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Abstract: Solid particles scattered in a base fluid for a standard no larger than 100 nm, constituting a
nanofluid, can be used to improve thermophysical characteristics compared to the base fluid. In this
study, theoretical and experimental investigations were carried out to estimate the density, viscosity,
and effective thermal conductivity of Co3O4 in distilled water (DW), ethylene glycol (EG), and DW–
EG mixture nanofluids. Co3O4 nanoparticles with diameters of 50 nm were dispersed in different
base fluids (i.e., EG, DW, 60EG:40DW, 40EG:60DW, 20EG:80DW) with varying concentrations of
0.025–0.4 vol.%. Thermal conductivity was estimated by the hot-wire technique, and viscosity was
determined using a viscometer apparatus. According to the measurements, the viscosity of Co3O4

nanofluids decreased with increasing temperature, and increased with increasing volume fraction.
The results revealed that the thermal conductivity of Co3O4 nanofluids increased with increasing
temperature and volume concentrations. Moreover, the measurements found that the maximum
thermal conductivity of 10.8% and the maximum viscosity of 10.3% prevailed at 60 ◦C in the volume
fraction of 0.4%. The obtained viscosity and thermal conductivity results of the present experiments
on Co3O4 nanofluids were compared with previous results. The results showed good agreement with
theoretically proposed models to predict nanofluids’ viscosity and thermal conductivity. Thus, the
thermal conductivity results of Co3O4 nanofluids are promising with respect to the use of nanofluids
in solar thermal applications.

Keywords: cobalt oxide nanoparticles; thermal conductivity; viscosity; density; DW–EG
mixture nanofluids

1. Introduction

Nanofluids are colloidal systems in which nanoscale particles are suspended in a
liquid. Investigating nanometer-sized particles and their influence on the thermophysical
properties and transport properties of suspensions is an active research area. It was found
that atypical properties such as thermal conductivity or viscosity changes are dependent
on the size of the system. Several reasons for this exist, including particle size, particle type,
and the state of particle aggregation in suspension Not only their chemical composition
determines their properties, as several studies in the literature have described this behavior
for nanofluids that are derived from metallic nanoparticles, metal oxide nanoparticles,
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ceramic nanoparticles, or carbon nanotubes [1–9]. In a previous study [10], the authors
compiled a collection of articles reporting on the thermal conductivity of different nanoflu-
ids, showing that it depends on factors such as volume fraction, size, and shape of the
nanoparticles, their morphology, additives, pH, temperature, type of base liquid, and
nanoparticle material. This poses a major problem in terms of sample characterization and
reproducibility of experimental data. The literature review reveals significant discrepancies
between different thermal conductivity data sets reported for this system, where general
consensus shows that the distinctions are based on a combination of factors, such as a
variety of preparation processes, sample stability, particle size distribution, non-uniformity
of particle shape, clustering, sedimentation, and pH [10–13]. In addition to their transport
properties, nanofluids also show unusual behavior in terms of their viscoelastic proper-
ties [1,14–21], and this represents a challenge not only due to the difficulties associated with
their experimental determination, but also because of the very limited knowledge about
the underlying physicochemical phenomena that might justify the observed trends. Co2O3,
Co3O4, and CoO nanoparticles are commonly used in catalysis [22,23], drug delivery [24],
wastewater treatment [25], hyperthermia [26], and data storage media [27]. In the field of
supported magnetic nanoparticles, cobalt oxide (Co3O4) nanoparticles are of particular
interest, due to their applications in lithium batteries [28], in various catalytic reactions [29],
and in the aerobic oxidation of alcohols [30], among other uses. In another study [31], it was
pointed out that the literature does not contain sufficient experimental data on nanofluids’
specific heat, density, and viscosity; the authors emphasized the importance of developing
reliable databases. The magnetic and electrical properties of dry Co3O4 nanoparticles have
been investigated [32–35], whereas Co3O4 nanoparticles dispersed in liquids have, to date,
only been considered in a limited number of studies [36,37]. For instance, Vickers et al. [36]
found that suspensions of Co3O4 nanocubes in oligomeric polyethylene glycol (PEG) be-
have similarly to Newtonian liquids at low particle volume fractions, but exhibit complex
rheological behavior at higher particle volume fractions, including shear thinning and
shear thickening. Using Co3O4 nanoparticles dispersed in paraffin and oleic acid as the
capping agent, Hosseini et al. [37] examined the effects of nanoparticle concentration on
the rheological properties resulting from dispersion. They also found that not all samples
followed Newtonian dynamics.

The use of nanofluids to cool electronic components is also being investigated [38,39].
There are different magnetic fields within electronic components, across which nanofluids
must flow. Several studies have shown that magnetic fields affect heat transfer rates in
nanofluids containing magnetic particles [40]. We aimed to investigate the effect of magnetic
fields on the heat transfer rate of a magnetic Co3O4 nanofluid in an EG–DW mixture.
Therefore, magnetic Co3O4 nanoparticles were used for the preparation of nanofluids
in this study. In order to assess nanofluid heat transport, we needed to determine the
thermophysical properties of these fluids.

Based on the literature review, several metal- and metal-oxide-based nanofluids lack
thermophysical properties. The following materials are of particular importance: vanadium
(V), chromium (Cr), nickel (Ni), molybdenum (Mo), tungsten (W), zinc (Zn), and niobium
(Nb) [41], for the following reasons:

1. Visible light is absorbed by transition metals and their oxides with band gaps smaller
than 2.5 eV (such as Mn and Co).

2. UV light can be transmitted through transition metals and their oxides with band
gaps greater than 3.5 eV (e.g., Hf, Zr, Ce, Nd, Er, Dy).

Therefore, this study examines nanofluids containing Co3O4 nanoparticles dispersed
in nanofluids of distilled water (DW), ethylene glycol (EG), and DW–EG mixtures at
concentrations up to 0.4% by volume. These properties are very useful in designing
nanofluid-based heat-exchange devices. This paper attempts to provide data on thermal
conductivity, viscosity, and density to further investigate heat transfer characteristics.
Thermal conductivity was measured using the hot-wire technique. The experimental
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values were compared with the theoretical values for the various properties studied in
terms of volume fraction and temperature.

