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Abstract: Magnetization-graded ferromagnetic nanostrips are proposed as potential prospects to
channel spin waves. Here, a controlled reduction of the saturation magnetization enables the
localization of the propagating magnetic excitations in the same way that light is controlled in an
optical fiber with a varying refraction index. The theoretical approach is based on the dynamic matrix
method, where the magnetic nanostrip is divided into small sub-strips. The dipolar and exchange
interactions between sub-strips have been considered to reproduce the spin-wave dynamics of the
magnonic fiber. The transition from one strip to an infinite thin film is presented for the Damon-
Eshbach geometry, where the nature of the spin-wave modes is discussed. An in-depth analysis
of the spin-wave transport as a function of the saturation magnetization profile is provided. It is
predicted that it is feasible to induce a remarkable channeling of the spin waves along the zones with
a reduced saturation magnetization, even when such a reduction is tiny. The results are compared
with micromagnetic simulations, where a good agreement is observed between both methods. The
findings have relevance for envisioned future spin-wave-based magnonic devices operating at the
nanometer scale.

Keywords: spin waves; ferromagnetic strip; channeling

1. Introduction

Spin waves (SWs) are collective magnetic excitations that present a strongly anisotropic
dispersion, which has meaningful consequences since group velocity and phase velocity
are generally not parallel. Due to the diverse interactions present in a magnetic nanos-
tructure, SWs exhibit interesting properties such as caustic [1–10], channeling [11–13],
and nonreciprocal characteristics [14–31]. The complexity of the band structure and the
various ways of manipulating its behavior represent the main attraction for the scientific
community in the field of magnonics, which utilizes propagating spin waves for nanoscale
transmission and processing of information [32,33]. The interdisciplinary aspects of the
broad field of magnonics are summarized in some excellent works that highlight the
role of the SWs in different areas like magnon spintronics [34,35], spin caloritronics [36],
magnonic logic circuits [37,38], metamaterials and magnonic crystals [39–41], spin tex-
tures [29,42,43], magnonic-phononic crystals [44,45], and three-dimensional and curvilinear
magnonics [46,47].

Because spin waves are sensitive to the spin texture and the internal field landscape,
they are prone to propagate in a conducted way. If the magnetic material presents a texture
like a domain wall, Winter modes [11] are excited and channeled along its center since the
wall acts as a local potential well for the spin waves [48–52]. Nonetheless, the channeling
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of spin waves may be compromised if the magnetic texture changes, rendering the domain-
wall stability a critical problem. Another example is a magnetic system with one or two
finite dimensions, for which the internal field is reduced at the edges. Consequently, edge
modes are excited at low frequencies [53–55]. However, the edge modes may be challenging
to detect due to the small number of precessing spins. These drawbacks can be overcome by
proper material manipulation at the nanoscale. For instance, a gradual change in a magnetic
property may be the key to steering spin waves without relying on unstable domain walls
or low cross-section edge modes. Hence, the propagation of the waves can be confined to
nanoscale channels, which turns out to be fundamental for envisioned magnonic devices,
such as circulators, isolators, phase shifters, and logic devices [56–62].

Exploiting gradual changes in a given physical property is not a new topic. Indeed,
inside a conventional step-index optical fiber, the index of refraction is controlled using
different dielectric materials, e.g., a core with a high index covered with another material
with a smaller index [63]. The cladding material with the lower refraction index allows
light channeling due to the total internal reflection [64]. In graded-index optical fibers,
the index is more noticeable at the center of the dielectric material, which helps to bend
the light into the fiber axis [65,66]. In graded-index magnonics, the main idea is to ma-
nipulate the internal field landscape to create potential wells that allow for steering the
spin waves [67,68]. Such SW control can be realized in several ways, for instance, by
changing the applied field, the saturation magnetization, the exchange coupling parameter,
the anisotropy constant, or changing the shape and geometry of the magnetic material. For
finite nanomagnets, the inhomogeneous demagnetizing field creates the proper conditions
to channel spin waves because it acts as a confining potential well, leading to spin-wave
localization [69–73] and mode quantization [74,75]. On the other hand, it is also possible to
change the already nonuniform internal field by introducing gradual changes in a magnetic
property, e.g. the saturation magnetization [76,77]. This kind of graded-magnonic system
has been achieved using compositionally graded ferrites, where the saturation magneti-
zation changes across the film thickness [78]. Other graded-magnetic systems, usually
referred to as exchange-spring media, have been fabricated, with graduation either in the
anisotropy constant [79–83] or in the exchange coupling strength [84–86].

This paper analyses the propagation of spin waves in magnetization-graded ferro-
magnetic (FM) nanostrips, where a reduction of the saturation magnetization along the
width is assumed. In this two-dimensional magnonic fiber, it is demonstrated that the
magnetic graduation induces the propagation of guided spin-wave modes, mainly excited
within the zones with a reduced saturation magnetization. Under a substantial reduction
of saturation magnetization, the channelized waves are excited at frequencies lower than
the edge modes, making the excitation of only such steered modes feasible. Besides, under
the increase of the strips’ width, it is found that SWs are remarkably conducted along
the zones with reduced magnetization, even when such graduation is tiny. Part of the
results is compared with micromagnetic simulations, with an excellent agreement between
both methods.

