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Abstract: Self-assembling nanoparticles (SANPs) based on hyaluronic acid (HA) represent unique
tools in cancer therapy because they combine the HA targeting activity towards cancer cells with
the advantageous features of the self-assembling nanosystems, i.e., chemical versatility and ease of
preparation and scalability. This review describes the key outcomes arising from the combination of
HA and SANPs, focusing on nanomaterials where HA and/or HA-derivatives are inserted within
the self-assembling nanostructure. We elucidate the different HA derivatization strategies proposed
for this scope, as well as the preparation methods used for the fabrication of the delivery device.
After showing the biological results in the employed in vivo and in vitro models, we discussed the
pros and cons of each nanosystem, opening a discussion on which approach represents the most
promising strategy for further investigation and effective therapeutic protocol development.

Keywords: cancer; drug delivery; drug targeting; hyaluronic acid; self-assembling nanoparticles

1. Introduction

Over the last decade, the application of nanotechnology gained enormous interest
as an interdisciplinary approach for cancer theranostics, with the number of researchers
focusing on the development of tumor-targeting nanoparticles growing exponentially [1,2].

The unique properties of the nanoparticle system, including proper size, prolonged
serum half-life, and specific cell targeting, together with the peculiar features of the tumor
site, i.e., leakage of lymphatic drainage, angiogenesis, and increased vascular permeability,
enable enhanced molecule accumulation at the tumor site (Enhanced Permeability and
Retention effect—EPR) [3]. This offers solutions for both early-stage diagnosis and efficient
delivery of therapeutic agents [4], boosting antitumor effects with reduction or reversal of
multidrug resistance [5].

The biological performance of any nanosystem is strictly related to its chemical com-
position and fabrication method, as well as its architecture [6]. The chemical composition
can move from organic to inorganic [7], from polymeric and lipid to hybrid and composite
materials [8]. Whereas the fabrication method and the purification steps in particular can
affect the matrix-associated toxicity, because of contamination with reaction by-products,
residual solvents, and un-reacted species [9]. Finally, considering the architecture, non-
spherical (e.g., tubes, cubes, cones) and spherical nanosystems can be distinguished, with
further classifications possible regarding micellar, vesicular, solid nanoparticle or pristine,
layered, and core-shell structures [10].
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Generally, self-assembly refers to a process in which molecular building blocks (small-
or macromolecules, nanomaterials) spontaneously organize into ordered structures with a
certain geometric arrangement through local non-covalent interactions [11]. Self-assembly
nanotechnologies play a pivotal role in nanomedicine since they are inspired by well-
known biological processes, including the formation of the DNA double-helix and the
arrangement of phospholipids in cell membranes [12]. The easy scalability of self-assembled
nanoparticles (SANPs) preparation methods, which often involve green and inexpensive
steps, fits well with the requirements needed for approval from regulatory agencies (e.g.,
FDA and EMA), thus allowing desirable laboratory-to-clinic-to-industry translations [13].
Moreover, the therapeutic outcomes of SANPs benefit from the ability to encapsulate (or
co-encapsulate) with high-efficiency drugs with different physicochemical properties (e.g.,
hydrophilic, hydrophobic, amphiphilic, and ionic) [14,15], and form the possibility of easy
modification with site-specific functionalities. This includes stimuli-responsive groups and
small or large targeting moieties [16,17], and takes advantage of the peculiar structural
and molecular anomalies at the tumor site (e.g., acidic interstitial pH, altered redox state
due to increased cellular metabolism, enhanced oxygen perfusion) [18,19], as well as
from the presence of overexpressed receptors for molecular components (e.g., growth
factor, interleukins, transferrin) assisting tumor development and metastasis [20]. CD44,
transmembrane glycoproteins involved in adhesion, aggregation, migration, and signal
transduction, are representative biomarkers for cancer early-stage diagnosis and clinical
management [21]. These receptors show a higher affinity for different extracellular elements,
including hyaluronic acid (HA), a negatively charged, non-sulfated glycosaminoglycan
consisting of D-glucuronic acid and N-acetyl-D-glucosamine repeating units bound by
beta-linkages [22]. Thus, the insertion of HA moieties within nanoparticle formulations
is a successful strategy for cancer targeting [23], although the choice of HA molecular
significantly affects the targeting efficiency [24]. HA with different molecular weights,
indeed, possess not only diverse biological functions [25], but also different cell uptake
tendencies [26]. Several studies involving nanoparticle systems of different nature, from
inorganic nanoparticles to liposomes [27], proved that high molecular HA is a more effective
targeting element than low molecular weight HA (e.g., 31 kDa HA was better internalized
by HeLa cells than 6 kDA HA [28]), although this is not a general statement since there
are experimental evidences that in photodynamic therapy (PDT) protocols, 20 kDa HA
exerted better efficacy than 50 kDa or 100 kDa HA [29]. Moreover, by virtue of the presence
of hydroxyl, carboxylic, and N-acetyl groups, allowing easy chemical derivatizations, HA
can be used in either native or modified forms [30].

Within this review, we overview the impact of HA-SANPs in cancer diagnosis and
therapy over the last decade, focusing on the key peculiarities of each formulation. By
discussing the chemical composition, the preparation methods, and the biological per-
formances, we aim to highlight the pros and cons of the different proposed approaches,
offering a multidisciplinary point of discussion for scientists working in cancer-related
research areas. Finally, with a glance to the future in the field, we provide a critical analysis
concerning the flaws to be considered and solved for effective bench-to-clinic translation.

2. Self-Assembling Nanoparticles Containing Hyaluronic Acid

SANPs are obtained through a process involving the spontaneous organization or
aggregation of small molecules, macromolecules, or nanoparticles into stable structures.
The interaction forces consist of hydrophobic interactions, π–π aromatic stacking, electro-
static forces, van der Waals forces, and hydrogen bonding [31]. Commonly, hydrophobic
interactions drive the formation of SANPs (e.g., micelles or vesicles) composed of am-
phiphilic molecules where saturated or unsaturated hydrocarbon chain and polar ionic or
non-ionic moieties are the lipophilic and hydrophilic counterparts, respectively [32]. In de-
tail, micelles are nanosized particles consisting of a hydrophobic inner portion surrounded
by a hydrophilic outer surface [33], while vesicles are hollow structures with an aqueous
core surrounded by one or more bilayered membrane [34]. On the other hand, oppositely
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charged molecules and polymers can self-assembly via electrostatic forces and hydrogen
bonding carrying out to nanoplexes and solid nanoparticles [35,36].

The formation of HA-SANPs results from the formation of either electrostatic forces
due to their anionic nature or hydrophobic interactions when functionalized with lipophilic
moieties. Moreover, supramolecular structures can be obtained when cyclodextrins (CD)
and their inclusion counterparts are involved in the self-assembly process [37]. The choice
of the suitable preparation technique is driven by the physicochemical properties of the
selected HA-based material, as well as by the nature of the interactions between the HA
binding blocks and with the loaded therapeutics [38]. Such techniques mainly involved
the simple dispersion in water media, with sonication or ultra-sonication methods used
as formation co-adjuvants [39], while dialysis processes are used when the HA-derivative
needs to be dispersed in organic solvents [40]. The first methodologies can be used when
hydrophilic therapeutic agents are used, while hydrophobic molecules should be treated
with the second approach [41]. Moreover, typical thin-film hydration or emulsion methods
are employed when HA derivatives are organized in liposomal-like structures able to load
water-soluble and insoluble bioactive molecules [42,43]. Finally, HA or HA derivatives can
be used for the coating (either electrostatic or covalent) of pre-formed SANPs to enhance the
targeting behavior [44], but these materials do not fall within the scope of the present review.
Here the discussion of the HA-SANPs proposed in the literature for cancer treatment is
organized into four main sections, depending on the driving force of the self-assembly
process, with further sectioning in native or modified HA.

3. Application of HA-SANPs in Cancer Therapy

As discussed in the previous section, HA-SANPs can be obtained by both electrostatic
and hydrophobic interaction forces. In the following paragraphs, we will discuss the main
outcome of each approach in cancer theranostics (Figure 1), highlighting the need for HA
derivatization to favor the self-assembly process.

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 34 
 

 

 
Figure 1. Applications of HA-SANPs for cancer theranostics: indication of the main mechanisms of 
HA-SANPs formation and the most representative derivatization agents. 

3.1. HA-SANPs Obtained by Electrostatic Interactions 
Table 1 collects the most relevant examples of HA-SANPs by electrostatic 

interactions.  
The negative charge of HA can be exploited for the formation of nanoparticle 

structures with cationic drugs such as cisplatin (CDDP) acting as ionic crosslinker [45], 
with the further insertion of therapeutic agents such as Sorafenib (SRF) [46], Gefitinib 
(GFT) and Methotrexate (MTX) [47] found to be a valuable strategy for an effective 
multidrug therapy. 

Table 1. HA-SANPs obtained by electrostatic interactions. 

Composition 
(Preparation) Bioactive 

Agent 

Performance 
Outcome Ref. 

HA-
Derivative 

Other  
Components 

Cancer  
Type 

In Vitro 
In Vivo 

CD44+ CD44− 
HA CDDP 

CDDP Lung LLC --- LLC Xm 
Control Release (pH) 

Selective Biodistr 
[45] 

(Water dispersion) 
HA CDDP/SRF 

CDDP/SRF Liver HepG2 --- HepG2 Xm 
Control Release (pH) 

Synergism 
Selective Biodistr 

[46] 
(Water dispersion) 

HA 
CDDP/GFT 
CDDP/MTX CDDP/GFT 

CDDP/MTX 
Breast MDA-MB-231 MCF-7 --- 

Targeting 
Multidrug therapy 
Sustained Release 

[47] 
(Water dispersion) 

HA FCP-Tph 
FCP-Tph Breast 

MDA-MB-231 
4T1 

NIH 3T3 
S-D Rats 
4T1 Xm 

PDT 
Synergism 

Selective Biodistr 
[48] 

(Sonication) 

HA 
PRTS-miR-

34a miR-34a Breast MDA-MB-231 MCF-7 
MDA-MB-231 

Xm 

Control Release (pH) 
Synergism 

Selective Biodistr 
[49] 

(Water dispersion) 
HA/TPP CS miR-34a 

DOX 
Breast MDA-MB-231 --- 

MDA-MB-231 
Xm 

Control Release (pH) 
Synergism 

[50] 
(Ionic crosslinking) 

Figure 1. Applications of HA-SANPs for cancer theranostics: indication of the main mechanisms of
HA-SANPs formation and the most representative derivatization agents.

3.1. HA-SANPs Obtained by Electrostatic Interactions

Table 1 collects the most relevant examples of HA-SANPs by electrostatic interactions.
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Table 1. HA-SANPs obtained by electrostatic interactions.