2. Methodology
2.1. Preparation of Nanomaterial Samples

The Co3O4 nanoparticles were bought from Sigma-Aldrich, USA. The Co3O4 nanopar-
ticles were used as received from the manufacturer, without any further purification. The
EG was supplied by Tedia (99%). The suspension was prepared by mixing powdered
Co3O4 nanoparticles and a DW–EG mixture. The physical properties of the nanoparticles
(cobalt oxide) and base fluids (DW and EG) are shown in Table 1 [42].

Table 1. Characteristics of cobalt oxide (Co3O4) nanoparticles and base fluids at 20 ◦C. Reprinted
with permission from Ref. [42], 2022, Elsevier.

Characteristics Co3O4 EG DW 60EG:40DW 40EG:60DW 20EG:80DW

Purity (%) 99.5 99 (-) (-) (-) (-)
Black color (-) (-) (-) (-) (-)
Particle size measurement (nm) ≤50 (-) (-) (-) (-) (-)
Density (g/cm3) 6.11 1.113 0.9985 1.08627 1.05968 1.02972
Viscosity (mPa.s) (-) 21 0.89 5.38 2.96 1.65
Thermal conductivity (W/mK) 69 0.258 0.602 0.334 0.404 0.492

The preparation procedure of Co3O4 nanofluids was conducted as follows: The first
step was weighing the amount of the Co3O4 nanopowder required for the solid volume
fraction in the base fluid, using a digital electronic balance (Adam Model AAA 250L). The
Co3O4 nanoparticles needed for the experimental samples of the base fluids were estimated
using the following expression.

∅ =

wnp
ρnp

wb f
ρb f

+
wnp
ρnp

× 100% (1)

where ∅ is the volume concentration (%); wnp and wbf are the weight of the nanoparticles
and nanofluids (g), respectively, while ρnp and ρb f are the density of the nanoparticles and
nanofluids (g/cm3), respectively.

The base fluid density of EG (1) + DW (2) can be described by the following equa-
tion [43]:

ρ = w1y1 + w2y2 + (y1 − y2)w1w2(A4 + A5w1 + A6t) (2)

where t = T/K − 273.15, w1 is the mass fraction of glycol, w2 = 1 − w1, and y1 and y2 are the
ρ-values for pure EG and DW, respectively. In the case of ρ, y1 is given as follows:

y1 = A1 + A2t + A3t2 (3)

The coefficients Ai of Equations (2) and (3) are shown in Table 2.

Table 2. Coefficients Ai of Equations (2) and (3).

ρ A1 A2 A3 A4 A5 A6

1 1127.68 −0.65816 −6.1765 × 10−4 0.30590 0.13781 −1.8961 × 10−3

2 1132.35 −0.67950 −4.7565 × 10−4 0.90820 −0.26348 −3.3787 × 10−3

3 1139.48 0.71040 −4.3663 × 10−4 1.1712 −0.52694 −3.8797 × 10−3

The second step was inserting the Co3O4 nanoparticles into a weighed bade fluid. For
about three hours, the experimental samples were subjected to a magnetic stirrer (Wisd
Model MSH-20A) to mix the Co3O4 nanoparticles and the base fluid.
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The third step was sonicating the Co3O4 nanofluid suspensions, which were inserted
in the ultrasonic cleaner set, carried out for 40 min using the ultrasonic processor (Wisd
WUC-A06H model, power density = 172 watts, frequency = 40 kHz). In their study,
Divya et al. [44] indicated that the optimal time of ultrasonication after 40 min clustering of
nanoparticles occurred for water-based nanofluids. The two-step technique of preparing
and measuring the thermophysical properties of Co3O4 nanoparticles in distilled water
(DW), ethylene glycol (EG), and DW–EG mixture nanofluids is shown in Figure 1. This
technique was used to bring down the aggregation of nanoparticles’ sedimentation, prohibit
the sedimentation, and obtain a stable dispersion and suspension of nanoparticles.
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Figure 1. Schematic diagram of the Co3O4 nanofluid preparation and measurement of its thermo-
physical properties.

The mass of Co3O4 nanoparticles needed to prepare Co3O4/DW, Co3O4/EG, and
Co3O4/DW–EG mixture nanofluids of several solid volume fraction concentrations for
50 mL of base fluid is summarized in Table 3. The water-based 0.025%, 0.05%, 0.1%, 0.2%,
and 0.4% volume concentrations of Co3O4 nanofluids were prepared by scattering 0.07640,
0.15286, 0.30580, 0.61220, and 1.11700 g of Co3O4 nanoparticles, respectively, in 50 mL of
water as a base fluid.

Table 3. The mass of cobalt oxide required in different particle volume concentrations.

∅∅∅, (%)
Mass of Co3O4 Required (g) for Several Base Fluids

EG DW 60EG:40W 40EG:60W 20EG:80W

0.025 0.068604 0.076471 0.071548 0.073117 0.074756
0.05 0.136555 0.152215 0.142416 0.145539 0.148802
0.10 0.274209 0.305653 0.274209 0.274209 0.274209
0.20 0.547869 0.610694 0.571381 0.583911 0.597002
0.40 1.093542 1.218940 1.140472 1.165481 1.191612

2.2. Characterization of Co3O4 Nanoparticles

The XRD patterns of synthesized Co3O4 nanoparticles are shown in Figure 2. The
XRD pattern of Co3O4 nanoparticles shows Co3O4 peaks. The 2θ positions of the Co3O4
sample are 19.04◦, 31.24◦, 36.8◦, 44.84◦, 55.5◦, 59.38◦, and 65.28◦, which can be indexed as
the 111, 220, 311, 400, 422, 333, and 440 planes, respectively, for Co3O4 nanoparticles. No
clear reflection peaks from other impurities were observed from the spectrum.
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Figure 2. XRD patterns of cobalt (II/III) oxide nanoparticles.

2.3. Uncertainty Analysis

Instrumentation, data acquisition, and data analysis are among the sources of uncer-
tainty in experimental works [45]. By comparing the experimental results with published
data, we first evaluated the accuracy of the instruments used to measure density, viscosity,
and thermal conductivity. Moreover, in the present study, density, viscosity, and thermal
conductivity were measured at least three times at each point. Experimental uncertainty
was calculated according to Moffat’s theory [46,47]. According to Moffat’s theory, D is the
sum of the results of different measured variables, Xi, where D = f (X1, X2, ..., Xi). The
uncertainty of each variable can be estimated through Equation (4) based on this theory:

UD
D

=

√(
∂X1

X1

)2
+

(
∂X2

X2

)2
+ . . . +

(
∂Xn

Xn

)2
(4)

Table 4 displays the uncertainty results calculated based on the mean ± standard
error for the determination of density, viscosity, thermal conductivity, and convective heat
transfer coefficient.