2. Results and Discussion

The system under consideration is shown in Figure 1, where a thin magnetic nanostrip
of width w and thickness d is illustrated. The magnetization M lies in the xz-plane and
makes an angle ϕ measured from the z-axis. This section presents results for homogeneous
ferromagnetic strips (with a constant saturation magnetization) and magnetization-graded
strips. The detailed theoretical model for the stripe with nanoscale graduation of the mag-
netization is presented in the Appendices, where the dynamic matrix method is outlined
in Appendix A together with the calculation of the matrix elements associated with the
dipolar (Appendix B) and exchange (Appendix C) couplings. Standard values for Permal-
loy (Py: Ni80Fe20) will be used in the calculations. Namely, the saturation magnetization is
Ms = 800 kA/m, while the exchange constant is Aex = 9.9 pJ/m. Also, the gyromagnetic
ratio is γ = 185.66 GHz/T, and the strip thickness is d = 1 nm. It is worth mentioning that
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such a thickness is not a restriction in this work; similar results are obtained for d < 10 nm.
Regarding the discretization of the ferromagnetic strip, such a planar magnonic fiber is
divided into small sub-strips, where b = 4 nm is its width (see inset in Figure 1b). This size
is less than the exchange length (`ex = 4.96 nm) so that if b < `ex, the SW spectra do not
noticeably change.

Figure 1. (a) Illustration of the coordinate system and the main geometrical parameters of a magnetic
strip. In (b), a schematic representation of the dynamic matrix approach is shown, where the system
is divided into many sub-strips of width b, which allows including magnetic graduation along the
width. The color graduation represents the variation of the saturation magnetization along the width
of the system.

The transition from a nanostrip to an extended thin film is first studied to identify
the nature of the calculated spin-wave modes characterized by the wave vector k. For
this purpose, a bias field of µ0H = 300 mT is applied along the x axis, while the spin
waves propagate along z. The idea here is to study the Damon-Eshbach configuration
(M ⊥ k), for which the modes will be notably influenced by the magnetic graduation,
as shown below. Otherwise, in backward-volume configuration (M ‖ k), the modes are
not significantly altered under a variation of the saturation magnetization (not shown).
Therefore, in what follows, the equilibrium magnetization always points along x (ϕ = π/2),
while the SW propagation is along the long axis z. Open circles in Figure 2a–d show the SW
dispersion of an infinite thin film, while lines correspond to the modes of the FM nanostrip
evaluated at different widths. By analyzing the spin-wave profiles across the width (upper
3D illustrations in Figure 2), it is observed that the spin excitations depicted in Figure 2a,
for w = 80 nm, correspond to edge modes since they are excited with high SW amplitudes
at the strip borders. These modes are associated with a reduction of the internal field at the
edges of the ribbon, wherein the surface magnetic charges generate a robust demagnetizing
field at the edges. To establish a clear picture of the calculated spin-wave modes, they
are labeled as SM(hom)

ν , with ν being the number of nodes and “hom” representing the
homogeneous nanostrip case. Thus, SM(hom)

0 and SM(hom)
1 in Figure 2 correspond to edge

modes of the homogeneous strip. Similar to the perpendicular standing spin waves in
a thick FM film, the out-of-phase mode SM(hom)

1 has higher dynamical energy than the

in-phase one, SM(hom)
0 . As w increases, however, the edge modes become degenerate since

the left and right borders are too far away from each other (see Figure 2c,d) so that the
dynamic exchange energy is the same for both modes.

Higher-order modes are also observed at low frequencies, as depicted in Figure 2b–d.
In Figure 2b, it is demonstrated that the mode SM(hom)

2 is localized mainly in the center of
the nanostructure, with two nodes at about 1/4 and 3/4 of the strip’s width. Otherwise,
SM(hom)

3 is excited with high SW amplitude around the strip center, with three nodes
located about 1/6, 1/2 and 5/6 of the width. The other higher-order modes follow a typical
distribution of a confined system with similar properties. The first five modes are displayed
in Figure 2d for w = 1000 nm, where one can observe that the bulk modes (localized around
the nanostrip center) match with the one of an extended FM film. The degeneration of the
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modes shown in Figure 2d is anticipated since the mode quantization due to the geometrical
confinement becomes irrelevant for large widths. Indeed, in a standard physical picture,
the bulk SW modes in a ferromagnetic nanostrip exhibit different frequencies due to a term
of the type k⊥ = νπ/weff [87]. Here, k⊥ is the quantized wave vector along the width, and
weff is an effective strip’s width (proportional to w) that considers the dipolar boundary
conditions at the strip’s edges. Thus, upon increasing w, the wave vector k⊥ = νπ/weff
tends to zero, and all standing waves are excited close to the ν = 0 mode, which corresponds
to the mode of an infinite film.

Figure 2. Spin-wave dispersion in a homogeneous ferromagnetic nanostrip. In (a–d), different
values of the strip width, w, have been considered. The open circles show the SW dispersion of a
ferromagnetic thin film, whereas the lines are the spin-wave modes of a magnetic nanostrip. Upper
3D graphics correspond to the spin-wave profiles along the strip’s width evaluated at kz = 0, where

the dynamic magnetization components are calculated in arbitrary units. In all cases, SM(hom)
0 and

SM(hom)
1 are edge modes, while other modes correspond to magnetic excitations with high SW

amplitude around the strip center. In (d), the first five low-frequency modes have been calculated.

