindhard
polarization function which in turn leads to propagating plasmon modes for TB transitions.
Increasing ∆′ shifts the frequencies of the propagating and localized plasmons as well
as the single-body excitations to higher values. In addition, we noticed that a critical
energy band gap, ∆′c, exists below which the group velocity of the propagating plasmons
is negative. Furthermore, we observed that the parabolic behavior of the propagating
plasmon modes with negative group velocity becomes linear by increasing the value of
∆′ beyond ∆′c. By further increasing ∆′ , the spectrum acquires a positive group velocity.
The range of the propagating plasmon spectrum increases for higher values of ∆′. Finally,
increasing the temperature results in an extension of the linear part of the propagating-
plasmon dispersion.

We found that the normalized Fermi velocity, v∗F, has a higher value in the metallic
phase than in the insulating phase. In addition, v∗F value increases by decreasing the Fermi
energy. We showed that reducing the value of v∗F leads to plasmon modes with a higher
frequency in the SB case.

The obtained results could be employed in plasmonic quantum processors in which
modifying the temperature as a knob plays a critical role in altering qubits states.
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