Table 4. Maximum uncertainty in experimental parameters and measurement devices.

Parameters Type Uncertainty (%)

Density (ρ) Pycnometer ±0.2
Velocity (µ) A&D Vibro Viscometer (SV-10) ±1
Thermal conductivity (k) KD2-Pro ±5
Temperature (T) thermostat Memmert SV 14–22 ±0.1

3. Theoretical and Experimental Density, Thermal Conductivity, and
Viscosity of Nanofluids
3.1. Mathematical Model

The effective density of the nanofluid can be calculated analytically with the volume
fraction using the mixing theory as follows [48]:

ρn f =
(
1 −∅p

)
ρb f +∅pρp (5)

where ∅ is the volume concentration (%), ρn f is the density of the nanofluid (g/cm3), ρp is
the density of the nanopowder (g/cm3), and ρb f is the density of the base fluid (g/cm3).

Maxwell [49] suggested different classical models. From the literature, including the
works of Crosser, Wasp, and Bruggeman, it is possible to estimate the efficient thermal con-
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ductivity of liquid–solid suspensions (knf). Moreover, Maxwell [49] suggested an equation
for estimating the suspension’s knf, which is valid for spherical particles in volume fractions
of less than 1.0 vol%, and is expressed as follows:

kn f =

 kp + 2kb f + 2
(

kp−kb f

)
∅p

kp + 2kb f −
(

kp − kb f

)
∅p

kb f (6)

where knf is the thermal conductivity of the nanofluid, ∅p is the particle volume concentra-
tion of the nanoparticles, and kbf is the thermal conductivity of the base fluid.

Furthermore, the Maxwell–Eucken model [50] proposes an equation to predict the
nanofluid’s knf, as follows:

kn f = kb f


[
(1 + 2∅p(1 − (kb f /kp)))/(2(kb f /kp) + 1)

]
[
(1 −∅p(1 − (kb f /kp)))/((kb f /kp) + 1)

]
 (7)

The Yu and Choi model [51] for the knf of suspensions is given as follows:

kn f = kb f

 kp + 2kb f + 2∅p

(
kp − kb f

)
(1 + β)3

kp + 2kb f −∅p

(
kp − kb f

)
(1 + β)3

 (8)

A few experiments on the viscosity of the nanofluids and associated correlations
were conducted to predict the nanofluids’ viscosity (µnf) with respect to particle volume
concentration and base fluid density. Below are a few of the models of µnf produced by
numerous investigators.

Among the equations used to calculate the µnf of a nanofluid is the Einstein model [52].
When the volume concentration of spherical nanoparticles is less than 5%, Einstein’s
method expresses it using the following model:

µn f =
(
1 + 2.5∅p

)
µb f (9)

where µnf is the viscosity of the nanofluid, ∅p is the particle volume concentration of the
nanoparticles, and µbf is the viscosity of the base fluid. On the other hand, the Brinkman
model [53] presents a correlation model for calculating the µnf of nanofluids, as shown in
Equation (10):

µn f =
1

(1 −∅)2.5 µb f (10)

The µnf of the nanofluids is determined from the de Batchelor model [54], which is
expressed as follows:

µn f =
(

1 + 2.5∅+ 6.2∅2
)

µb f (11)

3.2. Density, Thermal Conductivity, and Viscosity Measurement of Co3O4/DW, EG, and DW–EG
Mixture Nanofluids

Several techniques can be used to estimate the density (ρ) of nanofluids, such as the
gravimetric technique and the Archimedes method. In the present study, the density of
the Co3O4 nanofluids was investigated five several solid volume fraction concentrations
of 0.025, 0.05, 0.1, 0.2, and 0.4%. The volume concentrations under examination were
determined using a gravimetric technique (pycnometer), and the experimental results of
the density obtained were compared with the results obtained using the density correlation
equation (Equation (12)) suggested by Pak and Cho [48] for nanofluids.

The density of Co3O4/DW, EG, and DW–EG mixture nanofluids was measured at
room temperature by weighing a sample of each fluid in a standard 25 mL volumetric
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flask on an electronic balance with high precision (±0.0001 g). The procedure was repeated
three times, and the collected data were averaged. The density was calculated using the
following equation:

ρn f =

[
mt − m f l

Vn f

]
(12)

where mt and m f l are the total mass of the flask with the nanofluid and the mass of
the empty flask, respectively, and Vn f is the volume of the nanofluid taken in the flask.
Volumetric flask calibration was carried out in the experimental condition with distilled
water. The accuracy of the instrument was ±5%. We placed the nanofluid sample in the
small container and inserted the probe into the center of the container. The instrument
had a specified accuracy of ±5%. A temperature range of 20–60 ◦C with a step size of
5 ◦C was achieved by immersing the container in the surrounding fluid kept inside the
refrigerated/heating circulator, which maintained the surrounding fluid’s temperature
within 0.1 ◦C. The precise results were obtained by continuously holding the probe in the
nanofluid sample for 20 min after reaching the desired equilibrium temperature. For each
sample, five measurements were taken to ensure repeatability and accuracy.

The base fluid (i.e., distilled water) characteristics, such as density, viscosity, and
thermal conductivity, were determined as shown in Equations (13)–(15), respectively,
considering the base temperature for regression equations [11].

ρw = 1000 ×

1 − (Tw − 4.0)2

119, 000 + (1365 × Tw)−
(

4 × (Tw)
2
)
 (13)

where ρw is the density of the distilled water (g/cm3), and Tw is the temperature of the
distilled water (◦C).

µw = 0.00169 − 4.25263 × 10−5 × (Tw) + 4.9255 × 10−7 × (Tw)
2

−2.0993504 × 10−9 × (Tw)
3 (14)

where µw is the distilled water’s viscosity (mPa.s), and Tw is the temperature of the distilled
water (◦C).

kw = 0.56112 + 0.00193 × (Tw)− 2.60152749 × 10−6 × (Tw)
2

−6.08803 × 10−8 × (Tw)
3 (15)

where kw is the thermal conductivity of the distilled water (W/mK), and Tw is the distilled
water’s temperature (◦C).