Once the nature of the spin waves in a ferromagnetic nanostrip is understood, the fol-
lowing step is to alter the magnetic properties along the strip’s width to induce spin-wave
channeling. Note that the edge modes already provide a scenario for localized propagation
due to a locally reduced internal field. Nonetheless, creating a sample with perfect edges is
not a simple task. Such boundaries typically present an unavoidable roughness or defects
that can prevent the natural behavior of the spin waves traveling in such zones. Another op-
tion is using domain walls that can channel the spin waves [12,13]. However, domain walls
strongly depend on the material features and may be unstable against external magnetic
fields. Besides, due to the nature of the formation of the walls, it is not easy to modify its
shape, for instance, to bend the wall in arbitrary directions. Therefore, alternative ways to
conduct the SWs are of high interest. In this context, magnetic graduation is proposed as a
potential alternative for inducing a channelized propagation of spin waves at the nanoscale.
Because the spin-wave dynamics strongly depend on the saturation magnetization, a local
variation of Ms along the nanostrip width will be considered. Of course, spin-wave steer-
ing is expected along the zone with reduced saturation magnetization since the magnetic
moments experience a local low frequency [88], while the rest of the ferromagnetic strip is
excited at a higher frequency. Nevertheless, a quantitative analysis is required because it
is necessary to understand how large the magnetic graduation has to be chosen to create
a notable SW channeling in the planar magnonic fiber shown in Figure 1b. Besides, it is
essential to predict if a channelized mode can be the one with the lowest frequency so that
only such mode is excited in a given range of frequencies. If the channelized mode is not



Nanomaterials 2022, 12, 2785 5 of 17

the low-frequency one, it will be inevitable to excite it together with other modes, which
could be undesirable for magnonic applications.

Figure 3 shows the case where the saturation magnetization has been varied along the
strip’s width (for w = 200 nm), with an Ms reduction in the central region (see Figure 3b).
Such a decrease in saturation magnetization is quantified by utilizing the parameters
∆Ms/Ms and ξ. Here, ∆Ms corresponds to the difference between its maximum and
minimum values, and ξ measures the extension of the graduated zone. In the example
shown in Figure 3, the fractional reduction is ∆Ms/Ms = 0.5 (50%) and ξ = 100 nm.
Overall, the SW band structure is notably modified, as shown in Figure 3a. An important

aspect is that now the coherent mode, SM(grad)
0 (where “grad” denotes the magnetization-

graded stripe), is localized mainly in the center of the nanoribbon, where Ms is reduced (see
Figure 3c). The dynamic behavior of the low-frequency mode can be understood from the
dependence of the SW frequency on saturation magnetization. In a typical Damon-Eshbach
configuration, the frequency of the spin waves is reduced as Ms decreases. Therefore, it
is expected that in a magnetization-graded nanostructure, the lowest-frequency branch is
excited in the zones where the saturation magnetization is reduced since such a zone is
energetically compatible with low-frequency magnetic excitations. Of course, spin waves
localized in zones with high Ms are also feasible, but they are excited at high frequencies,

as becomes evident by Figure 3. Besides, modes SM(grad)
1 and SM(grad)

2 are now the edge
modes, which are not degenerate in frequency, as shown in Figure 3d,e. The highlighted
frequency range, ∆ f0, shown in Figure 3a, illustrates the frequencies at which only the

mode SM(grad)
0 can be excited. At more significant frequencies, it will be unavoidable

to excite the channelized mode together with the higher-order ones. Note that width of
transition from Ms = 800 kA/m to 400 kA/m is about 25 nm. In the case of a more abrupt
change of the saturation magnetization, even for a step-like change, the SW dispersion and
the respective SW profiles do not significantly change (not shown). On the other side, the
reduction of the saturation magnetization could be accompanied by the variation of other
magnetic parameters, such as the gyromagnetic ratio. If the gyromagnetic ratio is reduced
(increased) at the graduated zone, the channelized waves will slightly decrease (increase)
their frequency.

Figure 3. (a) Spin-wave dispersion of a magnetization-graded strip. The magnetic profile is shown
in (b), where a notable reduction of Ms along the width is assumed (∆Ms/Ms = 0.5) and ξ = 100 nm.

(c), (d) and (e) depict the SW orbits along the strip width for modes SM(grad)
0 , SM(grad)

1 and SM(grad)
2 ,

respectively. The dynamic magnetization components mz and my are calculated with arbitrary units.