Composition (Preparation)

Bioactive Agent

Performance

Outcome Ref.
HA-Derivative Other Components Cancer Type

In Vitro
In Vivo

CD44+ CD44−
HA CDDP CDDP Lung LLC — LLC Xm Control Release (pH) Selective Biodistr [45](Water dispersion)

HA CDDP/SRF CDDP/SRF Liver HepG2 — HepG2 Xm Control Release (pH) Synergism Selective
Biodistr

[46](Water dispersion)

HA CDDP/GFT
CDDP/MTX CDDP/GFT

CDDP/MTX Breast MDA-MB-231 MCF-7 — Targeting Multidrug therapy Sustained
Release

[47]
(Water dispersion)

HA FCP-Tph FCP-Tph Breast MDA-MB-231 4T1 NIH 3T3 S-D Rats
4T1 Xm

PDT Synergism Selective Biodistr [48](Sonication)

HA PRTS-miR-34a miR-34a Breast MDA-MB-231 MCF-7 MDA-MB-231 Xm Control Release (pH) Synergism Selective
Biodistr

[49](Water dispersion)

HA/TPP CS miR-34a
DOX Breast MDA-MB-231 — MDA-MB-231 Xm Control Release (pH) Synergism [50](Ionic crosslinking)

HA CS
SBE-βCD CUR Colon HT-29 I407 — Targeting Synergism [51]

(Ionic coordination)

HA-SH * CS DOX Breast SKBR3 — — Control Release (pH/redox) [52](Water dispersion)

HA-SH NOCC
DOX

CaP-siRNA
Cervix HeLa — — Controlled Release (pH/redox) Synergism [53]HS-HA-DA —

(Ionic coordination) Ovary OVCAR-3/MDR

HA-SH #-oDNA * — — Cervix HeLa NIH-3T3 — Cell Blebbing and Death [54]
(K+-dependent self-assembly)

HA — DOX Bone K7 — S-D Rats
K7 Xm

Control Release (pH) Synergism Selective
Biodistr

[55](Ionic crosslinking)

HA-His * —
DOX/Ce6/Mn2+ Skin B16 — B16 Xm Control Release (pH/redox)

MRI/PDT/Synergism
[56](Ionic crosslinking)

HHA BSA CDDP/ICG Liver HepG2 L929 HepG2 Xm Control Release (redox) PTT/Synergism
Selective Biodistr

[57](Desolvation + coordination crosslinking)

HA MPL/QS21/ R837 MPL/QS21/
R837/OVA

— BMDCs RAW 264.7 C57BL/6
BALB/c mice Selective Biodistr Immunotherapy (OVA

antigen) [58]
(Dialysis) Lymphatic

system — — EG7-OVA Xm

* Carbodiimide chemistry; # NaBH3CN + DTT; BSA: Bovine serum albumin; CaP: Calcium phosphate; CDDP: Cisplatin; Ce6: Chlorin e6; CS: Chitosan; CUR: Curcumin; Cys:
Cystamine; DA: Dopamine; DOX: Doxorubicin; FCP: Ferrocene cyclopalladated compound; GFT: Gefitinib; HA: Hyaluronic acid; HHA: Hydrazided HA; His: Histidine; ICG:
Indocyanine green; MPL: 3-O-desacyl-4′-monophosphoryl lipid A; MRI: Magnetic Resonance Imaging; MTX: Methotrexate; NOCC: N,O-Carboxymethyl chitosan; oDNA: DNA
oligonucleotide; OVA: Ovalbumin; PDT: Photodynamic therapy; PRTS: Protamine sulfate; R837: Imiquimod; S-D: Sprague Dawley; SBE: Sulphobutyl-ether; SRF: Sorafenib; Tph:
5,10,15,20-Tetrakis(4-aminophenyl)-porphin; TPP: Tripolyphosphate; Xm: Xenograft mice.
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The negative charge of HA can be exploited for the formation of nanoparticle structures
with cationic drugs such as cisplatin (CDDP) acting as ionic crosslinker [45], with the
further insertion of therapeutic agents such as Sorafenib (SRF) [46], Gefitinib (GFT) and
Methotrexate (MTX) [47] found to be a valuable strategy for an effective multidrug therapy.

The formation of hydrogen bonds (SRF) or π-π stacking (GFT and MTX) interactions,
indeed, enhances the stability of the nanoformulation, improving the in vitro and in vivo
pharmacological outcomes by virtue of both a pH-controlled release and a selective CD44
targeting and biodistribution. Following a similar approach, micelle nanocarriers were
developed by complexing ferrocene cyclopalladated compound (FCP) with HA in the
presence of 5,10,15,20-Tetrakis(4-aminophenyl)-porphin (Tph) as a photosensitizer [48].
The obtained HA-SANPs were successfully employed in a photodynamic therapy (PDT)
protocol for the treatment of breast cancer models in vivo.

HA-SANPs containing native HA were also proposed for the vectorization of genic
materials with high efficiency. In these formulations, cationic macromolecules such as
Protamine sulfate (PRTS) [49] or Chitosan (CS) [50] were inserted as complexing agents for
a miR-34a mimic to improve the loading efficiency, while the presence of HA guaranteed
the targeting of CD44 positive cells. Moreover, when CS was used, nanogel systems can be
obtained by adding Tripolyphosphate (TPP) in the reaction feed exploiting the well-known
ability of such polyanion to act as a crosslinker upon interaction with the NH+

3 groups on
CS side chains [50]. The resulting nanosystem was found to be suitable for dual therapy
where Doxorubicin (DOX) was used as a conventional cytotoxic agent in combination with
a miR-34a mimic (Figure 2).
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Figure 2. Schematic representation of HA-SANPs obtained from electrostatic interactions between
HA and CS for DOX and miR-34a co-delivery. Reprinted with permission from Ref. [50]. 2014,
Elsevier Ltd.

SANPs can be also obtained by the direct ionic interaction between HA and CS, with
further stabilization of the nanoparticle structure being achieved by oxidation of thiol
groups inserted on HA side chains and the formation of disulfide bridges.

HA/CS complexation was used for the vectorization of Curcumin (CUR) to colon
cancer cells upon inclusion in a cyclodextrin derivative [51], while disulfide stabilization
was proposed by Xia et al. [52] to prepare dual responsive (pH and redox) DOX delivery
systems for the treatment of breast cancer cells. In the latter case, the key advantage
of the proposed nanosystem is that, by selecting a proper HA to CS ratio, negative or
positive surface charges can be obtained in order to optimize the interaction with ionic
drugs. Moreover, targeted chimeric nanocarriers for the co-delivery of DOX and siRNA
were constructed by conjugating two different HA-SANPs through redox-sensitive thiol–
disulfide bonds. HA-SH was combined to N,O-Carboxymethyl chitosan (NOCC) for DOX
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loading, while the Calcium Phosphate siRNA complex was encapsulated within Dopamine
(DA)-HA-SH based SANPs [53].

HA derivatization with SH groups was also proposed for the formation of an oligoDNA
complex able to self-assemble in a K+-dependent manner in a G-quadruplex causing selec-
tive cancer cell blebbing and death [54].

Metal chelation is another methodology useful for promoting the self-assembly of
HA nanoparticles, with calcium ions being widely explored as pH-responsive crosslinking
agents [55]. On the other hand, Mn2+ ions are capable of both stabilizing SANPs by forming
crosslinks and acting as magnetic imaging agents. Moreover, by competitive coordination,
manganese ions are able to decrease the glutathione (GSH) intracellular concentration
with a beneficial effect on PDT protocols. These findings were recorded in a work by Pan
et al., where multifunctional HA-SANPs for combined chemo-photodynamic therapy were
developed taking advantage of the loading of DOX as an antineoplastic agent, and Chlorin
e6 as PDT agent, as well as from the HA derivatization with Histidine (His) residues to
enhance the affinity towards Mn2+ ions [56]. Pt ions within CDDP molecules can also act
as metal crosslinkers by ligand exchange between the NH2 and the hydrazide groups of
HA-3,3′-dithiobis(propionohydrazide) derivative (HHA) within HHA/BSA nanoparticles.
Moreover, the simultaneous coordination between CDDP and the sulfonic groups of ICG
allowed the formation of SANPs for dual chemo-photothermal therapy [57].

The ionic nature of HA can be responsible for the formation of strong hydrogen
bonding with different species, including water-insoluble compounds of biological interest.
In this regard, HA was proposed as a targeting dispersant agent for the immunostimulatory
monophosphoryl lipid A (MPL) in combination with the extract from the bark of the Quillaja
saponaria Molina tree (QS-21) or Imiquimod (R837). The resulting complexes were found to
enhance both humoral and cellular immunity and thus can be used as a vaccine system
(Ovalbumin—OVA as model antigen) to induce prophylactic anticancer immune response
preventing tumor recurrence and growth in vivo [58].

3.2. HA-SANPs Obtained by Hydrophobic Interactions

The HA functionalization with lipophilic moieties was proved as a valuable strategy
to confer amphiphilic properties allowing the organization of HA-derivative in stable
nanoparticle systems. Different molecular specimens can be used as lipophilic moieties,
which are here classified in three main classes, namely the steroid-, lipid-, and phenyl-
based structures.

3.2.1. Steroid Modified HA in the Formation of HA-SANPs

HA backbone was hydrophobically modified by conjugation with cholesterol (CHL)
moieties via carbodiimide chemistry to form either nanoparticle structures for drug and
gene delivery or liposomes when inserted in a proper mixture of phospholipids (Table 2).
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Table 2. HA-SANPs obtained by hydrophobic interactions of steroid-modified HA.

Composition (Preparation)

Bioactive Agent

Performance

Outcome [Ref]
HA-Derivative Other Components Cancer Type

In Vitro
In Vivo

CD44+ CD44−
HA-CHL * — 2b/SiRNA Skin B16-F10 RAW264.7 — Targeting Control Release (pH) [59](Sonication)

GE11-HA-cys-CHL * — DOX Breast MCF-7
MDA-MB-231

— MDA-MB-231 Xm Dual Targeting Control Release
(Redox) Synergism

[60](Sonication)

HA-cys-CHL * — IR780 Breast MDA-MB-231 — MDA-MB-231 Xm PTT/PDT Selective Biodistr
Synergism [61](Dialysis)

HA-CHL * HSCP DOX/PTX Breast MCF-7 L929 — Control Release (pH) Synergism [62](Embedding) Liver — HepG2

KLVFF-pA §- HA-CHL * LipoidS100/ CHL/
DSPE-mPEG KLVFF

DOX Breast 4T1 HUVEC Balb/c mice
4T1 Xm

Synergism Metastasis Inhibition [63]
(Thin-film hydration)

HA-TST * — CPT/DOX Breast MCF-7 — — Control Release (pH) Synergism [64](Dialysis)

HA-5βCA-Cy7.5 * — — Breast MDA-MB 231 — — Targeting Control Release
(HAase)

[65](Water dispersion) Prostate PC-3

HA-5βCA-Cy5.5 * — — Squamous SCC7 CV-1 SCC7 Xm Selective Biodistr [66](Water dispersion)

HA-5βCA * — PTX Squamous SCC7 NIH-3T3 SCC7 Xm Targeting Synergism Selective
Biodistr

[67](Sonication)

HA-5βCA * —

PTX

Colon HT29

NIH-3T3

—
Targeting Control Release
(HAase) Selective Biodistr [68]

Lung A549 —

(High-pressure homogenization)
Breast MDA-MB 231 —
Liver HepG2 —
Skin MDA-MB-435 MDA-MB-435 Xm

HA-5βCA * — PFP Blood CL — — Echogenic Diagnosis [69](O/W Emulsion) Colon — HT-29 Xm

PEG-NH2-HA-5-βCA-
Cy5.5 *

— —
Squamous SSC7

CV-1
SSC7 Xm

Selective Biodistr [70]Colon HCT116 —
(Water dispersion) Breast MDA-MB 231 —

PEG-NH2-HA-5-βCA * — DOX
CPT

Squamous SSC7
NIH-3T3

SSC7 Xm
Control Release (HAase)

Selective Biodistr
[71]Colon HCT116 —

(Sonication) Breast MDA-MB 231 —

PEG-NH2-HA-5-βCA-
Cy5.5 *

—
IRT Colon — —

HT-29 Xm Diagnosis Synergism Selective
Biodistr

[72]CT-26 Xm(O/W Emulsion)

HA-DOCA-His * — PTX Breast MCF-7 — MCF-7 Xm Control Release (pH) Synergism [73](Sonication)
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Table 2. Cont.