Several methods can be used to evaluate the effective thermal conductivity of nanoflu-
ids, such as the transient hot-wire, parallel steady-state plate, and cylindrical cell methods.
In the present study, the transient hot-wire technique (KD2 Pro) was extended by using a
KD2 Pro instrument, due to its high speed and precision in measurement. The effective
thermal conductivity of Co3O4/DW, Co3O4/EG, and Co3O4/DW–EG mixture nanoflu-
ids was studied at various solid volume fractions and temperatures. The KD2 Pro was
calibrated utilizing glycerin. Table 5 shows the conductivity meter properties.

Table 5. Conductivity meter properties.

Characteristics Value

KD2 sensor: Model: KS-1
Limit of measurement: 0.02 to 2 (W/mK)

Accuracy: 5% from 0.2–2 (W/mK)

In this study, we used the KD2 Pro apparatus to measure the thermal conductivity of
the nanofluids. The KD2 premeasured the heat transfer properties of the low-temperature



Nanomaterials 2022, 12, 2779 8 of 24

fluids without causing any convection, via a principle of measurement based on the
transient hot-wire method, as described by several authors [13,55].

The KD2 Pro analyses the different thermophysical properties—including thermal
conductivity, resistivity, diffusivity, and specific heat—with the use of a resilient heat trans-
fer method, namely, the line heat-source method. The KD2 Pro apparatus generally consists
of three different measuring inputs with different needles and temperature sensors. The
needles serve as both temperature sources and sensor equipment. The thermal conductivity
of the nanofluid was considered under temperatures ranging from 25 ◦C to 50 ◦C. The
different concentrations of the nanofluids (0.05% to 0.4%) were subjected individually to
temperatures of 20 ◦C, 25 ◦C, 30 ◦C, 35 ◦C, 40 ◦C, 45 ◦C, 50 ◦C, 55 ◦C, and 60 ◦C. The sensor
was integrating into the interior heating element and thermo-resistor. It was connected to a
microprocessor for controlling the controller module, containing a battery, a 16-bit micro-
controller/AD converter, and power control circuitry. Each measurement cycle consisted of
90 s. During the first 30 s, the instrument equilibrated, which was then followed by heating
and cooling the sensor needles for 30 s each. At the end of the reading, the controller
computed the thermal conductivity using the temperature change (DT)–time data. The
estimated uncertainty of thermal conductivity measurement was lower than 3%. Previous
studies have discussed the advantages of this technique when applied to nanofluids. The
calibration of the sensor needle was carried out first by measuring the thermal conductivity
of distilled water, glycerin, and ethylene glycol. The measured values for distilled water,
glycerin, and ethylene glycol were 0.611, 0.292, and 0.263 (W/mK), respectively, which are
consistent with the literature values of 0.613, 0.285, and 0.252 (W/mK), respectively, within
±5% accuracy [56,57].

In the present analysis, the transient hot-wire system was implemented due to its high
speed, and measurement precision was used to calculate the effective thermal conductivity
of the Co3O4/DW, Co3O4/EG, and Co3O4/DW–EG mixture nanofluids using a KD2 Pro
instrument with a KS-1 sensor. This sensor is ideal for measuring the effective thermal
conductivity of various nanofluid types with different base fluids. The effective thermal
conductivity of the Co3O4/DW, Co3O4/EG, and Co3O4/DW–EG mixture nanofluids was
measured at various solid volume fractions and temperatures.

The effective thermal conductivity of the samples of Co3O4 nanofluids was calculated
three times, and the final values were taken as the average.

Several methods are used to evaluate nanofluids’ kinetic viscosity, viscosity, and static
viscosity, including capillary, vibrational, and rotational methods. In the present study,
the rotational process was extended by using an A&D Vibro Viscometer (SV-10, Tokyo,
Toshima Cit) instrument with a range measurement from 0.3 and 10 Pa.s. Empirical data
were taken with an interval of 5 ◦C.

A few experiments on the viscosity of the nanofluids and associated correlations were
established to predict nanofluid viscosity (µnf) with respect to particle volume concentration
and base fluid density. The experiments aimed to investigate the impacts of the Co3O4/DW,
Co3O4/EG, and Co3O4/DW–EG mixture nanofluids’ temperature and volume on their µnf.
The A&D Vibro Viscometer (SV-10, Japan) was utilized for measuring the viscosity of the
Co3O4/DW, EG, and DW–EG mixture nanofluids. The measurements were carried out in
the temperature range from 20 ◦C to 60 ◦C. The calibration of the viscometer was carried
out with calibration liquids.

Co3O4 nanofluids at five different volume concentrations of 0.025, 0.05, 0.1, 0.2, and
0.4% were prepared for measuring the temperature-dependent viscosity of all of the nanoflu-
ids and concentrations considered in this work.
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4. Results and Discussion
4.1. Experimental Density, Thermal Conductivity, and Viscosity of Co3O4/EG, DW, and EG–DW
Mixture Nanofluids
4.1.1. The Experimental Density of Co3O4/EG, DW, and EG–DW Mixture Nanofluids

Experimental data on the density of the Co3O4 nanoparticles with EG and DW, or with
20EG:80DW, 40EG:60DW, and 60EG:40DW, as base fluids are shown in Figures 3 and 4,
respectively, at different temperatures, with a 5 ◦C increment, and various volume concen-
trations. The density of the Co3O4/EG, Co3O4/DW, and Co3O4/EG–DW mixture nanoflu-
ids increased linearly with increasing volume concentrations from 0.025% to 0.4%, and
decreased with increasing temperatures from 20 ◦C to 60 ◦C. The DW-based nanofluid had
the lowest value of density (0.99 g/cm3) at T = 60 ◦C and volume concentration = 0.025%,
and the EG-based nanofluid had the highest value of density (1.22 g/cm3) at T = 20 ◦C and
volume concentration = 0.4%.

As shown in Figure 3, the density of the DW-based Co3O4 nanofluid was enhanced by
0.004% and 1.02%, whereas the density of the EG-based Co3O4 nanofluid was improved by
0.61% and 9.68%, at 0.025% and 0.4% volume concentrations at T = 20 ◦C, respectively in
comparison with the density of the base fluids (DW and EG).