The reduction to 50% of the saturation magnetization (∆Ms/Ms = 0.5) is a significant
change in the magnetic graduation of the system. Therefore, it is interesting to explore
where the SW excitations are concentrated as ∆Ms/Ms is changed. Figure 4a shows the
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absolute value of the out-of-plane component of the dynamic magnetization for mode

SM(grad)
0 as a function of x, the coordinate along the strip width, and evaluated at kz = 0

and ξ = 100 nm. Here, it is possible to see how the SW localization evolves as graduation

diminishes. Under a reduction by 30% (∆Ms/Ms = 0.3), the mode SM(grad)
0 is still mainly

localized within the FM strip center. Nevertheless, when the reduction is only 20% (or
less), the magnetization excitation is no longer localized in the strip center since the system
tends to the homogeneous case, where the low-frequency mode is located at the strip edges.
Also, the case ∆Ms/Ms = 0.2 depicts a more asymmetric profile along the strip’s width
(see the orange curve in Figure 4a), which is owed to the hybridization between the modes

SM(grad)
0 and SM(grad)

2 . The dynamic behavior of the low-frequency mode, SM(grad)
0 , can be

understood by analyzing Figure 4b, where the frequency of modes SM(grad)
0 , SM(grad)

1 , and

SM(grad)
2 are calculated as a function of ∆Ms/Ms at kz = 0. As the magnetic graduation

increases, mode SM(grad)
2 reduces its frequency (for ∆Ms/Ms < 0.3) since this dynamical

state is mainly located at the zone where the saturation magnetization decreases. When the

frequency of SM(grad)
2 approaches the frequency range of edge modes (around 17.8 GHz),

there is a coupling between SM(grad)
0 and SM(grad)

2 (see triangles and circles in Figure 4b).

This coupling is responsible for SM(grad)
0 increasing its localization at the nanostrip center,

hence reducing its dynamic energy (or frequency). In contrast, SM(grad)
2 takes over the role

of an edge mode, as shown by the triangles in Figure 4b. It is worth noting that SM(grad)
1

does not change its frequency notoriously because this mode has a node at the strip center
and thus is only slightly influenced by the magnetic graduation.

Figure 4. (a) The absolute value of the out-of-plane dynamic magnetization component, for mode

SM(grad)
0 , as a function of x is shown for w = 200 nm and ξ = 100 nm. Different values of the

fractional reduction of the saturation magnetization, ∆Ms/Ms, have been accounted for. (b) The

frequency of the modes SM(grad)
ν (with ν = 0, 1 and 2) is illustrated as a function of ∆Ms/Ms for

kz = 0.

The coupling between the low-frequency mode and SM(grad)
2 depends on the strip

width since as w increases, the edge modes and SM(grad)
2 (localized mainly at the strip cen-

ter) are excited with SW amplitudes spatially far from each other. Therefore, exploring the
channelized modes in the case of a wider ferromagnetic strip is also of interest. In Figure 5,
a FM stripe with w = 1000 nm is considered. In the case ξ = 100 nm (see Figure 5a,b), it is

evidenced that for the case ∆Ms/Ms < 0.22, the mode SM(grad)
2 is channeled around the

zone with reduced saturation magnetization, while at ∆Ms/Ms > 0.22 the mode SM(grad)
0

becomes conducted along such zone. The crossing between modes in Figure 5a illustrates

the weak coupling between the edge modes and SM(grad)
2 . A remarkable result is that an

evident SW channeling is feasible even for the case ∆Ms/Ms = 0.05 (see the green curve in
Figure 5b), which is not a trivial result since the graduation of 5% in the saturation magne-
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tization is not a significant change. Besides, analogous to the previous case (w = 200 nm),
as ∆Ms increases, the channelized mode reduces its dynamical energy, becoming the low-
frequency mode. It implies that it is attainable to excite only the channelized modes, which
have a robust SW amplitude at the strip center, as shown in Figure 5b. Because of the strong
localization of the low-frequency modes, it can be expected that the magnetization-graded
zones can act as magnonic fibers or effective conduits for spin waves, similar to the SW
propagation along domain walls [48,52]. Additionally, in the case of multiple channels, it is
expected that the SWs can propagate with negligible interferences.

The evolution of the modes as a function of ξ is shown in Figure 5c, where the cases
ν = 0, 1, 2, and 3 are analyzed. Overall, one can observe that as ξ decreases, the low-
frequency mode increases its dynamical energy. Such behavior is associated with the
exchange energy that becomes high when the magnetic moments are forced to oscillate in a

narrow zone. On the other hand, under a slight increase of ξ, the mode SM(grad)
0 further

decreases its frequency. Nonetheless, an additional mode with a node in the center of the
graduated zone also reduces its frequency and, hence, is channeled (see blue SW profile
in Figure 5d). This last effect is expected because as the graduated zone grows, the lateral
standing waves excited within such area are energetically favorable at low frequencies.

Figure 5. (a) Modes SM(grad)
ν (with ν = 0, 1 and 2) as a function of ∆Ms/Ms. The modes are

evaluated at kz = 0 and ξ = 100 nm, for a wider strip with w = 1000 nm. The crossing between
modes reveals the weak coupling caused by the larger strip width w. The absolute value of the normal

magnetization component for ∆Ms/Ms = 0.05 and 0.45 is illustrated in (b) for modes SM(grad)
2 and

SM(grad)
0 , respectively. (c) Modes SM(grad)

ν (with ν = 0, 1, 2 and 3) as a function of ξ. The case kz = 0,

∆Ms/Ms = 0.4, and w = 1000 nm is considered. The magnetization profiles of modes SM(grad)
0 and

SM(grad)
1 are shown in (d) for ξ = 175 nm.

