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Abstract: Due to their various properties as polymeric materials, plastics have been produced, used
and ultimately discharged into the environment. Although some studies have shown their negative
impacts on the marine environment, the effects of plastics on freshwater organisms are still poorly
studied, while they could be widely in contact with this pollution. The current work aimed to
better elucidate the impact and the toxicity mechanisms of two kinds of commercial functionalized
nanoplastics, i.e., carboxylated polystyrene microspheres of, respectively, 350 and 50 nm (PS350 and
PS50), and heteroaggregated PS50 with humic acid with an apparent size of 350 nm (PSHA), all
used at environmental concentrations (0.1 to 100 µg L−1). For this purpose, two relevant biological
and aquatic models—amphibian larvae, Xenopus laevis, and dipters, Chironomus riparius—were used
under normalized exposure conditions. The acute, chronic, and genetic toxicity parameters were
examined and discussed with regard to the fundamental characterization in media exposures and,
especially, the aggregation state of the nanoplastics. The size of PS350 and PSHA remained similar
in the Xenopus and Chironomus exposure media. Inversely, PS50 aggregated in both exposition
media and finally appeared to be micrometric during the exposition tests. Interestingly, this work
highlighted that PS350 has no significant effect on the tested species, while PS50 is the most prone to
alter the growth of Xenopus but not of Chironomus. Finally, PSHA induced a significant genotoxicity
in Xenopus.

Keywords: nanoplastics; freshwater; heteroaggregation; (geno) toxicity; amphibians; dipters;
humic acid

1. Introduction

Plastic is a synthetic polymeric material that has been produced by humans since
the early 20th century from hydrocarbons of the petrochemical industry. It is physically
(heated, extruded, molded, etc.) and chemically (mixed with additives) worked to obtain
a complex formula that serves its final purpose. Among the many different kinds of
manufactured plastic, polypropylene (PP), high- and low-density polyethylene (HDPE and
LDPE), polyethylene terephthalate (PET), and polystyrene (PS) [1] are the most produced
in terms of tonnage.

Due to their numerous properties as raw materials or polymers, plastics have been
massively produced and used for decades in everyday life and industrials activities [2,3].
Recent estimations indicated that the global production of plastic exceeds 250–200 million
tons per year [4], passing from 1.5 million tons in 1951 to around 335 million tons in
2016 [5] to reach a total of 359 million tons in 2018 [6]. This is without counting the
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current increasing production, use and consumption of single-use plastic items due to the
COVID-19 pandemic [7,8], which may have greatly expanded these data.

Considering the life cycle of each of these items, it is not surprising to find out that
plastic is distributed all over the world, especially in the aquatic compartment, which
concentrates all forms of pollution. Lately, the efforts of researchers have focused on the
potential effects of these plastics in the marine aquatic environment in particular. Numerous
studies have shown the negative impacts of plastic debris ingestion on various marine
organisms, leading to deleterious effects, such as on reproduction, fertilization, immunity,
and oxidative stress [9–12].

What about freshwater systems? The question naturally, indeed, arises for freshwater
aquatic systems, which are interconnected. Yet, the subject is much less informed. The
paper of Emmerik and Schwartz [13] describes the state of the art concerning the presence
of plastics in rivers and identifies several sources and transportation pathways. Moreover,
recent models of plastic debris transportation based on the global circulation of currents
have estimated that rivers are the main land-to-sea pathway [14,15]. There is a considerable
gap regarding the concentration of nanoplastics in environmental samples due to a lack of
specificity and/or resolution of the current analysis methodologies. Only Sullivan et al. [16]
published semi-quantitative data about polystyrene nanoplastics in the river Tawe (South
Wales, 241.8 µg·L−1). Impacts on freshwater organisms are still poorly studied while they
appear at the forefront of this environmental disaster. Indeed, although some studies have
proven the consumption of microplastics by riverine organisms, such as bivalves [17], their
potential effects are yet to be shown.