As shown in Figure 4, the density of the 20EG:80DW-based Co3O4 nanofluid was
enhanced by 0.73% and 11.48% at 0.025% and 0.4% volume concentrations at T = 60 ◦C,
respectively, compared to the density of the base fluid (20EG:80DW). Similarly, the density
of the 40EG:60DW-based Co3O4 nanofluid was enhanced by 0.68% and 10.78% at 0.025%
and 0.4% volume concentrations at T = 60 ◦C, respectively, compared to the density of
the base fluid (40EG:60DW). In contrast, the density of the 60EG:40DW-based Co3O4
nanofluid was enhanced by 0.64% and 10.21% at 0.025% and 0.4% volume concentrations at
T = 60 ◦C, respectively, in comparison to the density of the base fluid (60EG:40DW). Under
different base fluids, we observed that the density enhancement was lesser at low volume
concentrations of 0.025% and temperature of 60 ◦C, while it was higher at high volume
concentrations of 0.4% and temperatures of 20 ◦C.
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Figure 3. Experimental density values for various volume concentrations of Co3O4/EG and
Co3O4/DW nanofluids with respect to temperature.
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The experimental density values of the Co3O4 nanoparticles with EG, DW, 20EG:80DW,
40EG:60DW, and 60EG:40DW as base fluids, at 5 ◦C intervals from 20 ◦C to 60 ◦C, are listed
in Table 6.

Table 6. Experimental density of Co3O4/EG, DW, and EG–DW mixture nanofluids.

∅∅∅
Test Temperature (◦C)

20 ◦C 25 ◦C 30 ◦C 35 ◦C 40 ◦C 45 ◦C 50 ◦C 55 ◦C 60 ◦C

Co3O4/DW

0.025 0.9985 0.9974 0.9964 0.9953 0.9943 0.9932 0.9922 0.9911 0.9901
0.05 0.9991 0.9981 0.9971 0.9960 0.9950 0.9939 0.9929 0.9918 0.9908
0.1 1.0005 0.9995 0.9984 0.9974 0.9963 0.9953 0.9942 0.9932 0.9921
0.2 1.0033 1.0022 1.0012 1.0001 0.9991 0.9980 0.9970 0.9959 0.9949
0.4 1.0087 1.0077 1.0066 1.0056 1.0045 1.0035 1.0024 1.0014 1.0004

Co3O4/EG

0.025 1.1199 1.1164 1.1128 1.1092 1.1056 1.1019 1.0982 1.0945 1.0907
0.05 1.1268 1.1233 1.1197 1.1161 1.1125 1.1089 1.1052 1.1015 1.0978
0.1 1.1404 1.1369 1.1334 1.1299 1.1264 1.1228 1.1192 1.1155 1.1119
0.2 1.1675 1.1641 1.1607 1.1573 1.1539 1.1504 1.1469 1.1434 1.1398
0.4 1.2209 1.2177 1.2145 1.2113 1.2081 1.2049 1.2016 1.1983 1.1949

Co3O4/20EG:80DW

0.025 1.0387 1.0369 1.0350 1.0330 1.0309 1.0291 1.0262 1.0237 1.0211
0.05 1.0462 1.0444 1.0426 1.0406 1.0385 1.0367 1.0339 1.0314 1.0288
0.1 1.0611 1.0594 1.0576 1.0556 1.0535 1.0518 1.049 1.0466 1.0440
0.2 1.0908 1.0891 1.0873 1.0855 1.0834 1.0818 1.0791 1.0767 1.0743
0.4 1.1492 1.1477 1.1460 1.1443 1.1424 1.1409 1.1384 1.1362 1.1339
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Table 6. Cont.

∅∅∅
Test Temperature (◦C)

20 ◦C 25 ◦C 30 ◦C 35 ◦C 40 ◦C 45 ◦C 50 ◦C 55 ◦C 60 ◦C

Co3O4/40EG:60DW

0.025 1.0683 1.0662 1.0640 1.0616 1.0590 1.0563 1.0535 1.0505 1.0473
0.05 1.0756 1.0735 1.0712 1.0689 1.0663 1.0637 1.0608 1.0579 1.0547
0.1 1.0900 1.0879 1.0857 1.0834 1.0809 1.0783 1.0755 1.0726 1.0695
0.2 1.1187 1.1167 1.1146 1.1123 1.1099 1.1073 1.1047 1.1018 1.0989
0.4 1.1752 1.1733 1.1714 1.1692 1.1670 1.1646 1.1621 1.1595 1.1568

Co3O4/60EG:40DW

0.025 1.0946 1.0922 1.0897 1.0871 1.0844 1.0815 1.0785 1.0754 1.0722
0.05 1.1017 1.0993 1.0968 1.0942 1.0915 1.0886 1.0857 1.0826 1.0794
0.1 1.1157 1.1133 1.1109 1.1083 1.1057 1.1029 1.1000 1.0969 1.0938
0.2 1.1435 1.1412 1.1389 1.1364 1.1338 1.1311 1.1283 1.1254 1.1223
0.4 1.1984 1.1963 1.1941 1.1918 1.1893 1.1868 1.1842 1.1815 1.1786

4.1.2. Experimental Viscosity of Co3O4/DW, Co3O4/EG, and Co3O4/EG–DW Mixture
Nanofluids

The viscosity data of the Co3O4/EG and Co3O4/DW nanofluids, and of the Co3O4/
20EG:80DW, 40EG:60DW, and 60EG:40DW nanofluids, are shown in Figures 5 and 6, re-
spectively, at different temperatures (temperature increment of 5 ◦C per step) and volume
concentrations. The viscosity of the Co3O4/EG, Co3O4/DW, and Co3O4/DW–EG mixtures
increased with increasing volume concentrations and decreased with increasing tempera-
tures from 20 ◦C to 60 ◦C. The DW-based nanofluid had the lowest viscosity (0.467 mPa.s)
at T = 60 ◦C and volume concentration = 0.025%, while the EG-based nanofluid had the
highest viscosity (22 mPa.s) at T = 20 ◦C and volume concentration = 0.4%.
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Figure 5. Experimental viscosity values for various volume concentrations of Co3O4/DW and
Co3O4/EG nanofluids with respect to temperature.
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Figure 6. Experimental viscosity values for various volume concentrations of Co3O4/EG–DW mixture
nanofluids with respect to temperature.

As shown in Figure 5, the viscosity of the DW-based Co3O4 nanofluid was enhanced
by 0.06% and 0.96%, whereas the viscosity of the EG-based Co3O4 nanofluid was improved
by 0.01% and 0.92%, at 0.025% and 0.4% volume concentrations at T = 20 ◦C, respectively,
in comparison with the base fluids (DW and EG).