Composition (Preparation)

Bioactive Agent

Performance

Outcome [Ref]
HA-Derivative Other Components Cancer Type

In Vitro
In Vivo

CD44+ CD44−
HA-cys-DOCA-His * — PTX Breast MDA-MB-231 — MDA-MB-231 Xm Control Release (Redox)

Synergism [74](Dialysis)

mPEG-HA(DOCA)-
NAC * — PTX Breast MCF-7 — — Control Release (Redox)

Synergism Selective Biodistr [75]
(Sonication) Liver — H22 Xm

HA-DOCA-His * PF 127 DOX Breast MCF-7
MCF-7/ADR

— MCF-7/ADR Xm Control Release (pH) Resistance
Reversal

[76](Dialysis)

* Carbodiimide chemistry; § Click chemistry; 2b: 2b RNA-binding protein; 5-βCA: 5-β-Cholanic acid; CHL: Cholesterol; CPT: Camptothecin; Cy: Cyanine; Cys: Cystamine; DOCA:
Deoxycholic acid; DOX: Doxorubicin; DSPE: 1,2-Distearoyl-sn-glycero-3-phosphocholine; GE11: targeting peptide; HA: Hyaluronic acid; HAase: Hyaluronidase; His: Histidine; HSCP:
Lecithin hydrogenated; IRT: Irinotecan; KLVFF: Lys-Leu-Val-Phe-Phe peptide; mPEG: Poly(ethylene glycol) methyl ether; NAC: N-acethyl cysteine; pA: Propargylamide; PF 127: Pluronic
F127; PFP: Perfluoropentane; PTX: Paclitaxel; TST: Testosterone; Xm: Xenograft mice.
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Taking into consideration that HA-based nanoparticles cannot directly encapsulate
anionic siRNA molecules due to the net negative charge, Choi et al. proposed the in-
corporation of siRNA/2b protein complexes into HA-CHL nanoparticles. They found
that the nanosystem was able to selectively deliver the 2b protein/siRNA complexes to
melanoma cells with up-regulated CD44 receptors, release the siRNA within the endocytic
compartments due to dissociation of the 2b protein/siRNA at acidic pH, and effectively
suppress the expression of the target gene [59]. HA-CHL nanoparticles were also endowed
with redox responsivity when a GSH-sensitive linker such as Cystamine (cys) was used
to connect HA and CHL molecules. By this strategy, DOX and IR780, as cytotoxic drugs
or photosensitizing agents, respectively, were vectorized to breast cancer cells in both
in vitro and in vivo models. GE11 was used as a targeting peptide to improve the selec-
tivity of the DOX release [60], while cell death occurred by high ROS generation upon
IR780 laser irradiation (PDT step) followed by high increased temperature (photothermal
effect—PTT) [61].

The insertion of HA-CHL conjugate in liposome formulations can be performed by
either post-insertion in pre-formed vesicular formulation or hydration of the thin layer
film with an HA-derivative solution. By the post-insertion method, hydrogenated Lecithin-
based liposomes for DOX and Paclitaxel (PTX) combined therapy were prepared, with
the HA residues on the outer surface able to discriminate between CD44+ (breast cancer)
and CD44− (fibroblast and liver cancer) cells [62]. On the other hand, complex liposomal
structures can be obtained when HA-CHL aqueous solution was employed as a hydrating
agent. The efficiency of such a system was further enhanced by conjugation with the Lys-
Leu-Val-Phe-Phe (KLVFF) peptide, a key sequence involved in the β-sheet fibril formation
showing antimetastatic activity [63].

Together with CHL, other steroid structures such as testosterone (TST) [64], 5-β-
Cholanic acid (5-βCA), and Deoxycholic acid (DOCA) have been proposed for the lipidiza-
tion of HA. Cyanine-labeled self-assembled HA-5-βCA nanoparticles (Figure 3), prepared
via different techniques, were effectively targeted in different cancer cells and tissues,
including breast, prostate, and squamous carcinomas [65,66].

Such nanosystems were proposed for the delivery of PTX [67] with the further pos-
sibility to modulate the release by exploiting the hydrolytic activity of Hyaluronidase
(HAase) selectively expressed within the tumor cells [68]. Moreover, the encapsulation of
Perfluoropentane (PFP) within HA-5-βCA SANPs allowed the obtainment of echogenic
materials for the early-stage diagnosis of colon cancer [69].

The effective accumulation of HA-SANPs into the tumor site is a result of a combined
EPR and active targeting. Nevertheless, the high affinity of HA towards the HA receptor
(HARE) expressed by liver sinusoidal endothelial cells can determine high liver uptake,
with a possible reduction of the therapeutic efficiency. The PEGylation of HA-SANPs can
be a valuable approach to specifically address this issue: PEG molecules, indeed, form a
hydrophilic shell on the nanoparticle outer surface, conferring stealth properties towards
the phagocytic cells of the reticuloendothelial system and thus prolonging the blood
circulation time. When applied to self-assembled HA-5-βCA nanoparticles, the selective
biodistribution of nanocarriers [70] allowed the pharmacokinetics profiles of different
chemotherapeutic agents, such as DOX, CPT [71], and Irinotecan [72] to be improved.

The targeting efficiency of HA-SANPs can be enhanced by inserting pH and/or redox
responsive functionalities in the nanoparticle structure. For this purpose, the imidazole
ring of His (pH responsivity) [73] and the disulfide bridges of cys (GSH responsivity) [74]
were conjugated to HA-DOCA derivatives, obtaining PTX vectorization to breast cancer
both in vitro and in vivo.

As a further development of these systems, the HA-DOCA derivative was conjugated
or co-formulated with PEG and Pluronic (PF 127) species, obtaining nanocarriers able
to modulate the release of DOX and PTX in response to the acidic and GSH-rich tumor
environment. In detail, the PEGylation processes allowed the enhancement of the biodistri-
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bution profiles [75], while the presence of PF 127 was used to improve cellular uptake thus
counteracting the insurgence of multidrug resistance processes [76].
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3.2.2. Lipid-modified HA in the formation of HA-SANPs

The introduction of lipophilic moieties on the HA backbone can be reached by conju-
gation with lipid chains, belonging to phospholipids, ceramides, fatty acids, amines, and
alcohols (Table 3).
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Table 3. HA-SANPs obtained by hydrophobic interactions of lipid-modified HA.

Composition (Preparation)

Bioactive Agent

Performance

Outcome Ref.
HA-Derivative Other Components Cancer Type

In Vitro
In Vivo

CD44+ CD44−
HA-DSPE *
HA-DMPE * CHL — Breast MCF-7 — — Biocompatibility [77]

(Sonication)

HA-DPPE $ CHL/DPPC/PG C12GEM Pancreas MiaPaCa2 VIT1 MiaPaCa2 Xm Synergism Selective Biodistr [78](Thin-film hydration)

HA-PEG-DSPE * Tf-PEG-DSPE *
GM/DOTAP/PC pDNA Lung A549 — A549 Xm Dual Targeting Sustained Release

Enhanced Transfection
[79]

(O/W emulsion)

HA-CE £ — HB
PTX

Lung A549 — A549 Xm Sustained Release Synergism/PDT [80](Dialysis)

HA-CE £ DOTAP/DOPE pDNA Breast MDA-MB-231 NIH-3T3 — Synergism [81](Thin-film hydration)

HA-CE £ PC/CHL DOX/MGV Breast MDA-MB-231 — S-D rats
MDA-MB-231 Xm

Control Release (pH) Selective Biodistr
Synergism/MR Imaging

[82](Thin-film hydration)

HA-CE £ P85
DTX

Brain U87-MG
—

— Sustained Release Synergism Resistance
Reversal

[83](Thin-film hydration) Breast MCF-7 MCF-7/ADRMCF-7/ADR

His-HA-DDA * — DOX Breast 4T1 — 4T1 Xm Control Release (pH) Selective Biodistr
Synergism [84](Dialysis)

HA-DDA *
Miglyol812

Tween80
SolutolHS15

CTAB
DTX Lung A549 — — Targeting Enhanced Uptake [85]

(Self-emulsification)

HA-HDA * DPPC IONPs/DTX Breast MCF-7 NIH-3T3 — Synergism PTT Magnetic Targeting [86](Thin lipid film hydration)

HA-HDA * PLGA
ZnPHC

Colon HT-29 — HT-29 Xm
PTT Selective Biodistribution [87](O/W emulsion) Lung A549 — —

Liver — LO2 —

HA-DO * CaP ICG Lung A549 — A549 Xm Control Release (pH) PTT/PDT [88](Thin lipid film hydration)

HA-cys-STA * — DOX Colon HCT116 HEK293
CT-26

HCT116 Xm
CT-26 Xm

Control Release (Redox) Synergism [89](Dialysis)

HA-AUT * — FITC-DEX
NR Breast MDA-MB-468 SK-BR-3 — Control Release (Redox) Targeting [90](Water dispersion)

MPEG-ss-HA-HDO * — PTX Breast MCF-7 — — Control Release (Redox) Synergism
Selective Biodistr

[91](Sonication) Liver — H22 Xm

HA-His-MGK * — CUR Squamous — — SCC7 Xm Control Release (pH) Selective Biodistr [92](Thin-film hydration)
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Table 3. Cont.

Composition (Preparation)

Bioactive Agent

Performance

Outcome Ref.
HA-Derivative Other Components Cancer Type

In Vitro
In Vivo

CD44+ CD44−
HA-His-MGK * PEG-NH2-CS-K * CUR Mesothelioma HMM-239 HMM-239 Xm Control Release (pH) Synergism In Vivo [93](Thin-film hydration)

FA-HA-MGK * — CUR Lung A549 — — Double Targeting Controlled Release (pH) [94](Dialysis) Breast MCF-7

* Carbodiimide chemistry; $ reductive amination; £ TBA mediated condensation; AUT: 11-(Aminooxy)-1-undecanethiol; C12GEM: 4-(N)-lauroyl-gemcitabine; CaP: Calcium Phos-
phate; CE: Ceramide; CHL: Cholesterol; CTAB: Cetyl trimethylammonium bromide; CUR: Curcumin; Cys: Cystamine; DDA: Dodecylamine; DMPE: 1,2-Dimiristoyl-sn-glycerol-3-
phosphatidylethanolamine; DO: 1,2-Dioleoyl-3-amino-propane; DOPE: 1,2-Dioleoyl-sn-glycero-3-phoshphoethanolamine; DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane; DOX:
Doxorubicin; DPPC: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; DPPE: 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine; DSPE: 1,2-Distearoyl-sn-glycero-3-phosphocholine; DTX:
Docetaxel; FITC-DEX: Fluorescein isothiocyanate-Dextran; GM: Glycerol monostearate; HA: Hyaluronic acid; HB: Hypocrellin B; HDA: Hexadecylamine; HDO: Hexadecanol; His:
Histidine; ICG: Indocyanine green; IONPs: Iron oxide nanoparticles; MGK: Menthone 1,2-glycerol ketal; MGV: Magnevist—gadopentetate dimeglumine; MPEG: Poly(ethylene glycol)
methyl ether; MR: Magnetic resonance; NR: Nile red; P85: Pluronic P85; PC: Phosphatidylcholine; pDNA: Plasmid DNA; PEG: Poly(ethylene glycol); PG: Phosphatidylglycerol; PHC:
Phthalocyanine: PLGA: Poly(lactic-co-glycolic acid); PTX: Paclitaxel; S-D: Sprague Dawley; STA: Stearic acid; Tf: Transferrin; Xm: Xenograft mice.
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Phospholipids are highly biocompatible compounds widely employed for the fabrica-
tion of different drug delivery systems, such as micelles, liposomes, solid lipid nanoparti-
cles, micro- and nano-emulsions [95]. They can serve as HA lipidizing agents, allowing
the obtainment of SANPs with different architectures [77] for the vectorization of cytotoxic
drugs and gene to pancreatic [78] and lung [79] carcinomas. In the latter case, the insertion
of the transferrin (Tf) motif within the nanoparticle formulation enhanced the targeting
behavior and the transfection efficiency which was found to be significantly superior to
that of conventional liposomes used as a control.