Concerning the assessment of the nanoplastics’ ecotoxicity, the question is not simple.
Their toxicity to living organisms may depend on many factors, including particle size.
Size is the established factor that allows for their classification. It is a function of the frag-
mentation and erosion in the environment [18]. The main weathering processes involved
are mechanical stress and oxidation upon solar light [19]. Macroplastics of 5 cm and more
become smaller and smaller: debris of 5 mm–5 cm are mesoplastics, those of 0.1 µm–5 mm
are microplastics, and nanoplastics are under 0.1 µm, the only one invisible to the naked
eyes [20]. While large fragments can pose apparent problems in organisms, sometimes
causing mortality by choking, ingestion and entanglements, the effects of smaller pieces
may be more insidious, and their toxicity may go unnoticed. The formation of micro and
nanoplastic is of great concern since they can be available for many organisms within the
marine environment [21] and the aquatic food web [22]. From an ecotoxicological point of
view, as with all nanoparticles, their ecotoxicity becomes more complex as plastic materials
degrade. The ecotoxicity of nanoplastics is more questionable since, as colloidal materials,
they present a high surface-area-to-volume ratio that enhances their reactivity [23] and
since their nano size is theoretically compatible with their crossing of biological barriers as
described by [24]. Another essential toxicity factor is the potential functionalization of the
plastic debris, which is the case for all nanoparticles [25]. Therefore, it is now known that
surface functionalization has a positive influence on the nanosphere’s toxicity [26–28]. Once
in the environment during their transportation, nanoplastics may interact with Dissolved
Organic Matter (DOM) (because of their larger surface–volume ratio) and further compli-
cate their life story [29]. Interaction can affect their mobility, stability, and distribution in
a water column [30]. Components of Organic Matter (OM) may be rapidly absorbed by
particles in layers, forming their heteroaggregation and controlling their final fate, reactivity,
and finally impact organisms [31,32].

In this context, the current work aimed to better elucidate the aquatic impact and
the toxicity mechanisms of two kinds of commercial functionalized nanoplastics, i.e., car-
boxylated polystyrene microspheres of, respectively, 350 and 50 nm (PS350 and PS50), and
350 nm heteroagragates (PSHA) made of PS50 and a known amount of humic acid from
the American Suwannee River (which constitutes a reference of riverine systems in eco-
toxicological studies of nanoparticles using OM). The carboxylate surfaces were chosen in
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order to address the natural weathering of the nanoplastics and the studied concentrations
are of the order of µg L−1 and aim to be similar to those found in natural environments.

A previous study evaluated the toxicity of the exact same particles towards freshwater
algae (four benthic and one planktonic algal species) in regard to particle states in the
media [32]. Despite the very low toxicity exhibited by the algal species, the functioning of
aquatic ecosystems may be destabilized because of the competitive interactions between
species. For example, the strong growth of the planktonic algae (more than 150% with
the heteroaggregates at 1 µg L−1) may reduce the growth of benthic algae through the
reduction in light transmission in water. The conclusion was that the direct effects of plastic
particles on primary consumers could also modify the top-down control of planktonic and
benthic microalgae. Here, the question is to evaluate the toxicity of these identical plastic
particles on primary consumers, but at another trophic level, one living in the water column
and the other at the water–sediment interface. For this purpose, two relevant aquatic
biological models—the dipter Chironomus riparius larvae and the amphibian Xenopus laevis
larvae—were used under normalized exposure conditions [33,34]. Because of its position
in food webs and its potential capacity to accumulate contaminants, Chironomus is an
organism of choice for ecotoxicological studies. Xenopus larvae are also a good model for
demonstrating acute, chronic, and genetic toxicity effects. Their exclusively aquatic lifestyle
and the permeability of their skin lead to direct and constant exposure to contaminants
present in aquatic environments to which they are sensitive. They have large and numerous
chromosomes that are easily accessible to erythrocytes [35]. Key toxicities parameters
(acute, chronic, and genetic endpoints) were examined and discussed concerning the funda-
mental characterization in media exposures of the formation of heteroaggregates of plastics.
Aggregation mechanisms are imperative to elucidate to accurately and representatively
evaluate their toxic effect in the laboratory [23].