As shown in Figure 6, the viscosity of the 20EG:80DW-based Co3O4 nanofluid was
enhanced by 1.16% and 2.07% at 0.025% volume concentrations and 0.4% volume concen-
trations at T = 20 ◦C, respectively, compared to base fluid (20EG:80DW). Similarly, the
viscosity of 40EG:60DW -based Co3O4 nanofluid is enhanced by 0.70% and 1.61% at 0.025%
and 0.4% volume concentrations at T = 20 ◦C, respectively, compared to the base fluid
(40EG:60DW). On the other hand, the viscosity of the 60EG:40DW-based Co3O4 nanofluid
was enhanced by 7.45% and 6.54% at 0.025% and 0.4% volume concentrations at T = 20 ◦C,
respectively, in comparison to the base fluid (60EG:40DW).

The experimental viscosity values of the Co3O4 nanoparticles with EG, DW, 20EG:80DW,
40EG:60DW, and 60EG:40DW as base fluids, at 5 ◦C intervals from 20 ◦C to 60 ◦C, are listed
in Table 7.

4.1.3. Experimental Thermal Conductivity of Co3O4/EG, Co3O4/DW, and Co3O4/EG–DW
Mixture Nanofluids

The thermal conductivity data of the Co3O4/EG and Co3O4/DW nanofluids, and of the
Co3O4/20EG:80DW, 40EG:60DW, and 60EG:40DW nanofluids, are shown in Figures 7 and 8,
respectively, at different temperatures (in increments of 5 ◦C/step) and volume concentra-
tions. It can be observed that the thermal conductivity of the Co3O4/EG, DW, and EG–DW
mixture nanofluids increased with increasing volume concentrations and increasing tem-
peratures from 20 ◦C to 60 ◦C. The EG-based nanofluid had the lowest thermal conductivity
value of 0.259 W/m·K at T = 20 ◦C and a volume concentration of 0.025%. The DW-based
nanofluid had the highest thermal conductivity value of 0.834 W/m·K at T = 60 ◦C and
a volume concentration of 0.4%. As shown in Figure 7, the thermal conductivity of the
DW-based Co3O4 nanofluids was enhanced by 1.04% and 24. 4%, whereas the thermal
conductivity of the EG-based Co3O4 nanofluid was enhanced by 0.61% and 14.07%, at
0.025% and 0.4% volume concentrations at T = 20 ◦C, respectively, in comparison with the
base fluids (DW and EG).
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Figure 8 shows that the thermal conductivity of 20EG:80DW-based Co3O4 nanofluid
was enhanced by 0.123% and 22.2% at 0.025% and 0.4% volume concentrations at T = 20 ◦C,
respectively, compared to the base fluid (20EG:80DW). Similarly, the thermal conductivity
of the 40EG:60DW-based Co3O4 nanofluid was enhanced by 0.1327% and 22.3% at 0.025%
and 0.4% volume concentrations at T = 20 ◦C, respectively, compared to the base fluid
(40EG:60DW). On the other hand, the thermal conductivity of the 60EG:40DW-based Co3O4
nanofluid was enhanced by 0.017% and 20.69% at 0.025% and 0.4% volume concentrations
at T = 20 ◦C, respectively, compared to the base fluid (60EG:40DW).

The experimental thermal conductivity values of the Co3O4 nanoparticles with EG,
DW, 20EG:80DW, 40EG:60DW, and 60EG:40DW as base fluids, at 5 ◦C intervals from 20 ◦C
to 60 ◦C, are listed in Table 8.

Table 7. Experimental viscosity of Co3O4/EG, DW, and EG–DW mixture nanofluids.

∅∅∅
Test Temperature (◦C)

20 ◦C 25 ◦C 30 ◦C 35 ◦C 40 ◦C 45 ◦C 50 ◦C 55 ◦C 60 ◦C

Co3O4/DW

0.025 1.04 0.92 0.82 0.73 0.66 0.59 0.54 0.5 0.47
0.05 1.06 0.94 0.83 0.74 0.67 0.61 0.55 0.51 0.48
0.1 1.10 0.97 0.86 0.77 0.69 0.63 0.57 0.53 0.49
0.2 1.18 1.04 0.93 0.83 0.74 0.67 0.62 0.57 0.53
0.4 1.34 1.18 1.05 0.94 0.84 0.76 0.7 0.64 0.60

Co3O4/EG

0.025 22.00 17.35 13.40 10.20 7.61 5.77 4.62 4.18 4.44
0.05 23.00 18.14 14.01 10.60 7.96 6.03 4.83 4.37 4.64
0.1 25.07 19.77 15.27 11.60 8.67 6.57 5.27 4.76 5.06
0.2 29.45 23.23 17.94 13.60 10.2 7.72 6.19 5.60 5.94
0.4 34.82 27.46 21.21 16.10 12.00 9.12 7.32 6.62 7.03

Co3O4/20EG:80DW

0.025 9.42 7.49 5.85 4.50 3.44 2.66 2.17 1.97 2.06
0.05 9.84 7.82 6.10 4.69 3.58 2.77 2.27 2.06 2.14
0.1 10.69 8.49 6.62 5.09 3.88 3.01 2.45 2.22 2.32
0.2 12.49 9.92 7.73 5.93 4.52 3.49 2.84 2.58 2.70
0.4 14.73 11.69 9.11 6.99 5.32 4.11 3.34 3.03 3.17

Co3O4/40EG:60DW

0.025 13.62 10.78 8.368 6.38 4.83 3.70 2.99 2.71 2.85
0.05 14.23 11.26 8.741 6.67 5.04 3.86 3.12 2.83 2.98
0.1 15.48 12.25 9.509 7.25 5.48 4.19 3.39 3.07 3.23
0.2 18.14 14.35 11.13 8.49 6.41 4.90 3.96 3.59 3.78
0.4 21.42 16.95 13.15 10 7.56 5.78 4.67 4.23 4.46

Co3O4/60EG:40DW

0.025 17.81 14.06 10.89 8.27 6.22 4.73 3.81 3.44 3.65
0.05 18.61 14.7 11.38 8.64 6.5 4.94 3.98 3.60 3.81
0.1 20.28 16.01 12.39 9.41 7.08 5.38 4.33 3.92 4.15
0.2 23.8 18.79 14.54 11.00 8.30 6.31 5.07 4.59 4.86
0.4 28.12 22.2 17.18 13.00 9.80 7.45 5.99 5.42 5.74
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Co3O4/EG–DW mixture nanofluids with respect to temperature. 