Finally, the calculated SW properties are compared with micromagnetic simulations
based on the GPU-accelerated code MuMax3 [89]. Two different magnetic thin strips
were considered with dimensions of 4096 nm ×200(1000) nm × 1 nm discretized into
211 × 26(29)× 1 cells along the (z, x, y) components, respectively, for two different widths;
w = 200 nm and w = 1000 nm. Periodic boundary conditions along the z-direction were
applied to simulate a long nanostrip. The graduation of Ms was implemented by defining
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regions in the software with independent parameters. The nanostrip started with the
magnetization along the x−direction due to an applied magnetic field of 300 mT (identical
to the calculated cases) that saturates the sample. The generation of SWs was implemented
through an external pulse in the form of hrf = h0 sin(2π fct)ŷ, applied at the center of the
sample over a width of 8 nm in z. Here, fc is the cut-off frequency, and h0 was a hundred
times smaller than the field used to saturate the sample. The system evolved for 5 ns.
Figure 6 shows the calculated SW dispersions for the cases w = 200 nm and w = 1000 nm,
where micromagnetic simulations are carried out at f = 17 GHz and 18 GHz. For the
smaller width, w = 200 nm, the simulated SW propagation evidences the channeling of
the waves at f = 17 GHz, which is in concordance with the model’s prediction. Here,
it is possible to observe that the edge modes are not excited at such a low frequency.
Nevertheless, if the frequency of the field hrf increases (18 GHz, for instance), the dynamic
state of the system is compatible with the propagation of a channelized mode superimposed
with the edge modes. This behavior is also seen for the wider sample (w = 1000 nm),
wherein the purely channelized mode is excited at a low frequency (17 GHz), while both
the channelized and the edge modes are excited at a high frequency (18 GHz). These results
demonstrate the validity of the model because it can predict the necessary conditions for
spin waves steering along the nanostrip. Besides, under certain conditions, the profile of
magnetic graduation chosen here allows to excite only the channeled modes since a notable
reduction of the frequency is also reported.

Figure 6. Calculated spin-wave dispersion and its respective profiles obtained from the micromag-
netic simulations. In (a) and (b), the cases w = 200 nm and w = 1000 nm are respectively illustrated,
where ξ = 100 nm and ∆Ms/Ms = 0.5 are assumed in both cases. The different curves depict the
low-frequency spin-wave modes. The SW propagation is simulated for f = 17 GHz and 18 GHz
(dotted horizontal lines). At f = 17 GHz, the SWs are conducted along the nanostrip center, being
this the unique excited mode, as the calculations predict. If the frequency of the field hrf is 18 GHz,
both the edge and the channelized modes are excited.

The results presented here apply to ultrathin nanostructures, where the dynamic
magnetization does not significantly vary across the nanostrip thickness. Therefore, it
is required that d ≤ `ex so that at such thickness ranges, the exchange interaction is
dominant, and the magnetic moments will oscillate parallel with each other along the strip
thickness. Besides, if the graduation profile along the strip width changes, the localization
of the magnetic excitations also changes. For instance, if the graduation is active just on
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one edge of the nanostructure, a robust localization of an edge mode will be induced in
such a boundary (not shown). On the other hand, the experimental viability of creating
graduated samples is currently feasible. For instance, the realization of vertical graduation
along the thickness in thin films is achieved in epitaxial compositionally graded alloy
films by co-sputtering, keeping the power of one material fixed while changing that of
the other to achieve the intended composition profile [77,84,90]. Combinatorial material
deposition can also be employed to fabricate samples with lateral gradients. A review of
this method is found in Ref. [91], which typically results, however, in extended thin films.
Further, lithographic masks can be used to manipulate the structures locally, allowing to
achieve lateral gradients within single mesoscopic or nanoscopic structures. Some of the
co-authors of this paper successfully used such a route on FeAl-alloys [92]. A direct way to
locally modify magnetic properties employing a focused ion beam has been demonstrated
in Refs. [93,94] and could be employed similarly to realize the graded nanostructures
suggested in this paper.

3. Conclusions

The spin-wave spectra of magnetization-graded ferromagnetic nanostrips have been
studied. A channelized spin-wave propagation has been predicted by modifying the
saturation magnetization along the strip’s width. The spin-wave steering as a function of
the fractional decrease of the saturation magnetization has been studied. It is demonstrated
that spin waves can be conducted in magnetization-graded ferromagnetic strips, even
when the saturation magnetization is slightly reduced. Besides, under the increase of
the saturation magnetization contrast, the channelized spin-wave mode becomes the low-
frequency one, allowing for exciting only such a mode. Micromagnetic simulations reveal
the predicted channeled spin-wave propagation, validating the findings obtained with the
theoretical calculations. These results are relevant for future applications associated with
magnonic fibers and spin-wave steering at the nanometer scale.
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Appendix A. Dynamic Matrix Method