Ceramides (CE) belong to the sphingolipids group and consist of an acylated long-
chain sphingosine base. Although they have a positive net charge, ceramides are used as
structural components of nanoformulations by virtue of their ability to easily move across
cell membranes [96].

HA-CE conjugates, alone or in combination with phospholipids and pluronics, were
properly used as a component of nanoparticle, liposome, and micelle formulations. Pure
HA-CE nanoparticles were tested as a vehicle for the vectorization of PTX in combination
with Hypocrellin B (HB) as a photosensitizer in synergistic chemo- and photodynamic-
treatment of lung cancer [80]. The choice of cationic or neutral phospholipids allowed the
insertion of HA-CE in liposomal bilayer for the delivery of plasmid DNA [81] or drug to
MDA-MB-231 breast cancer cells, with the possibility to simultaneously load a gadolinium
derivative for Magnetic Resonance Imaging (MRI) [82] (Figure 4).
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When Pluronic 85 was combined with HA-CE, a micellar drug formulation able to
reverse the Docetaxel (DTX) resistance in MCF-7/ADR xenograft mice was obtained [83].

Fatty acid derivatives, including amines and alcohols, represent potentially one of
the most useful types of lipidizing agents for macromolecules of biological interest, with
the amphiphilic behavior being able not only to promote self-assembling processes in
physiological environments but also to module the biological properties of the resulting
conjugate [97]. The HA derivatization with Dodecylamine (DDA) residues was used for
the obtainment of micelle nanocarriers for the delivery of DOX, and the targeting behavior
was further enhanced by inserting pH-responsive His residues [84]. HA-DDA derivative
was also co-formulated with different surfactants to improve the intracellular delivery of
DTX in lung cancer cells [85], while the insertion of HA-hexadecylamine (HA-HDA) into a
liposome architecture was proposed as a strategy to co-encapsulate DTX and Iron Oxide
Magnetic Nanoparticles (IONPs) in a combined chemo- and photothermal therapeutic
nanoplatform [86]. HA-HDA conjugate was also combined with Poly(lactic-co-glycolic acid)
(PLGA) in a O/W emulsion process for the preparation of SANPs for PTT by encapsulation
of a Zn-phthalocyanine (PHC) complex [87]. By conjugation of the hydrophobic unit of
Dioleic acid (DO) to the carboxyl group of HA by carbodiimide chemistry, Xu and co-
workers developed hyalurosomes for the targeted delivery of Indocyanine green (ICG)
into lung tumor cells, where it exerts PTT and PDT functions [88]. Moreover, as discussed
for steroid-modified HA, HA-SANPs based on HA-fatty acid derivatives were endowed
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with redox responsivity by insertion of cys [89] or alkanethiol [90] residues and further
engineered by PEGylation of the outer surface [91].

Finally, an original approach for the lipidization of HA backbone was proposed by the
Chen research group, that synthesized amphiphilic and pH-sensitive HA-acetal-menthone
(MGK) derivatives able to self-assembly in micelle systems for the vectorization of CUR
to squamous carcinoma [92] and mesothelioma [93], with Folic acid (FA) used as dual
targeting element for breast and lung cancer cells [94].

3.2.3. Phenyl Compounds-Modified HA in the Formation of HA-SANPs

Aromatic compounds were also employed as HA lipidizing agents, due to the en-
hanced loading capacity of hydrophobic bioactive agents via π-π stacking (Table 4).

Aminopropyl-1-pyrenebutanamide (PBA) was found to enhance the loading and
selective biodistribution of ICG [98] and Orlistat (ORL) [99], an FDA-approved inhibitor of
fatty acid synthase. It was observed an enhanced ORL activity not only in pancreatic cancer
cells, the main target of this lipophilic drug but also in breast cancer cells overexpressing
CD44 receptors, confirming the high internalization efficiency of HA targeted SANPs.

Another approach involved the HA derivatization with 2,3,5-Triiodobenzoic acid
(TIBA), a contrasting agent for X-ray computed tomography [100], allowing the preparation
of HA-SANPs that, upon DOX loading, were successfully applied in the treatment of
squamous cell carcinoma. The same cancer model was employed to test the in vitro
and in vivo efficiency of hybrid nanoparticles consisting of hydrophobic IONPs linked to
HA through Dopamine (DA) spacer [101]. Here, Homocamptothecin (HCPT) acted as a
cytotoxic agent, while the magnetic properties of IONPs were used for both targeting and
imaging applications.

Finally, by virtue of the high efficiency of pH/redox responsive SANPs, cys residues
were used as a spacer between HA and the hydrophobic Tetraphenylethylene (TPE) moi-
eties for the preparation of micelles able to selectively vectorize DOX to cervix and ovary
cancers [102]. Disulfide-containing HA-SANPs were also obtained by oxidizing an HA-
cysteine derivative with 6-Mercaptopurine (MP), with the resulting micelle being destabi-
lized in the tumor micro-environment allowing a selective release of the loaded anticancer
drug [103].

3.3. HA-SANPs Obtained by HA Modification with Polymeric Materials

Polymeric SANPs have been widely demonstrated as safe and powerful anticancer
nanocarriers due to their high chemical versatility and the possibility to easily tailor the
physicochemical properties, the permeability, and thus the kinetics of drug release. HA
was used as a targeting motif of the self-assembling polymeric conjugate of both natural
and synthetic origin (Table 5).
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Table 4. HA-SANPs obtained by hydrophobic interactions of phenyl-modified HA.

Composition (Preparation)
Bioactive

Agent

Performance

Outcome Ref.
HA-Derivative Other Components Cancer Type

In Vitro
In Vivo

CD44+ CD44−
HA-PBA * — ICG Breast MDA-MB-231 2000 MS1 MDA-MB-231 Xm Selective Biodistr [98](Dialysis)

HA-PBA * ORL ORL Pancreas PC-3
LNCaP — — Synergism [99]

(Dialysis) Breast MDA-MB-231

HA-TIBA * — DOX Squamous SCC7 NIH-3T3 SCC7 Xm Control Release (pH) Selective Biodistr
Synergism/CT Imaging

[100](Thin-film hydration)

HA-DA *-IONPs — HCPT Squamous SCC7 — SCC7 Xm Controlled Release (HAase) Synergism
Magnetic Targeting MR Imaging [101](Water dispersion)

HA-cys-TPE * — DOX Ovary ES2 L929 ES2 Xm Control Release (pH/Redox) Synergism
Selective Biodistr

[102](Dialysis) Cervix HeLa

HA-ss-MP * — DOX Colon HCT-116 — BALB/C mice
HCT116 Xm

Control Release (pH, redox) Synergism
Selective Biodistr

[103](Dialysis)

* Carbodiimide chemistry; Cys: Cystamine; DA: Dopamine; DOX: Doxorubicin; HA: Hyaluronic acid; HAase: Hyaluronidase; HCPT: Homocamptothecin; ICG: Indocyanine green;
IONPs: Iron oxide nanoparticles; MP: 6-Mercaptopurine; ORL: Orlistat; PBA: Aminopropyl-1-pyrenebutanamide; TIBA: 2,3,5-Triiodobenzoic acid; TPE: Tetraphenylethylene; Xm:
Xenograft mice.

Table 5. HA-SANPs obtained by HA modification with polymeric materials.

Composition (Preparation)

Bioactive Agent

Performance

Outcome Ref.
HA-Derivative Other Components Cancer

Type
In Vitro

In Vivo
CD44+ CD44−

HA-BSA
◦◦ — PTX

IA C-1375
Ovary SKOV-3 A2780 — Targeting Synergism [104](Water Dispersion)

HA-ss-HSA * — DOX Breast MDA-MB-231 NIH-3T3 — Control Release (redox) Synergism [105](Water Dispersion)

HA-PBLG ££ — — Breast MCF-7 — S-D rats Control Release (pH) Synergism [106](Nanoprecipitation) Brain — U87

HA-PBLG ££ — Dy-700 Lung A549 H322
H358

A549 Xm Selective Biodistr [107](Nanoprecipitation) H358 Xm

HA-PBLG ££
— GFT

VN
Lung A549 H322

H358

BALB/C mice
H358 Xm
H322 Xm
A549 Xm

Selective Biodistr [108]
(Nanoprecipitation)

HA-ss-PZLL * — DOX
IONPs Liver HepG2 — BALB/C mice Control Release (redox) MR Imaging [109](Dialysis)



Nanomaterials 2022, 12, 2851 16 of 38

Table 5. Cont.

Composition (Preparation)

Bioactive Agent

Performance

Outcome Ref.
HA-Derivative Other Components Cancer Type

In Vitro
In Vivo

CD44+ CD44−
HA-PIPASP-Ce6 * — DOX

Ce6 Colon HCT-116
CT-26 CV-1 CT-26 Xm Control Release (photochemical, pH) [110](Dialysis)

AcHA-PLA — DOX Colon HCT-116 — S-D rats Selective Biodistr [111](Dialysis)

HA-PLGA * — DOX Colon HCT-116 — — Synergism [112](Dialysis)

HA-PLGA * — DTX Breast MDA-MB-231 MCF-7 S-D rats
MDA-MB-231 Xm

Targeting Selective Biodistr [113](Dialysis)

HA-PLGA * — PpIX Lung A549 — — Sustained release PDT Synergism [114](Dialysis)

HA-prop-PLA sPLGA-LA DTX Lung A549 — A549 Xm Control Release (redox) Synergism
Selective Biodistr

[115](Nanoprecipitation)

HA-cys-PLGA TPGS PTX
RTV Breast MCF-7

MDA-MB-231 MCF-12A — Control Release (pH, redox)
Synergism/Targeting Resistance Reversal

[116](Sonication)

FA-HA-cys-PLGA * — DOX Breast MCF-7 — MCF-7 Xm Control Release (pH, redox) Synergism [117](Dialysis)

Tf- HA-cys-PLGA * PVA HSP90
AUY922 Brain

U87
P5

P5/TMZ-R
— U87 Xm Control Release (redox) Selective Biodistr

Synergism Resistance Reversal [118]
(Emulsion solvent evaporation)

HA-PLGA * MSC PTX Brain C6 — C6 Xm Sustained Release Synergism Selective
Biodistr

[119](Endocytosis)

HA-cys-PCL § — DOX
IONPs Liver HepG2 — — Control Release (redox) MR Imaging [120](Dialysis)

HA-PCL — I-LIP Liver HepG2 CCL-13 — Targeting Radiotherapy [121](Dialysis)

PCL-PEG-NH2-HA * — DTX Breast MDA-MB-231 NIH-3T3 — Targeting Synergism [122](O/W emulsion solvent diffusion)

PDA-HA-prop-PCL § — DOX Squamous SCC7 — SCC7 Xm Control Release (redox) Selective Biodistr [123](O/W emulsion)

HA-PPDSMA § — DOX Squamous SCC7 — SCC7 Xm Control Release (redox) Selective Biodistr [124](Dialysis)

HA-P(TMC-DTC) § — DTX Breast MDA-MB-231 L929 MDA-MB-231 Xm Control Release (redox) Selective Biodistr [125](Dialysis)

HA-cys-MA * HA-tet-GALA *
Sap

Breast 4T1
—

MDA-MB-231 Xm Control Release (redox) Synergism
Selective Biodistr

[126]MDA-MB-231
(Microfluidics click chemistry) Lung A549 —

Liver SMMC-7721 —
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Table 5. Cont.