The experimental thermal conductivity values of the Co3O4 nanoparticles with EG, 
DW, 20EG:80DW, 40EG:60DW, and 60EG:40DW as base fluids, at 5 °C intervals from 20 
°C to 60 °C, are listed in Table 8. 
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0.025 0.611 0.620 0.629 0.638 0.647 0.655 0.664 0.672 0.680 
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Co3O4/40EG:60DW 
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Figure 8. Experimental thermal conductivity values for various volume concentrations of Co3O4/EG–
DW mixture nanofluids with respect to temperature.
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Table 8. Experimental thermal conductivity for Co3O4/EG, DW, and EG–DW mixture nanofluids.

∅∅∅
Test Temperature (◦C)

20 ◦C 25 ◦C 30 ◦C 35 ◦C 40 ◦C 45 ◦C 50 ◦C 55 ◦C 60 ◦C

Co3O4/DW

0.025 0.611 0.620 0.629 0.638 0.647 0.655 0.664 0.672 0.680
0.05 0.621 0.630 0.639 0.648 0.657 0.666 0.674 0.683 0.691
0.1 0.641 0.650 0.660 0.669 0.678 0.687 0.696 0.705 0.713
0.2 0.678 0.688 0.698 0.708 0.717 0.727 0.736 0.745 0.754
0.4 0.750 0.761 0.772 0.783 0.794 0.804 0.814 0.824 0.834

Co3O4/EG

0.025 0.260 0.261 0.261 0.262 0.262 0.263 0.263 0.264 0.264
0.05 0.261 0.262 0.263 0.263 0.264 0.264 0.265 0.265 0.266
0.1 0.265 0.266 0.267 0.267 0.268 0.268 0.269 0.269 0.27
0.2 0.277 0.277 0.278 0.279 0.279 0.28 0.28 0.281 0.281
0.4 0.296 0.297 0.298 0.298 0.299 0.300 0.300 0.301 0.301

Co3O4/20EG:80DW

0.025 0.471 0.476 0.482 0.488 0.493 0.498 0.504 0.509 0.514
0.05 0.477 0.483 0.489 0.494 0.500 0.505 0.511 0.516 0.521
0.1 0.491 0.497 0.503 0.508 0.514 0.520 0.525 0.531 0.536
0.2 0.517 0.524 0.530 0.536 0.542 0.548 0.554 0.559 0.565
0.4 0.568 0.575 0.582 0.589 0.596 0.602 0.609 0.615 0.621

Co3O4/40EG:60DW

0.025 0.400 0.404 0.408 0.412 0.416 0.42 0.424 0.427 0.431
0.05 0.405 0.409 0.413 0.417 0.421 0.425 0.429 0.432 0.436
0.1 0.416 0.420 0.424 0.428 0.432 0.436 0.440 0.443 0.447
0.2 0.437 0.441 0.446 0.450 0.454 0.459 0.463 0.467 0.470
0.4 0.478 0.483 0.487 0.492 0.497 0.501 0.506 0.510 0.514

Co3O4/60EG:40DW

0.025 0.472 0.476 0.482 0.488 0.493 0.498 0.504 0.509 0.514
0.05 0.478 0.483 0.489 0.494 0.500 0.505 0.511 0.516 0.521
0.10 0.492 0.497 0.503 0.508 0.514 0.52 0.525 0.531 0.536
0.20 0.519 0.524 0.530 0.536 0.542 0.548 0.554 0.559 0.565
0.40 0.570 0.575 0.582 0.589 0.596 0.602 0.609 0.615 0.621

4.2. Experimental Density, Thermal Conductivity, and Viscosity Comparison of Co3O4/DW and
Co3O4/EG Nanofluids

To verify the accuracy of our measurements, the thermal conductivity of DW-based
Co3O4 nanofluids was measured at different temperatures, and was compared with the
data obtained by Sekhar et al. [58]. Figure 9 compares the experimental thermal conduc-
tivity of the DW-based Co3O4 nanofluids derived from the present study with the data
obtained by Sekhar et al. [58] for Co3O4 nanofluids. Similar trends of increasing thermal
conductivity with a rise in the concentration of the solid volume fraction and increasing
thermal conductivity with an increase in temperature were observed by Sekhar et al. [58]
with DW-based Co3O4 nanofluids (Table 9).

Table 9. Variations in the thermal conductivity ratio as a function of solid volume fraction and temperature.

∅∅∅
Thermal Conductivity Ratio

30 ◦C 40 ◦C 50 ◦C 60 ◦C

0.1 vol% 1.056 1.059 1.160 1.170
0.2 vol% 1.100 1.107 1.195 1.200
0.3 vol% 1.082 1.133 1.199 1.230
0.4 vol% 1.160 1.253 1.236 1.255
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Figure 9. Comparison of our experimental data on the thermal conductivity of DW-based Co3O4 nanofluids. 
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To verify the accuracy of our measurements, the viscosity of DW-based Co3O4 nanoflu-
ids was measured at different temperatures, and was compared with the data obtained
by Sekhar et al. [58]. Figure 10 compares the experimental thermal conductivity of the
DW-based Co3O4 nanofluids derived from the present study with the data obtained by
Sekhar et al. [58] for Co3O4 nanofluids. Similar trends of increasing viscosity with an
increase in the concentration of the solid volume fraction and decreasing viscosity with
an increase in temperature were observed by Sekhar et al. [58] with DW-based Co3O4
nanofluids (Table 10).
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Table 10. Variations in relative viscosity (µrel) as a function of solid volume fraction and temperature.