According to the system shown in Figure 1, an orthonormal basis e1, e2, e3 is defined
in relation to the basis x̂, ŷ, ẑ by a ϕ-rotation around the y-axis, so that e3 points along the
equilibrium configuration (see Figure 1a). Unless otherwise stated, spatial components
are assumed to be relative to this basis, i.e., Λij = ei ·Λ · ej. Of course, it is expected that
the magnetic moments at the lateral edges of the strip are canted due to an increase in the
demagnetizing field, which is remarkable when the magnetization is along the width of the
nanostructure (ϕ = ±π/2). Nonetheless, in the current approach, it will be assumed that
the external field HZ is strong enough to make the equilibrium magnetization fully parallel
to it. To take into account the modulation of the dynamic magnetization along the strip’s
width, the dynamic matrix method is used [95–97]. This method dictates the subdivision
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of the strip into N wire-shaped cells with small cross-sections of width b and thickness d,
referred to as sub-strips, which are coupled by exchange and dipolar interactions. Then, by
increasing the number N of subdivisions, the continuous system is described (see Figure 1b),
which is validated through a convergence test.

Individual sub-strips have different magnetic properties, so the n-th cell possesses
a magnetization Mn(r, t). In this paper, Zeeman, exchange and dipolar interactions are
considered, hence Hn = HZ +Hn

ex +Hn
dip. The magnetization dynamics of each sub-strip is

modeled by the Landau-Lifshitz equation Ṁn(r, t) = −γMn(r, t)×Hn(r, t), for 1 ≤ n ≤ N,
with γ being the absolute value of the gyromagnetic ratio and the dot indicating a time
derivative. Both magnetization and effective fields are written in terms of static (zeroth
order) and dynamic (first-order) components, omitting higher-order terms, which enable
linearization of the equations of motion. The dynamic components are assumed to behave
like monochromatic plane waves, with the wave vector k confined to the z-axis. Thus
Mn(r, t) = Mn

eq + mnei(k·r−ωt) and Hn(r, t) = Hn
eq + hnei(k·r−ωt), where mn, hn ∈ C3 are

complex vectors perpendicular to the equilibrium configuration (Mn
eq ‖ Hn

eq ‖ HZ), and
Mn

eq = Mn
s e3, with Mn

s being the saturation magnetization. Also, the angular frequency is
ω = 2π f , where f is the frequency of the spin waves. By keeping terms up to first order in
mn and hn, the following system of linear equations is obtained,

ωmn = iγ(Hn
eq ×mn + hn ×Mn

eq). (A1)

A convenient linear structure is used for the dynamic effective field, namely, hn =
−∑p Λnp ·mp, where Λnp = Λnp

ex + Λnp
dip, with Λnp

ex and Λnp
dip being the contribution of the

exchange and dipolar couplings, respectively. Here Λnp
dip plays the role of a dynamic multi-

element demagnetizing tensor. With this in mind, the above system of linear equations be-
comes homogeneous. It can be interpreted as an eigenvalue problem of the form Tm = ωm,
where T ∈ L(C2N) is a linear operator acting on the vector m = (m1

1, . . . , mN
1 , m1

2, . . . , mN
2 ).

Concerning the canonical basis of C2N , the matrix representation of T is given by

Tql = iγ
(
(−1)j−1Hn

eqδnpδij + (−1)i−1Mn
eqΛnp

ij

)
, (A2)

where 1 ≤ i, j ≤ 2 and 1 ≤ n, p ≤ N are integers uniquely defined by q = (2− i)N + n and
l = (j− 1)N + p, for each 1 ≤ q, l ≤ 2N. Here, δij stands for the Kronecker delta symbol.

It is worth mentioning that analytical expressions for the tensor Tql are not found in
the literature since the dynamic dipole-dipole interaction is not easy to handle in the case of
a ferromagnetic nanostrip. For instance, expressions in terms of numerical integrations are
given in Ref. [97] for the dynamic dipolar fields. In this manuscript, analytical expressions
for the dipolar contribution are derived. Although somewhat extensive, these analytical
terms allow obtaining the magnonic dispersion and magnetization profiles in a short time,
representing an essential advantage over other numerical procedures or micromagnetic
simulations. The detailed derivation of the dipolar and exchange contributions is presented
in the following.

Appendix B. Dipolar Interaction

The sub-strip geometry motivates the following definitions, which can be thought of
as nothing more than a handy notation. The projection operator over the system’s bounded
direction is P = x̂⊗ x̂ + ŷ⊗ ŷ, and the axial radius is ρ = P · r. The operator

∫
p integrates

a function over the p-th sub-strip cross section (b×d rectangle), and
∫

R denotes the integral
over the real line along the long z-axis. Thus, one can note that

∫
Ωp =

∫
p

∫
R. Expressions of

the form
∫

n

∫
p η(ρ− ρ′) are considered, where the p-integral is over the primed coordinates,
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whereas the n-integral runs over the non-primed coordinates. Also, η is a well-behaved
function with a singularity at the origin. More explicitly, it can be seen that

∫
n

∫
p

dS′dS η(ρ− ρ′) =
∫ δxnp+b

δxnp

∫ δynp+d

δynp

∫ b

0

∫ d

0
dy′dx′dydx η(ρ− ρ′), (A3)

for n 6= p, and∫
n

∫
n

dS′dS η(ρ− ρ′) = lim
ε,δ→0+

∫ b−δ

δ

∫ d−δ

δ

∫ b+δ

−δ

(∫ y−ε

−δ
+
∫ d+δ

y+ε

)
dy′dx′dydx η(ρ− ρ′), (A4)

for n = p. Here, dS = dxdy stands for the differential cross section area, and (δxnp, δynp)
represents the relative position of the n-th sub-strip with respect to the p-th sub-strip. At
this point, introducing the shorthand notation