2. Materials and Methods
2.1. Plastic Materials and Physical-Chemical Analyze
2.1.1. Raw Materials, Preparation of Heteroaggregates, and Physical Characterizations
in Water

Materials, heteroaggregates preparation, and fundamental characterizations/methods
were described in detail in Rowenczyk et al. [32]. Table 1 summarizes the characteristics
of the particles in water. Briefly, a dispersion of PS50 in water (250 mg L−1, carboxylate
polystyrene microspheres, Polybead®, Polysciences, Warrington, PA, USA) and a solution
of Humic Acids (HAs) in water (0.25 g L−1, Cat#2S101H, Standard II, International Humic
Substances Society, USA, pH 7.20 ± 0.05 using HCl) were mixed (1:1 v/v) to obtain the
PSHA suspension (100 mg L−1) as follows. The solution’s ionic strength was increased
to favor the heteroaggregation by adding 50 mL of NaCl (3.5 mol. L−1) to reach the
concentration of 700 mmol. L−1 (ionic strength, I = 700 mmol. L−1). The concentration of
the bulk PS-HA suspension (100 µg L−1) was diluted 1000 times prior to exposure tests;
then, the salt’s final residual concentrations were 0.7 mmol. L−1, which is significantly low
compared to the ionic strength of the biological media (Table S1). Thus, we assumed that
this slight salt variation would not affect the biological essays. From DLS measurements in
water, it has been concluded that, on average, the primary sizes of PS350 and PSHA were
similar, while the those of PS50 was around 10 times smaller. All the characteristics of the
raw particles are summarized in Table 1.

2.1.2. Physical Characterization in Exposure Media

Characterizations of the particles were also carried out in the two media of exposure
(those of Chironomus riparius and Xenopus laevis) thanks to DLS measurements and TEM
observations (Hitachi HT7700, Tokyo, Japan). For the TEM observation, a droplet of 20 µL
of the sample was adsorbed on a discharged collodion/carbon-coated copper grid. After
one minute, the grid was stained for 10 s by inverting onto a drop of 2% uranyl aqueous
solution. The grid was blotted using filter paper before imaging TEM operating at 80 kV.
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Table 1. Physico-chemical characteristics of PS50, PS350, and heteroaggregates in pure water (for
more details, see [32]).

Particles PS50 PS350 PSHA

Primary
size (nm) 50 350

300–500 in the medium in which
they were designed
(I = 700 mmol·L−1)

Transmission Electron
Microscopy observation
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Xenopus media was recovered after exposure to the organisms and filtrated on PES
0.2 µm. This media was characterized (pH and I), then particles were added at a concen-
tration of 10 mg L−1. These dispersions were characterized by DLS (Cumulant method)
and zetametry.

Since PS-HA could potentially disaggregate during exposure, the stability of these
heteroaggregates was tested by diluting the PSHA solution at 700 mM NaCl into water
(decreasing the ionic strength) to ensure their dilution in the media could not change their
morphology. Microsphere surface charges were measured through the zeta potential (ZP)
determination in the media at pH 7. Functionalization by carboxylic moieties was evaluated
by micro-FTIR.