∅∅∅
Relative Viscosity

30 ◦C 40 ◦C 50 ◦C 60 ◦C

0.1 vol% 1.140 1.045 1.160 1.170
0.2 vol% 1.100 1.020 1.130 1.340
0.3 vol% 1.160 1.17 1.150 1.170
0.4 vol% 1.310 1.190 1.160 1.180

To verify the accuracy of our measurements, the thermal conductivity of DW-based
Co3O4 nanofluids was measured at different temperatures, and was compared with the
data obtained by Mariano et al. [59]. Figure 11 compares the experimental thermal con-
ductivity of EG-based Co3O4 nanofluids derived from the present study with the data
obtained by Mariano et al. [59] for Co3O4 nanofluids. A similar trend of increase in thermal
conductivity with a rise in the concentration of the solid volume fraction was observed by
Mariano et al. [59] in Co3O4/EG nanofluids. However, a decrease in thermal conductivity
with an increase in temperature was observed by Mariano et al. [59] for EG-based Co3O4
nanofluids (Table 11).
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Figure 11. Comparison of experimental data on the thermal conductivity of EG-based Co3O4 nanoflu-
ids. Reprinted with permission from Ref. [59], 2022, Elsevier.

Table 11. Variation in thermal conductivity as a function of solid volume fraction and temperature.

∅∅∅
Thermal Conductivity (Wm−1k−1)

283.15 K 303.15 K 323.15 K

0.0094 0.263 0.261 0.259
0.0307 0.286 0.284 0.283
0.0431 0.297 0.296 0.294
0.0567 0.309 0.307 0.306

To verify the accuracy of our measurements, the viscosity of EG-based Co3O4 nanoflu-
ids was measured at different temperatures, and was compared with the data obtained
by Mariano et al. [59]. Figure 12 compares the experimental thermal conductivity of
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DW-based Co3O4 nanofluids derived from the present study with the data obtained by
Mariano et al. [59] for Co3O4 nanofluids. Similar trends of increasing viscosity with an
increase in the concentration of the solid volume fraction and decreasing viscosity with an
increase in temperature was observed by Mariano et al. [59] for EG-based Co3O4 nanofluids
(Table 12).
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Table 12. Variation in viscosity as a function of solid volume fraction and temperature.

∅∅∅
Viscosity (mPa.s)

283.15 K 293.15 K 303.15 K 313.15 K 323.15 K

0.0094 34.79 22.24 15.01 10.64 8.17
0.0307 38.59 26.04 17.49 12.35 9.12
0.0431 41.82 27.75 19.20 13.49 10.64
0.0570 44.86 29.48 20.34 14.63 10.83

4.3. Comparison of the Theoretical Density, Thermal Conductivity, and Viscosity of Co3O4/DW,
Co3O4/EG, Co3O4/60EG:40DW, Co3O4/40EG:60DW, and Co3O4/20EG:80DW Nanofluids

Figure 13 shows the density comparison of Co3O4/DW, Co3O4/EG, Co3O4/60EG:40DW,
Co3O4/40EG:60DW, and Co3O4/20EG:80DW nanofluids with various solid volume frac-
tion concentrations between the experimental data and Pak and Cho’s [48] model at 20 ◦C
for Co3O4 nanofluids.

Similar trends of increasing density with an increase in the concentration of solid
volume fraction and decreasing density with an increase in temperature were observed by
Pak and Cho [48] for Co3O4/DW, Co3O4/EG, Co3O4/60EG:40DW, Co3O4/40EG:60DW,
and Co3O4/20EG:80DW nanofluids.

The thermal conductivity ratios of DW- and EG-based Co3O4 nanofluids are presented
in Figures 14 and 15, respectively, as a function of volume concentration, along with the the-
oretical models for the DW- and EG-based Co3O4 nanofluids. Based on Figures 14 and 15,
it can be observed that there was a similar trend in the thermal conductivity of the DW- and
EG-based Co3O4 nanofluids (an increase in the concentration of the solid volume fraction)
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as observed using the Maxwell model [49], Maxwell–Eucken model [50], and Yu and Choi
model [51] for Co3O4/DW and Co3O4/EG nanofluids. In this regard, a good agreement
exists between the experimental results and the Maxwell model [49].
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The viscosity ratios of DW- and EG-based Co3O4 nanofluids are shown in Figures 16 and 17,
respectively, as a function of volume concentrations, along with the theoretical models for
the DW- and EG-based Co3O4 nanofluids. Based on Figures 16 and 17, it can be observed
that there was a similar trend in the viscosity of the DW- and EG-based Co3O4 nanofluids
with an increase in the concentration of the solid volume fraction as observed using the
Einstein model [52], Brinkman model [53], and Batchelor model [54] for Co3O4/DW and
Co3O4/EG nanofluids. Thus, a good agreement exists between the experimental results
and the Einstein model [52].
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5. Conclusions

In the present study, the thermophysical properties of the Co3O4 nanoparticles sus-
pended in distilled water were experimentally tested in a laboratory at Al-Hussein Bin
Talal University. The nanofluids were prepared at volume concentrations of 0.025, 0.05, 0.1,
0.2, and 0.4 vol.%, within a temperature range from 20 ◦C to 60 ◦C.

1. The density of the Co3O4/DW, Co3O4/EG, and Co3O4/DW–EG mixture nanofluids
decreased with increasing temperature, whereas it increased with increasing particle
volume concentration. The lowest and highest density values were confirmed for the
0.025 vol.% Co3O4/DW nanofluid at 20 ◦C and the 0.4 vol.% Co3O4/EG60:DW40 at
60 ◦C, respectively.

2. The density enhancement was about 0.73% and 11.48% for the temperatures 20 ◦C
and 60 ◦C, respectively, compared to the base fluid (EG20:DW80).

3. The viscosity of the Co3O4/DW, Co3O4/EG, and Co3O4/EG–DW mixture nanofluids
also showed a similar variation trend to that of the density.

4. The viscosity enhancement was about 0.70% and 1.61% at temperatures of 20 ◦C and
60 ◦C, respectively, compared to the base fluid (EG40:DW60).

5. The thermal conductivity of the Co3O4/DW, Co3O4/EG, and Co3O4/DW–EG mixture
nanofluids increased with temperature and particle volume concentration. The lowest
and highest density values were confirmed for the 0.025 vol.% Co3O4/DW nanofluid
and the 0.4 vol.% Co3O4/EG60:DW40 nanofluid, respectively.

6. The thermal conductivity of the Co3O4/EG60:DW40 nanofluid (at a 0.4% volume
concentrations) was enhanced by about 0.16% and 1.17% at temperatures of 20 ◦C
and 60 ◦C, respectively, compared to the base fluid (EG60:DW40).

7. The maximum thermal conductivity of 10.8% prevailed at 20 ◦C at the volume fraction
of 0.4%, and the maximum viscosity of 7.45% prevailed at 20 ◦C at the volume fraction
of 0.4%.
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