Composition (Preparation)

Bioactive Agent

Performance

Outcome Ref.
HA-Derivative Other Components Cancer

Type
In Vitro

In Vivo
CD44+ CD44−

HA–ss–PNIPAAm * — DOX Lung A549 LO2 — Control Release (redox) Targeting
Selective Biodistr

[127](T-triggered self-assembly) Breast — 4T1 Xm

HA-poly(DEGMA-
co-OEGMA) & — PTX Ovary SKOV-3 HCT-8/E11 — Targeting Synergism [128]

(T-triggered self-assembly)

HA-m-poly(DEGM-
co-CMA) & — PTX Cervix HeLa Vero HeLa Xm Control Release (light) Selective Biodistr [129]

(T-triggered self-assembly)

HA-PEI * HA-Cys *
PEG-NH2-HA * siRNA

Breast MDA-MB-468 — MDA-MB-468 Xm

Selective Biodistr Synergism [130]Lung A549/A549DDP H69/H69AR A549/A549DDP Xm
H69/H69AR Xm

(Water Dispersion) Skin B16F10 — B16F10 Xm
Liver — Hep3B —

HA-PEI * PEG-NH2-HA * siRNA
Lung A549/A549DDP H69/H69AR A549/A549DDP Xm

H69/H69AR Xm
Selective Biodistr Synergism [131]HA-ODA * PEG-NH2-HA * CDDP

(Water Dispersion)

HA-BPEI * — siRNA Skin B16F10 HEK-293 — Targeting [132](Coordination)

HA-βCD-OEI $ pDNA pDNA Breast MDA-MB-231 MCF-7 — Synergism targeting [133](Coordination)

* Carbodiimide chemistry, ◦◦ Maillard, ££ Huisgen 1,3-dipolar cycloaddition; § Click chemistry; & Reversible addition–fragmentation chain-transfer polymerization; $ reductive amination;
Ac: Acetyl; BPEI: Branched polyethylenimine; BSA: Bovine serum albumin; CDDP: Cisplatin; Ce6: Chlorin e6; CMA: 6-Bromo-4-hydroxymethyl-7-coumarinyl methacrylate; cys:
Cystamine; DEGM: Di(ethylene glycol)methyl ether methacrylate; DEGMA: Diethyleneglycolmethacrylate; DOX: Doxorubicin; DTX: Docetaxel; Dy-700: near infrared dye 700; FA:
Folic acid; GALA: Cell penetrating peptide; GFT: Gefitinib; HA: Hyaluronic acid; HSA: Human serum albumin; IA: Imidazo acridinones; I-LIP: 131I-lipiodol; IONPs: Iron oxide
nanoparticles; LA: Lipoic acid; MA: Methacrylic acid; MSC: Mesenchymal stem cells; ODA: Octadecylamine; OEGMA: Oligoethyleneglycolmethacrylate; OEI: Oligoethylenimine;
P(TMC-DTC): Poly(trimethylene carbonate-co-dithiolane trimethylene carbonate); PBLG: Poly(γ-benzyl-L-glutamate); PCL: Poly(ε-caprolactone); PDA: 2-(Pyridyldithio)-ethylamine;
pDNA: Plasmid DNA; PEG: Poly(ethylene glycol); PEI: Poly(ethylenimine); PIPASP: Poly(diisopropylaminoethyl) aspartamide; PLA: Poly(L-lactic acid); PLGA: Poly(lactic-co-glycolic
acid); PNIPAAm: Poly(N-isopropylacrylamide); PPDSMA: Poly(pyridyl disulfide methacrylate); PpIX: Protoporphyrin IX; prop: Propargylamine; PTX: Paclitaxel; PVA: Poly(vinyl
alcohol); PZLL: Poly(N-ε-carbobenzyloxy-L-lysine); RTV: Ritonavir; Sap: Saporin; S-D: Sprague Dawley; sPLGA: star PLGA; T: Temperature; Tet: Lysine-tetrazole; Tf: Transferrin; TPGS:
D-alpha-tocopheryl poly(ethylene glycol) succinate; VNS: Vorinostat; Xm: Xenograft mice; β-CD: β-Cyclodextrin.
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HA was conjugated to serum albumins because of their intrinsic ability to bind and
transport biomolecules through the blood circulation [134], allowing the preparation SANPs
for PTX, Imidazoacridinones (IA) [104], and DOX [105] vectorization. In the case of DOX
vehicles, a cys linker was also inserted between HA and protein for conferring GSH
responsivity (Figure 5).
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Figure 5. Cell viability of BALB/3T3 (A) and MDA-MB231 cells (B) treated with DOX@HA-SANPs
(drug concentration from 0 to 5 µg/mL) after 24 and 48 h. Within each group, different letters denote
statistical differences for p < 0.05, n = 5. Reprinted from Ref. [105].

HA-polypeptides, including Poly(γ-benzyl-L-glutamate) (PBLG), Poly(N-ε-
carbobenzyloxy-L-lysine) (PZLL), and Poly(diisopropylaminoethyl) aspartamide (PIPASP)
were used as building blocks of HA-SANPs. PBLG and PZLL allow the self-assembly
by virtue of their highly ordered α-helix secondary structure [106–108], and hydrophobic
behavior [109], respectively, while PDIPASP acts as a pH-responsive moiety [110].

Owing to their high biocompatibility and biodegradability, Poly(lactic acid) (PLA),
Poly(glycolic acid) (PGA), and their copolymers (PLGA) have been extensively investigated
for the preparation of highly engineered nanocarriers [135]. PLA/PLGA moieties were con-
jugated to HA to serve as hydrophobic counterparts needed to form robust self-assembling
nanostructures in aqueous media, and effectively vectorize chemotherapeutics such as
DOX [111,112], DTX [113], and PDT agents [114] to colon, breast, and lung cancers. As
discussed for other typologies of HA-SANPs, also for the HA-PLA/PLGA conjugates the
redox responsive approach was widely explored in order to obtain a targeted release of
the therapeutic agent in the intracellular space of cancer cells. For this context, Wang
et al. developed disulfide-crosslinked HA-SANPs consisting of star PLGA-Lipoic acid
(sPLGA-LA) conjugate self-assembled in the presence of HA-PLA conjugate. As a post-
formulation crosslinking strategy, LA residues were oxidized by Dithiothreitol (DTT) to
ensure the selective vectorization of DTX to lung cancer both in vitro and in vivo as a
consequence of SANPs destabilization within the tumor environment [115]. Moreover,
HA-PLGA conjugates can be organized in redox-responsive nanoparticle structures by
inserting GSH-responsive linkers between HA and PLGA counterparts [116], with the
possibility to further enhance the site-specificity of the drug release by the insertion of other
targeting elements such as FA [117] and Tf [118].

In a more innovative approach, mesenchymal stem cells (MSC)-based “Trojan horse”
micelles were proposed as a more selective nanocarrier to overcome non-specific distribu-
tion often attributed to the wide expression of CD44 within tissues and organs. In detail,
PTX-loaded HA-PLGA SANPs were shielded by endocytosis within MSC micelles for an
effective orthotopic glioma therapy [119].

Poly(ε-caprolactone) (PCL) is another key polymer widely used in biomedical fields
for the preparation of delivery vehicles due to its ability to control the drug release kinetics
and not significantly lower the environmental pH upon degradation [136]. SANPs based
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on HA-PCL conjugate were, indeed, successfully used for the vectorization of chemo- [120]
and radio- [121] therapeutics. Moreover, the further insertion of PEG moieties was found
to improve the blood circulation time [122], while the derivatization with 2-(Pyridyldithio)-
ethylamine (PDA) conferred the possibility to perform a post-crosslinking step in the
presence of DTT for enhanced GSH responsivity [123].

The targeting properties of HA were combined to the high biocompatibility and chem-
ical versatility of acrylic-based polymers [137], and the resulting polymer conjugate was
suitable for the preparation of SANPs with a variety of architecture, including micelles and
nanogels. In this regard, redox-responsive micelles for the treatment of squamous [124] and
breast carcinomas [125] were developed by self-assembly and post-disulfide crosslinking
either in the presence or absence of DTT, while microfluidics and catalyst-free photo-click
crosslinking allowed the preparation of nanogels with dual targeting efficiency [126]. Dif-
ferent research groups proposed the synthesis of HA derivatives able to organize in nanogel
structures upon reaching a critical assembling temperature, with SANPs for the vectoriza-
tion of DOX and PTX to breast [127] and ovarian [128] cancers being some key examples of
this approach. Moreover, the insertion of photocleavable coumarin moieties allowed the
possibility to trigger the PTX release in response to the application of a light stimulus [129].

Finally, when poly(ethyleneimines) (PEI) were used as HA derivatizing agents, tar-
geted gene-delivering SANPs were obtained. Ganesh et al. performed a screening of
different NH2-containing HA derivatives to assess the siRNA encapsulation efficiency,
showing the superior performance of HA-PEI, as well as the possibility to combine these
features with redox responsibility and PEG-shielding properties [130]. The same authors
proposed a CDDP and siRNA co-therapy for lung cancer treatment: HA-SANPs obtained
by the co-assembly of HA-ODA and HA-PEG derivatives were used as CDDP vehicles
co-administrated in xenograft mice in combination with siRNA-loaded HA-PEI/HA-PEG
nanosystem [131]. Genetic materials were also loaded in star HA derivatives consisting
of HA-branched PEI [132] and β-CD branched oligoethylenimine (OEI) [133], allowing
effective transfection to melanoma and breast cancers, respectively.

3.4. HA-SANPs by Supramolecular Assemblies

CDs are water-soluble, nontoxic, and low-cost cyclic oligosaccharides with six to eight
D-glucose units linked by α-1,4-glycosidic bonds, obtained from biodegradation of starch
using Glucanotransferase enzyme. They are widely explored for the delivery of bioactive
agents by virtue of their ability to selectively host inorganic and/or organic molecules in
their hydrophobic cavity. Nevertheless, the use of native or simply-modified CD can be
limited due to unfavorable pharmacokinetic profiles [138]. To overcome this disadvantage,
multiple CD units were combined in the so-called CD-based supramolecular assemblies,
nanoarchitectured materials with several binding sites for substrates mimicking the typical
cooperative “multimode, multipoint” binding effect observed in biological systems, thus
enhancing the loading efficiency and tailoring the release behavior [139].

HA-SANPs involving the formation of supramolecular CD complexes can be obtained
by the derivatization of α- and β-CD with either HA or the other components of the
nanosystem. Finally, some examples of dual host–guest interactions are listed (Table 6).
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Table 6. HA-SANPs obtained by supramolecular assemblies.