∫
n

∫
p η may seem unnecessary. However, as

the manuscript moves forward, its role of simplifying the discussion on otherwise tedious
mathematical details will become evident. For example, it is interesting to consider the
effect of changing the order of derivation and integration. If n 6= p, the operators commute.
However, if n = p, it follows from the above equation that

∫
n

dS
(
∇
∫

p
−
∫

p
∇
)

dS′ η(ρ− ρ′) = d ŷ lim
ε,δ→0+

∫ b−δ

δ

∫ b+δ

−δ
dx′dx η(ρ− ρ′)

∣∣∣∣y−ε

y′=y+ε

. (A5)

The magnetic field due to the p-th sub-strip is given by

H(p)
dip(r, t) = − 1

4π
∇
∫

p

∫
R

dz′dS′ Mp(r′, t) · ∇′
(

1
|r− r′|

)
. (A6)

Then, the average magnetic field over the n-th sub-strip cross section due to the
p-th sub-strip, Hnp

dip = (
∫

n H(p)
dip)/(bd), is considered. Note that the contribution to the

effective field is given by Hn
dip = ∑p Hnp

dip. It is straightforward to write the dynamic

component of the average field Hnp
dip as hnp

dip = −Λnp
dip ·m

p, where the dynamic multi-
element demagnetizing tensor is given by

Λnp
dip =

e−ik·r

4πbd

∫
n

dS ∇⊗
∫

p

∫
R

dz′dS′ eik·r′∇′
(

1
|r− r′|

)
(A7)

= − 1
2πbd

∫
n

dS (ik +∇)⊗
∫

p
dS′(ik +∇)K0(k|ρ− ρ′|) (A8)

=
∫

n

∫
p

dS′dS K(ρ− ρ′) + δnpŷ⊗ ŷ. (A9)

Here the tensor field K is defined by

K(ρ) =
1

2πbd

(
K0(kρ)k⊗ k + i

K1(kρ)

ρ/k
(k⊗ ρ + ρ⊗ k) +

K1(kρ)

ρ/k
P− K2(kρ)

ρ2/k2 ρ⊗ ρ

)
, (A10)

with Kl denoting the l-th Bessel function of the second kind. Equation (A8) follows
by noting that ∇|r− r′| = −∇′|r− r′|, commuting the operators

∫
R∇ = ∇

∫
R, us-

ing the identity
∫ ∞
−∞ eiazdz/

√
z2 + b2 = 2K0(|ab|) for a, b ∈ R, invoking the product

rule ∇eik·rη(ρ) = eik·r(ik +∇)η(ρ) in succession, and canceling out the exponentials.
Equation (A9) is obtained by considering the derivatives K′0 = −K1 and K′′0 = (K0 + K2)/2,
the identity 2K1(x) = x(K2 − K0)(x), and using the commutation property shown in
Equation (A5), where the resulting integrals are evaluated by taking K1(x) = 1/x +O(x).
Note that K is symmetric and traceless, so that the demagnetizing tensor Λnp

dip is also
symmetric, with trace 1 if n = p and trace 0 otherwise [97,98]. Also, Kxz(x, y) = Kyz(y, x).
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Thus, in solving
∫

n

∫
p K(ρ− ρ′), only four components need to be considered: Kxx, Kxy, Kxz

and Kzz. Here, the spatial components are chosen concerning the x̂, ŷ, ẑ basis.
Assuming that there exists a tensor field J such that K = ∂xx∂yyJ, it follows from

Equations (A3) and (A4) that

∫
n

∫
p

dS′dS K(ρ− ρ′) =
1

∑
s,t=−1

(2− 3|s|)(2− 3|t|)× J(δxnp + sb, δynp + td), (A11)

for n 6= p, and

∫
n

∫
n

dS′dS K(ρ− ρ′) = lim
δ→0+

(
J(ρ− ρ′)

∣∣∣∣d+δ

y′=−δ

∣∣∣∣d−δ

y=δ

+ d lim
ε→0+

∂J
∂y

(ρ− ρ′)

∣∣∣∣y−ε

y′=y+ε

)∣∣∣∣b+δ

x′=−δ

∣∣∣∣b−δ

x=δ

, (A12)

for n = p. However, no elementary representation of J does exist because Bessel functions
have not enough antiderivatives. On the other hand, it is possible to seek a solution in their
series expansions. Known series expansions of K0, K1 and K2, around z = 0, are

K0(z) = −αE − ln
( z

2

)
+O(z)2, (A13)

K1(z) =
1
z
+

(
−1

2
+ αE + ln

( z
2

)) z
2
+O(z)2, (A14)

K2(z) =
2
z2 −

1
2
+O(z)2, (A15)

where αE stands for the Euler-Mascheroni constant (≈0.577). Hence, to first order, K is
determined by