Composition

Bioactive Agent

Performance

Outcome Ref.
HA-Derivative Other Components Cancer Type

In Vitro
In Vivo

CD44+ CD44−

HA-βCD * CUR-OXPt * CUR-OXPt Pancreas PC-3 LO2 — Control Release (pH, Ease)
Synergism [140]Lung A549

HA-PMCD * Ps-PTX Ps-PTX Ovary SKOV-3 NIH-3T3 — Control Release (HAase)
Targeting/Synergism Imaging [141]

HA-βCD * Fc-CA Fc-CA Breast MCF-7
4T1 NIH-3T3 4T1 Xm Control Release (pH) CDT

Selective Biodistr [142]

HA-αCD * G-CB[8] G-CB[8] Lung A549 293T — PDT Targeting [143]

HA-αCD * Trans-G siRNA Lung A549 293T — Control Release (UV) Synergism [144]

HA-βCD * Ad-Pt Pt Breast MCF-7 NIH-3T3 — Control Release (HAase)
Synergism [145]Ovary SKOV-3 SKOV-3 Xm

AHA-βCD ◦ Ad-ss-CPT CPT Liver HepG2 — — Control Release (pH/redox)
Synergism [146]Bone — S180

HA-βCD * Ad-DOTA-Gd
Ad-Cy7

Gd
Cy7

Breast MCF-7 — — Targeting MR Imaging NIR
Imaging [147]Brain — U87-MG

Ad-HA * AM-βCD CBL Lung A549 — — Control Release (HAase)
Synergism ATP Depletion [148]

Ad-HA * βCD-TPE # TPE
DOX Breast MCF-7 NIH-3T3 — Control Release (pH) Targeting [149]

Ad-HA * βCD-CPT * CPT Colon HCT-116 NIH-3T3 — Targeting [150]

Ad-HA * βCD-PEI *
pDNA pDNA Cervix HeLa HeLa

NIH-3T3 — Targeting [151]

HA-βCD * DAE-βCD § adPy-Ru Lung A549 293T — PDT Targeting [152]

TPhPh-HA-βCD * PMCD-SS-CPT * adPs CPT Ps Lung A549 293T — Control Release (redox)
PDT/Targeting [153]

HA-CE £-MβCD * — — Breast MDA-MB-231 NIH-3T3
HUVEC

BALB/c mice
MDA-MB-231 Xm

CHL Depletion Enhanced
Apoptosis Targeting [154]

Ad-HA * MβCD — Colon HCT-116 NIH-3T3 — CHL Depletion Enhanced
Apoptosis Targeting [155]

Ad-HA * FA-MβCD * — Colon HCT-116 — — CHL Depletion Enhanced
Apoptosis Targeting [156]

* Carbodiimide chemistry; ◦ Shiff base formation; £ TBA mediated condensation; § Click chemistry; # NaBH3CN + DTT; Ad: Adamantane; Ad-Pt: Adamplatin; adPy-Ru: adamantane-
polypyridyl ruthenium; AHA: Aldehyde HA; AM-βCD: hexylimidazolium modified βCD; ATP: Adenosine triphosphate; CBL: Chlorambucil; CD: Cyclodextrin; CDT: Chemodynamic
therapy; CE: Ceramide; CHL: Cholesterol; CPT: Camptothecin; CUR: Curcumin; Cy: Cyanine; DAE: Diarylethene; DOTA: Tert-butyloxycarbonyl 1,4,7,10-tetraazacyclododecane-1,4,7,10-
tetraacetic acid; DOX: Doxorubicin; Ease: Esterase; FA: Folic acid; Fc-CA: Ferrocene-modified cinnamaldehyde prodrug; G-CB[8]: Cucurbit[8]uril carbazole derivative; HA: Hyaluronic
acid; HAase: Hyaluronidase; MR: Magnetic Resonance; Mβ-CD: Methyl-β-cyclodextrin; NIR: Near Infrared; OXPt: Oxoplatin; pDNA: Plasmid DNA; PDT: Photodynamic therapy; PEI:
poly(ethylenimine); PMCD: Permethyl-β-CD; Ps: Porphyrin; PTX: Paclitaxel; TPE: Tetraphenylethylene; TPhPh: Triphenylphosphine; Trans-G: Azobenzene-modified diphenylalanine;
Xm: Xenograft mice.
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CUR/Oxaplatin (OXPt) complex was included in HA-βCD with the formation of
supramolecular SANPs for the treatment of pancreatic and lung cancers [140], while ultra-
strong host-guest interaction between Permethyl-β-CD (PMCD) and Porphyrin (Ps) was
used in the preparation of HA-SANPs for the delivery of PTX-Ps to ovarian cancers cells
combining the therapeutic efficiency of PTX and the fluorescence properties of Ps [141].
Moreover, high efficient chemodynamic (CDT) and photodynamic therapy (PDT) pro-
tocols for breast and lung cancers were developed when Fc-Cinnamaldehyde (Fc-CA)
pH-responsive prodrug and Cucurbit[8]uril photosensitizing derivatives were used as the
guest molecule of HA-βCDa and HA-αCD, respectively [142,143]. In a different approach,
Liu and co-workers explored the possibility to use HA-αCD derivative as the hosting
element for a UV-responsive azobenzene-diphenylalanine compound with a positively
charged imidazole group able to coordinate siRNA. UV irradiation triggers the cis-trans
isomerization of the azobenzene double bond resulting in an HA-SANPs disassembly
and siRNA release [144]. Among the different molecules forming strong inclusion com-
plexes with CD, Adamantine (Ad) was widely used as a derivatizing agent of either guest
molecules with improved affinity for HA-CD conjugates, or HA with the aim to confer
targeting activity to CD-based SANPs.

Following the first approach, the coordination of Adamaplatin (Ad-Pt) [145] and Ad-
CPT redox responsive prodrug [146] were explored as therapeutic tools for the treatment of
ovarian cancer and osteosarcoma, respectively, while MRI and near-infrared (NIR) imaging
protocols were developed when the host-guest interaction involved diagnostic molecules
such as Gadolinium and Cyanine dye derivatives [147]. On the other hand, Ad-HA acted as
the guest molecule of CD derivatives for Chlorambucil (CBL) [148] and DOX [149] release,
and further improvements were obtained upon conjugation of CD to CPT [150], or PEI [151]
to enhance the drug and gene targeting efficiency, respectively.

Double host-guest interactions due to the presence of CD on both HA and guest
molecules were involved in the formation of supramolecular SANPs for Ruthenium-based
PDT [152] or for combined chemo-PDT protocol upon derivatization of guesting permethyl-
β-CD and hosting HA-βCD with redox responsive CPT and Triphenylphosphine moieties,
respectively [153].

Finally, the specific CHL-binding affinity of Methyl-βCD (MβCD) can be used to
extract CHL from the membrane of cancer cells, thus inducing apoptosis, either by the
direct conjugation to HA [154] or as a hosting molecule for Ad-HA [155,156] (Figure 6).

3.5. HA-Prodrug Nanoassemblies

Although small-molecule cytotoxic drugs remain the mainstream tools for cancer treat-
ment, the narrow therapeutic window and unfavorable pharmacokinetic properties, due to
quick clearance and lack of selectivity, significantly hinder their long-term employment
in clinical practice thus limiting the therapeutic outcomes [157]. Apart from the strategies
involving the encapsulation of bioactive within SANPs extensively discussed in the pre-
vious sections, another approach involves the covalent conjugation of these molecules to
polymeric materials, with the formation of the so-called polymeric prodrugs, specimens
with enhanced water solubility, chemical stability and enhanced permeation within the
tumor environment [158–160].

Moreover, the insertion of proper stimuli-responsive linkages allows the release of the
bioactive element to be finely tuned according to the therapeutic needs [161,162]. Polymer
prodrugs show the double advantage of high drug loading with negligible formulation-
trigged adverse reaction [163], and superior self-assembly ability due to the balancing
between the drug to drug (driving self-assembly) and the drug to water (driving dissolution)
intermolecular forces [164].

The organization in prodrug nano-assembly can be exploited for combination protocols
where a second therapeutic agent is loaded within the nanostructure [165]. The most
relevant examples of HA-prodrug nanoassemblies are collected in Table 7 and discussed
below.
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Figure 6. Effects of adamantane-grafted hyaluronic acid/folate-appended methyl-β-cyclodextrin (Ad-
HA/FA-MβCD) on tumor growth (A,B) and body weight (C) after an intravenous administration to
BALB/c nu/nu mice bearing HCT116 cells. * p < 0.05, compared with control (5% mannitol solution).
† p < 0.05, compared with MβCyD. ‡ p < 0.05, compared with FA-MβCyD. Reprinted with permission
from Ref. [156]. 2018, Elsevier B.V.
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Table 7. HA-prodrug nanoassemblies.

Composition

Bioactive Agent

Performance

Outcome Ref.
HA-Derivative Other Components Cancer Type

In Vitro
In Vivo

CD44+ CD44−
HA–PTX * — PTX Liver H22 — H22 Xm Targeting Selective Biodistr [166](Water dispersion)

HA-aa-PTX * — PTX Breast MCF-7 — — Control Release (pH, HAase) Synergism [167](Water dispersion)

HA-prop-dOG-
PTX § — PTX Breast MCF-7 — MCF-7 Xm Control Release (pH) Targeting Selective

Biodistr
[168]

(Solvent exchange)

DTX-GFLG-HA-ss-
DD * — DTX Breast MDA-MB-231 MCF-7 MDA-MB-231 Xm Control Release (pH, redox, protease) [169]

(Dialysis)

HA-d-DOX * — DOX Breast MDA-MB-231
MDA-MB-468LN

— S–D rats
MDA-MB-468LN Xm

Control Release (pH) Selective Biodistr [170](Water dispersion)

HA-cys-DOX * — DOX Lung A549 — A549 Xm Control Release (pH, redox) Selective
Biodistr

[171](Water dispersion)

Gal-PEG-ss-HA-ss-
DOX * — DOX Liver HepG2 — — Control Release (pH, redox) Dual

Targeting [172]
(Water dispersion)

HA-cys
*-PMAA-PDMAEMA-P[VHim]NTf2-DOX * DOX Breast 4T1 L929 4T1 Xm Control Release (pH, redox) Synergism [173]

(Dialysis) Colon CT-26 —

MTX-HA-ODA * — MTX/CUR Cervix HeLa — HeLa Xm Dual targeting Control Release (pH)
Synergism [174](Ultrasonication) Breast MCF-7 —

HA-cys-MTX * — MTX Cervix HeLa NIH-3T3 HeLa Xm Control Release (redox) Dual
Targeting/Synergism Selective Biodistr [175](Water dispersion) Lung A549 —

HA-DTPA-CPT * — CPT Breast 4T1 MCF-7 4T1 Xm Control Release (redox) Synergism
Selective Biodistr

[176](Ultrasonication)

PLA-CDM-HA-
DTPA-CPT * — CPT Liver HepG2 — H22 Xm Control Release (pH, redox) Synergism

Selective Biodistribution
[177]

(Electrospun)

HA-DAS * TPGS DAS/VES Nasopharynge HNE1
HNE1/DDP

— HNE1 Xm Control Release (pH) Resistance Reversal
Synergism Selective Biodistr

[178](Thin-film hydration)

HA-VES * tLyP-1-TPGS*
VES/DTX Pancreas PC-3 — PC-3 Xm Sustained Release Synergism Selective

Biodistr
[179](Emulsion solvent evaporation) Breast MDA-MB-231 —

HA-VES * TPGS VES
DOX/CUR Breast MCF-7

MCF-7/ADR
— S-D rats

4T1 Xm
Control Release (pH) Resistance Reversal

Synergism Selective Biodistr
[180](Sonication)
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Table 7. Cont.

Composition

Bioactive Agent

Performance

Outcome Ref.
HA-Derivative Other Components Cancer Type

In Vitro
In Vivo

CD44+ CD44−
HA-DAS * TPGS DAS/ROZ Breast MCF-7 MDA-MB-231 — MDA-MB-231 Xm Control Release (pH) Synergism Selective

Biodistr
[181](Thin-film hydration)

HA-VES * — VES/DOX Breast MCF-7
MCF-7/ADR — 4T1 Xm Control Release (pH) Resistance Reversal

Synergism Selective Biodistr
[182]

(Sonication) Liver HepG2 —

HA-VES * — VES
DOX/CUR

Breast MCF-7
MCF-7/ADR — 4T1 Xm Control Release (pH) MDR

Reversal/Synergism Selective Biodistr
[183]

(Sonication) Liver HepG2 —

HA-VES * — VES/DTX
Anti-PD-L1 Skin B16 — B16 Xm Synergism Immune-chemotherapy [184](Dialysis)

HA-CUR
◦◦ —

CUR/DOX
Cervix HeLa —

— Control Release (pH) Synergism [185](Water dispersion) Kidney 786-O 293A
Liver — HepG2

HA-QC * — QC/DTX Liver HepG2 — HepG2 Xm
Control Release (pH) Synergism Resistance

Reversal Selective Biodistribution [186]
(Dialysis)

HA-ss-EGCG ££ — EGCG
CDDP

Ovary SKOV-3 HEK293T SKOV-3 Xm Control Release (HAase) Synergism
Selective Biodistr

[187](Dialysis) Colon HCT-116

HA-Ala-EGCG * PEI EGCG
GzmB

Colon HCT-116 — — Synergism [188](Water dispersion) Liver — HepG2

HA-GCA * —
GCA
PTX

Liver HepG2
HELF

—
Synergism Selective Biodistr [189](Dialysis) Skin B16-F10 —

Breast — MDA-MB-231 Xm

HA-GCA * —
GCA
PTX

Liver HepG2
—

—
Synergism Selective Biodistr [190](Dialysis) Skin B16-F10 —

Breast — MDA-MB-231 Xm

HA-ATPh-IR780 * — IR780 Bladder MB-49 — MB-49 Xm Control Release (HAase) PTT/Selective
Biodistr

[191](Water dispersion)

HA-DB * — DB Colon HCT-116 A2780 HCT-116 Xm Targeting PDT [192](Sonication)

HA-Se-Se-Ce6 BSA Ce6/CYC Breast 4T1 — 4T1 Xm Control Release (redox, 1O2)
PDT/Synergism Selective Biodistr

[193](Desolvation)

HA-DNB-
DEA/NO ** — DEA/NO

DOX Liver SMMC-7721 HL-7702 SMMC-7721 Xm ROS Generation Control Release (HAase,
redox) Synergism [194]

(Sonication)

HA-CHL £- BSAO * — BSAO Skin M14
M14/MDR

— — Resistance Reversal Synergism [195](Sonication)

HA-PDI ξ — PDI — — — — Control Release (HAase) Early Diagnosis [196](Coordination)
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Table 7. Cont.

Composition

Bioactive Agent

Performance

Outcome Ref.
HA-Derivative Other Components Cancer Type

In Vitro
In Vivo

CD44+ CD44−
HA-OPV * PAA/HEP/CHS OPV — — — — Control Release (HAase) Fluorescence

Imaging [197](Coordination)

HA-OVA $ — OVA Cervix TC-1 — TC-1 Xm Immunotherapy [198](Water dispersion)

PEG-pep-HA-OVA * — OVA Cervix TC-1 — TC-1 Xm Control Release (MMP9) Immunotherapy [199](Dialysis)

* Carbodiimide chemistry;
◦◦

Radical polymerization; £ TBA mediated condensation; ££ Nucleophilic addition; ** Aromatic Nucleophilic substitution; ξ electrostatic interaction;
§ Click chemistry; $ reductive amination; aa: Aminoacid; Ala: Alanine; anti-PD-L1: programmed cell death ligand 1 (PD-L1) antibodies; ATPh: 4-Aminothiophenol; BSA: Bovine
serum albumin; BSAO: bovine serum albumin oxidase; CDDP: Cisplatin; CDM: 2-Propionic-3-methylmaleic anhydride; Ce6: Chlorin e6; CHL: Cholesterol; CHS: Chondroitin
4-sulfate; CPT: Camptothecin; CUR: Curcumin; CYC: Cyclopamine; cys: Cystamine; d: Adipic dihydrazide; DAS: Dasatinib; DB: Diiodostyryl bodipy; DD: Glycodendron; DEA/NO:
Diethylamine NONOate; DNB: 2,4-Dinitrobenzene; dOG: Dendritic oligoglycerol block copolymer; DOX: Doxorubicin; DTPA: 3,3′-Dithiodipropionic acid; DTX: Docetaxel; EGCG:
Epigallocatechin-3-O-gallate; Gal: Galactosamine; GCA: Glycyrrhetinic acid; GFLG: Cell penetrating tetrapeptide; GzmB: Granzyme B; HA: Hyaluronic acid; HAase: Hyaluronidase; HEP:
Heparin; MDR: Multi Drug Resistance; MMP9: Matrix metalloproteinase 9; MTX: Methotrexate; NTf2: Targeting peptide; ODA: Octadecylamine; OPV: Oligophenylenevinylene; OVA:
Ovalbumin; P[VHim]: Poly(vinylimidazole); PAA: Poly(acrylic acid); PDI: Perylene diimide derivative; PDMAEMA: Poly(2-(dimethylamino)ethyl methacrylate); PDT: Photodynamic
therapy; PEG: Poly(ethylene glycol); PEI: Poly(ethylenimine); Pep: MMP9 sensitive peptide; prop: Propargylamine; PTT: Photothermal therapy; PTX: Paclitaxel; QC: Quercetin; ROZ:
Rosiglitazone; tLyP-1: Cell penetrating peptide; TPGS: D-α-tocopheryl poly(ethylene glycol) succinate; VES: α-Tocopheryl succinate; Xm: Xenograft mice.
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PTX and DTX, the two most representative members of taxane drugs used in clinical
practice, were conjugated to HA with the obtainment of prodrug SANPs for the treatment
of liver and breast carcinomas. The conjugation strategies involved the condensation
via either carbodiimide [166] or TBA chemistry [167], as well as click chemistry [168],
while the insertion of tailored spacers between bioactive and HA counterparts confers
responsivity to the acidic and GSH-rich tumor environment. Moreover, the presence of
HA [167] and the insertion of peptide spacers [169], susceptible to the hydrolytic activity of
HAase and proteases overexpressed within the cancer cells, allowed the enhancement of the
targeting efficiency due to enzyme-triggered disassembly. Similarly, DOX was introduced
as a bioactive hydrophobic moiety of HA-SANPs, reaching the selective pH-sensitive
vectorization of the antineoplastic antibiotic [170], while the insertion of disulfide bridges
was used as a dual-stimuli responsive strategy for lung [171], liver [172], and breast [173]
cancers.

MTX is another hydrophobic drug used for conferring amphiphilic behavior to HA
backbones. Upon conjugation to HA, MTX works as both a cytotoxic agent by inhibiting the
Dihydrofolate reductase [174] and targeting moiety because, due to the structural similarity
with FA, acts as a ligand for FA receptors overexpressed in many cancer cell types [175].

In the attempt to deliver the therapeutic doses of redox-responsive HA-3,3′-
dithiodipropionic acid (DTPA)-CPT micelles into tumors, limiting the high liver accu-
mulation [176], Chen et al. proposed the conjugation of HA-DTPA-CPT conjugate to PLA
via acid-labile 2-propionic-3-methylmaleic anhydride (CDM) linkers and the subsequent
incorporation of micelles into electrospun fibers [177]. The results confirmed the antitumor
performance of fiber fragments, as well as the acidic-triggered release of HA-DTPA-CPT
from the fibers and the self-assembly of the prodrug in the tumor tissues.

One of the main drawbacks of conventional chemotherapeutic protocols is the in-
surgence of multidrug resistance (MDR), a complex biological event involving different
pathways, such as increased efflux of drugs, restoration of DNA damages, and development
of antiapoptotic mechanisms [200,201]. Different strategies have been developed to address
this issue [202–204], mainly based on the inhibition of P-glycoprotein (P-gp), membrane
transporters belonging to the ATP binding cassette family, responsible for drug efflux
through an ATP-dependent mechanism [205,206]. Among the different P-gp inhibitors pro-
posed in the literature, D-α-tocopheryl poly(ethylene glycol) succinate (TPGS), coupling the
intrinsic biological function with the self-assembling properties, was found to be an ideal
nanocarrier for MDR reversal [207]. TPGS was successfully combined with different HA
prodrugs, obtaining HA-SANPs with superior anticancer performance. Dasatinib (DAS), a
second-generation tyrosine kinase inhibitor, was conjugated to HA and together with TPGS,
the resulting nanoassemblies were tested as therapeutic agents [178]. Vitamin E succinate
could also be conjugated to HA to create carriers for conventional chemotherapeutics such
as DTX [179]. The authors also added TPGS conjugated to a cell-penetrating peptide to
enhance the internalization efficiency. Moreover, CUR [180] and rosiglitazone (ROZ) [181]
were co-loaded as MDR reversing and adipogenesis agents, respectively. HA- SANPs
were also obtained with HA-VES and proposed as nanocarriers for DOX treatment in
Adriamycin resistant breast cancer cells [182], as well as for the combined DOX/CUR [183]
or DTX/programmed cell death ligand 1 (PD-L1) antibodies (anti-PD-L1) [184] protocols
exploiting CUR as coadjuvant and the Anti-PD-L1 as an immune checkpoint.

Polyphenols have been explored as anticancer therapeutics acting via multiple mech-
anisms, mainly related to the pro-apoptotic effect and modulation of the cell redox bal-
ance [208–210]. Their application in clinics needs suitable carrier systems to overcome their
poor pharmacokinetics, and it was widely accepted that the conjugation to macromolecu-
lar systems is a valid approach for improving their stability and bioavailability [211,212].
Polyphenols, such as CUR, Quercetin, and Epigallocatechin-3-O-gallate (EGCG), were
used for the synthesis of HA amphiphiles with biological activity. HA-CUR and HA-QC
conjugates were explored as functional nanocarriers for the pH-responsive delivery of
DOX [185] and DTX [186], respectively, while EGCG was used for enhancing the ability of
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HA-SANPs to complex CDDP molecules [187] and cytotoxic proteins such as Granzyme
B (GzmB) [188]. HA-SANPs for the delivery of PTX to multiple solid tumors were ob-
tained by the self-assembly of HA-Glycyrrhetinic acid (GCA), taking advantage of the GCA
anti-inflammatory and immuno-modulating properties, as well as its ability to reverse
MDR [189,190].

Bioactive molecules for PTT and PDT such as IR780 [191] and Diiodostyryl bodipy
(DB) [192], were also conjugated to HA for the fabrication of HA-SANPs suitable for the
treatment of bladder and colon cancers both in vitro and in vivo. A different PDT protocol,
developed by Feng et al., is based on the delivery of Ce6 by a nanoplatform consisting of
BSA, Cyclopamine (CYC), and HA-SeSe-Ce6 amphiphile [193]. The anticancer efficiency
is the result of the synergistic contribution of each component: BA is the base material
for tumor residence, CYC disrupts the extracellular matrix (ECM) barrier thus allowing
HA-SeSe-Ce6 penetration, HA-SeSe-Ce6 is the PDT agent selectively releasing Ce6 within
the tumor cells in response to the GSH concentrations.