Kxx(x, y) =
1

2πbd

[
y2 − x2

(x2 + y2)2 +
k2

4
x2 − y2

x2 + y2

]
− Kzz(x, y)

2
, (A16)

Kxy(x, y) =
1

2πbd

(
k2

2
xy

x2 + y2 −
2xy

(x2 + y2)2

)
, (A17)

Kxz(x, y) =
ikz

2πbd

(
x

x2 + y2 −
k2

4
x
)
− ikz

2
xKzz(x, y), (A18)

Kzz(x, y) = − k2

2πbd

[
αE + ln

(
k
2

)
+

1
2

ln(x2 + y2)

]
, (A19)

with J given by

Jxx(x, y) =
1

2πbd

(
1 +

k2

2
x2 + y2

6

)[
xy arctan

( y
x

)
+

y2 − x2

4
ln(x2 + y2)

]
− 1

2
Jzz(x, y), (A20)

Jxy(x, y) =
1

2πbd

[(
x2 − y2

2
+

k2

2
x4 − y4

12

)
arctan

( y
x

)
+

(
xy
2

+
k2

2
x3y + xy3

12

)
ln(x2 + y2)

]
, (A21)

Jxz(x, y) =
ikz

2πbd

[
3x2y− y3

6
arctan

( y
x

)
+

3xy2 − x3

12
ln(x2 + y2)− k2

2
x3y2

24

]
− ikz

2
xJzz(x, y), (A22)

Jzz(x, y) = − k2

2πbd

[(
αE −

25
12

+ ln
(

k
2

))
x2y2

4
+

x3y− xy3

6
arctan

( y
x

)
+

6x2y2 − x4 − y4

48
ln(x2 + y2)

]
. (A23)

For n 6= p, explicit formulas for the demagnetizing tensor follow immediately by
Equation (A11). The self-interaction case (n = p) requires a little more computational
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effort. Using Equation (A12), the self-interaction integrals
∫∫

n K are calculated for each
component, where it is obtained that

∫
n

∫
n

dS′dS Kxx(ρ− ρ′) =
1
π

[
2 arctan

d
b
+

b
d

ln b− d
b

ln d +
1
2

(
d
b
− b

d

)
ln(b2 + d2)

]
+

bdk2

48π

[
−25 + 12αE + 12 ln

k
2
+ 8

b
d

arctan
d
b
+ 6

b2

d2 ln b −2
d2

b2 ln d

+

(
6 +

d2

b2 − 3
b2

d2

)
ln(b2 + d2)

]
, (A24)

∫
n

∫
n

dS′dS Kzz(ρ− ρ′) = − bdk2

24π

[
−25 + 12αE + 12 ln

k
2
+8
(

b
d
− d

b

)
arctan

d
b

+2
b2

d2 ln b + 2
d2

b2 ln d +

(
6− b2

d2 −
d2

b2

)
ln(b2 + d2)

]
, (A25)

and that
∫∫

n Kxy and
∫∫

n Kxz vanish. It is worth mentioning that the second term in
Equation (A12) vanishes for all components.

This approximation used before holds as long as the relative distance between two sub-
strips falls below a certain threshold. In the case of self-interaction (n = p), the threshold
is expected to surpass the characteristic length of the sub-strips, namely, the diagonal√

b2 + d2. The threshold is defined as the value z at which the relative error of any of the
K0(z), K1(z), or K2(z) series expansions surpasses 0.05, which happens first for K0(z) at
around z = 1/3. Note that the argument of the Bessel functions is z = k|ρ− ρ′|. Thus,
in the wave-vector regime k ≤ 30 rad µm−1, the approximation holds for sub-strips at a
relative distance of no more than 11 nm. For relative distances greater than 11 nm, Bessel
functions can be evaluated at the center of the sub-strip. Otherwise, a complete treatment
of the static dipolar interaction can be found in Ref. [97].

Appendix C. Exchange Interaction

The exchange interaction is accounted for using two terms. One of them is associated to
the exchange interaction within each sub-strip, which is written as hn

ex1 = −`2
exk2mn, where

`ex =
√

2Aex/µ0M2
s is the exchange length. The other is related to the exchange interaction

between neighboring sub-strips. In this case, the exchange energy density between two
neighboring sub-nanostructures (n and n + 1) is εex2 = JMn ·Mn+1/(Mn

s Mn+1
s ). Then, by

using Hn
ex2 = −(δεex2/µ0δMn)/b, the associated fields are

hn
ex2 =

J/b
µ0Mn

s
∑
p

mp

Mp
s
(δn,p+1 + δn,p−1), (A26)

and
Hn

eq−ex2 =
J/b

µ0Mn
s

∑
p
(δp,n+1 + δp,n−1)e3, (A27)

where Hn
eq−ex2 corresponds to the static exchange field. Thus, by using hnp

ex = −Λnp
ex ·mp,

the tensor Λnp
ex is given by

Λnp
ex = `2

exk2δnp −
J
b

1
µ0Mn

s Mp
s
(δn,p+1 + δn,p−1). (A28)

Finally, if the system is divided into many sub-strips, the continuous approach es-
tablishes that J = 2Aex/b, where Aex is the exchange constant of the magnetic material
defined in the continuum limit.
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