In recent years, Nitric Oxide (NO) donors are emerging as effective anticancer thera-
peutics able to release NO at the tumor site where it causes tumor regression and metastasis
inhibition. Since NO exerts such anticancer activity only at high concentrations, while
acting as a pro-carcinogenic agent at low concentrations, it is of key importance to ensure
high NO levels at the desired place in the body [213]. HA-SANPs able to generate NO
redox reactions catalyzed by intracellular glutathione S-transferase π and to encapsulate
DOX in the hydrophobic inner core were developed by derivatizing HA with Diethylamine
NONOate (DEA/NO). The resulting material was found to greatly enhance the DOX anti-
cancer efficiency in the treatment of highly aggressive hepatoma cells [194]. An alternative
anticancer therapy based on the use of Bovine serum amine oxidase (BSAO) as a bioactive
agent was proposed by Montanari et al. [195]. BSAO catalyzes the oxidative deamination
of primary amines, such as spermine and spermidine, carrying out the formation of highly
cytotoxic aldehyde and hydrogen peroxide. Injectable hydrogels were developed by the
self-assembly of HA-CHL-BSAO with the aim to maximize the selectivity of enzymatic
activity to melanoma cells. Further extensions of the HA-prodrug nanoassemblies con-
cern the use of Perylene diimide (PDI) [196] and Oligophenylenevinylene (OPV) [197]
derivatives as diagnostic tools for the early detection of solid tumors.

Finally, HA-OVA conjugates were proposed as targeted delivery systems for pathogen-
derived foreign antigens (OVA), determining a robust CD8+ T cell response upon recogni-
tion of tumor cells presenting non-self foreign antigens by the host immune system [198].
As a further upgrade of this concept, Shin et al. proposed the use of a matrix metallo-
proteinase 9 (MMP9) cleavable linker to attach PEG moieties to HA-OVA conjugate [199].
Within the tumor site, the hydrolytic activity of MMP9 allowed the removal of the PEG shell,
with the site-specific HA exposure and the subsequent cellular uptake via CD44-mediated
endocytosis. As a result, cancer cells were labeled with antigenic peptides presented by
surface major histocompatibility complex class I molecules thus favoring elimination by
CD8+ cytotoxic T lymphocytes (Figure 7).
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Figure 7. Representation of MMP9 responsive PEGylated HA-OVA targeted cancer immunotherapy.
Reprinted with permission from Ref. [199]. 2017, Elsevier B.V.
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4. Conclusions and Perspectives

The past two decades have seen great efforts from the scientific community in the
development of effective antitumor regimes able to face the highly heterogeneous nature
of cancers at the cellular and sub-cellular levels, expanding the concept of personalized
medicine from the discovery of new biological targets to the optimization of the vectoriza-
tion of therapeutics within the body to reduce unfavorable cross-toxicity to healthy organs
and tissues.

In this paper, we highlighted the role of HA as a targeting element as nanoparticle
systems for the selective delivery of bioactive agents to cancer cells, showing the promising
outcomes of using HA-SANPs. Although some promising results in both in vitro and
in vivo investigations, severe limitations still hinder an effective bench to clinics translation
of the proposed nanocarriers.

Thus, for a more comprehensive analysis of such limitations, and to hypothesize
key solutions to these issues, the literature data discussed in this review and shown in
Tables 1–7 are summarized in the following table (Table 8).

Table 8. Outcomes of HA-SANPs for cancer therapy expressed as (%) of the reviewed studies.

HA-Derivative Other
Components Preparation Cancer

Type
Bioactive

Agent Stimuli In Vitro/In Vivo
Success

HA (11) *
Bioactive (53) **
Polymer (27) **

Other (7) **

Water Disp (47) **
Coordination (47) **

Dialysis (6) **

Breast (38) **/Cervix (13) **
Liver (13) **/Bone (6) **
Colon (6) **/Lung (6) **

Lymphatic (6) **
Ovary (6) **/Skin (6) **

Drug (67) **
Gene (27) **

PTT/PDT (20) **
Imaging (7) **
Immuno (7) **

pH (53) **
Redox (27) ** (100) **/(60) **

HA-LIPOID (30) *
βCA (19) **
FAD (19) **
CE (10) **

CHL (11) **
DOCA (10) **

PPL (7) **
Other (24) **

PPL (17) **
Polymer (10) **
Bioactive (2) **

Other (7) **

Thin Film (40) **
Dialysis (29) **

Water Disp (17) **
Emulsion (14) **

Breast (40) **/Colon (13) **
Lung (12) **/Squamous (12) **

Liver (5) **/Pancreas (3) **
Skin (3) **/Blood (2) **

Brain (2) **/Cervix (2) **
Mesothelioma (2) **

Ovary (2) **/Prostate (2) **

Drug (62) **
PTT/PDT (12) **
Imaging (10) **

Gene (7) **

pH (33) **
Redox (19) **
HAase (10) **

(92) **/(53) **

HA-POLYMER (22) *
PLA/PLGA (30) **

PPEP (24) **
PACRY (20) **

PCL (13) **
PEI (13) **

Polymer (10) **
Bioactive (3) **

Other (3) **

Dialysis (37) **
Emulsion (10) **

Water Disp (17) **
Coordination (7) **
Temperature (10) **
Precipitation (13) **

Other (6) **

Breast (31) **/Lung (22) **
Liver (11) **/Brain (8) **
Colon (8) **/Ovary (6) **

Skin (6) **/Squamous (6) **
Cervix (2) **

Drug (77) **
Gene (13) **

Imaging (7) **
PTT/PDT (7) **

Radio (3) **

pH (13) **
Redox (40) **
Light (3) **

(94) **/(50) **

HA-CD (12) *
HA-Ad (35) **

Bioactive (47) **
CD (41) **

Other (12) **
Host–Guest (100) **

Lung (30) **/Breast (25) **
Colon (15) **/Ovary (10) **

Bone (5) **/Cervix (5) **
Liver (5) **/Pancreas (5) **

Drug (47) **
PTT/PDT (24) **

Gene (6) **
Imaging (12) **

pH (24) **
Redox (12) **
HAase (18) **
Enzyme (6) **

Light (6) **

(95) **/(20)**

HA-Prodrug (25) * Polymer (21) **

Water Disp (53) **
Dialysis (23) **

Coordination (6) **
Thin Film (6) **

Other (12) **

Breast (35) **/Liver (21) **
Cervix (11) **/Colon (9) **

Skin (9) **/Lung (5) **
Bladder (2) **/Kidney (2) **

Nasopharynge (2) **
Ovary (2) **/Pancreas (2) **

Drug (79) **
PTT/PDT (9) **
Immuno (9) **
Imaging (6) **

pH (47) **
Redox (26) **
HAase (15) **
Enzyme (3) **

(95) **/(62) **

* Incidence (%) to total reviewed studies; ** Incidence (%) within each group; 5-βCA: 5-β-Cholanic acid; Ad:
Adamantane; CD: Cyclodextrins; CE: Ceramide; CHL: Cholesterol; DOCA: Deoxycholic acid; FAD: Fatty acid
derivatives; HA: Hyaluronic acid; PRE: Precipitation; PACRY: Acrylic polymers; PCL: Poly(ε-caprolactone); PDT:
Photodynamic therapy; PEI: Poly(ethylenimine); PLA: Poly(L-lactic acid); PLGA: Poly(lactic-co-glycolic acid);
PPEP: Polypeptide; PPL: Phospholipids; PTT: Photothermal therapy.

Here, the overviewed research was initially classified into five groups based on the
adopted HA derivatization route, and then the incidence in the use of each HA-derivative
group for a specific cancer type was calculated as a percentage of total studies, considering
that a single paper can cover more than a single cancer cell line and/or in vivo model
at once. Moreover, as an indication of the complexity of the fabrication strategy, both
preparation methods and the presence of a co-reactant within the nanoformulation were
quantified in terms of value (%) within each group. Similarly, the presence (%) of in vitro
or in vivo validation of the proposed HA-SANPs was assessed to show the progress of the
research, while the stimuli responsivity, together with the choice of the loaded therapeutic,
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classified in terms of cytotoxic, MDR reversal, PTT, PDT, and imaging agents, allowed the
potential application of each system to be quantitatively determined.

From the analysis of report data in Table 8, it is evident that most of the HA derivatiza-
tion used for the preparation of HA-SANPs involved the coupling with lipidizing (30%)
and polymeric (22%) materials. Lipidized materials, indeed, are able to spontaneously
reorganize in self-assembling structures in water media, thus allowing easy fabrication
methods such as thin-film hydration (40%), dialysis (29%), and simple dispersion in wa-
ter media (17%). On the other hand, polymeric materials offer high chemical versatility
allowing for the insertion of stimuli-responsive functionalities, including redox (40%),
pH (13%), and light (3%), as well as the possibility to reach a direct conjugation with the
bioactive molecule in prodrug systems (25%). Prodrug HA-SANPs were widely explored
as tools for improving the pharmacokinetics profile of conventional cytotoxic drugs (29%)
and, more interestingly, of PDT/PTT and immunostimulatory agents. Finally, the for-
mation of supramolecular assemblies was also reported (12%), particularly for obtaining
HAase-responsive delivery vehicles (18%). Pristine HA (11%) was also useful to prepare
HA-SANPs by virtue of electrostatic interactions with cationic polymers or biologically
active molecules such as drugs and genes.

As far as the investigated tumor types, breast cancers are the most studied in almost
all groups, followed by lung and colon, due to both the overexpression of CD44+ receptors
and the high incidence between populations. Most of the studies are well supported by
investigations in in vivo models, and this can facilitate the translation to the clinics, but
some key issues should be addressed.

At first, it should be considered that not all the HA-SANPs preparation routes match
the requirements of clinical applications. As extensively discussed by Foulkes et al., there
is currently very little regulatory guidance in the area of nanomaterials for biomedical
applications, with the manufacturing process often being hit or miss for nanomaterial
stability [214]. Although the self-assembly process is not the limiting step, since it is mainly
based on the spontaneous insurgence of weak intermolecular forces (e.g., electrostatic
attraction, hydrogen bonding, and hydrophobic modification) reducing the possibility
of any toxic cross-reactivity, the multiple reaction steps often required for the synthesis
of the tailored HA-derivative, cannot be easily scaled at the industrial level, and require
significant modification to fit with the good manufacturing procedures rules [215]. From
a therapeutic point of view, despite the key advantages of high and reproducible drug
loading, site-specific vectorization, and the ability to bypass some MDR pathways (e.g.,
drug efflux transporters), tailoring the physicochemical properties for optimal therapeutic
efficacy is still challenging, especially in the case of prodrug HA-SANPs. The conjugation
of bioactive molecules to the polymeric backbone, indeed, has two opposite effects. The
solubility, circulation through the bloodstream, and permeability are greatly enhanced, but
the chemistry of the conjugation can compromise the particle-target interaction [216].

Moreover, recent trends point toward the fabrication of multifunctional HA-SANPs,
where a dual targeting element and/or a penetration enhancer moiety are anchored. The
different functionalities within multifunctional nanoparticles, indeed, can act synergistically
to achieve maximal anti-tumoral activity [217].

In our opinion, only the synergistic combination of different approaches, including
active targeting and stimuli responsivity, as well as the co-loading of multiple therapeutics
(e.g., conventional cytotoxic drugs and PDT/PTT agents) can lead to some significant
results. HA-SANPs well address these needs, and promising results were also obtained at
the border between chemo- and immune-therapy, which is the new and more promising
approach for cancer eradication. Deep integration between basic and industrial research is
required, together with multidisciplinary synergistic expertise exchange, which can make
the applicability to HA-SANPs not a chimera but an eye-catching future.
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