2.2. Organisms, Breeding, and Toxicity Assessment
2.2.1. Chironomids

C. riparius larvae were obtained from the breeding that is maintained at the labo-
ratory of functional ecology and environment under conditions complying with stan-
dards [34,36–38]. Ten larvae of 48 h old per condition and seven replicates were exposed to
a range of concentrations of PS50, PS350, and heteroaggregates PS50-HA (0, 0.1, 1, 10, and
100 µg L−1). Concentrations of plastics were obtained from stock solutions prepared in
sterile ultrapure water at 1 mg and 100 mg L−1. The water column brought the contamina-
tion in each condition at the beginning of the exposure. Larvae were exposed in the static
condition in 300 mL glass beakers (Pyrex®) containing sediment and reconstituted water
RWchiro (66.2 mg L−1 CaCl2.2H2O; 61.4 mg L−1 MgSO4.7H2O; 96 mg L−1 NaHCO3; 4 mg
L−1 KCl; 63 mg L−1 CaSO4, 2H2O; 1 mg L−1 NaBr) as described in the AFNOR standard
T 90 339-1 [37]. The negative control consisted of reconstituted water. Additional control
was performed with HA (100 µg L−1) in RWchiro at a concentration equivalent to the one of
the PSHA 100 µg L−1 condition to exclude the role of HA in toxicity assessment. Exposure
was carried out at 21 ± 1 ◦C, with gentle aeration, under 16:8 light–dark cycles. The larvae
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were fed daily with fish food solution (Tetramin®, Toulouse, France). At the end of the
exposure, mortality was recorded, and growth inhibition was determined by assessing
survival and measuring the total body length of larvae (ImageJ®, software, v 1.8.0, editor
Bharti Airtel Ltd., Department of Health and Human Services (HHS), Washington, DC,
USA). The cephalic capsule of each larva was also measured to determine larval instars [36]
and assess potential delays in development. Teratogenicity was evaluated on cephalic
capsules as described by Dias et al. [39]. Mouthpart deformities were assessed and rated
according to Warwick and Tisdale [40] and Vermeulen et al. (1998) [41]. Treatment groups
were compared based on their rating (seriousness of deformities) and probability of oc-
currence of deformities (individual or total deformities). Mortality, organism sizes, and
teratogenicity were compared with a Kruskal–Wallis test, followed by Dunn’s test to ana-
lyze differences between groups. The probability of mouthpart deformities in chironomids
was determined with the chi-square test. All analyses were performed using Sigma Plot
12.0 software (Inpixon Systat Software, Palo Alto, CA, USA).

2.2.2. Xenopus

X. laevis larvae were obtained and grown at the laboratory as described in Mouchet
et al. [42,43]. Groups of 15 Xenopus (Stage 50, [44]) were exposed for 12 days in semi-static
conditions to the same range of concentrations of the same plastic particles, PS50, PS350,
and heteroaggregates PS50-HA (0, 0.1, 1, 10 and 100 µg L−1), used for the experimenta-
tions in Chironomus. Concentrations of plastics were also obtained from stock solutions
prepared in sterile ultrapure water at 1 and 100 mg L−1. Larvae were exposed to daily ex-
posure media renewal and feeding (Tetraphyll®) according to standardized procedures [33].
The negative control (NC) condition was composed of reconstituted water RWxeno only
(294 mg L−1 CaCl2 2H2O; 123.25 mg L−1 MgSO4 7H2O; 64.75 mg L−1 NaHCO3; 5.75 mg L−1

KCl) and positive control (PC) was composed of RWxeno added with cyclophosphamide
monohydrate ([6055–19–2], Sigma-Aldrich Chimie, Saint-Quentin Fallavier, France) at
40 mg L−1. The same HA control was carried out to 100 µg L−1, corresponding to the
maximal concentration present in PSHA heteroaggregates.

At the end of exposure, mortality, growth inhibition, and genotoxicity were assessed
as follows: (i) mortality was examined by counting dead animals and expressed as a
percentage, and (ii) chronic toxicity (growth inhibition) was evaluated by measuring the
total body length of each larva at the beginning of the exposure and the end of the exposure
(analysis software [45]); statistical analyses were performed on organisms’ size using a
Kruskal–Wallis test, followed by Dunn’s test to analyze differences between groups. For
the sake of clarity, the graphic representation is based on Growth Rates (GRs), calculated
for each group as follows:

GR =
AG − negative control AG

negative control AG
× 100

with AG: average growth within a treatment group, determined as the difference be-
tween the average size at the end and the average size at the beginning of the experiment.
(iii) Genotoxicity was performed on blood samples obtained from anesthetized larvae (tri-
caine methane sulfonate, Sigma-Aldrich Chimie S.a.r.l, Saint-Quentin-Fallavier France); the
number of erythrocytes containing one micronucleus or more (micronucleated erythrocytes,
MNE) was determined in a sample of 1000 erythrocytes per larva, and results were ex-
pressed as the number of MNE per thousand (MNE‰). The statistical method used is based
on comparisons of medians by determining the theoretical median for each group [46]. The
difference between the theoretical medians of the test groups and the theoretical median of
the negative control group is significant if there is no overlap (95% certainty). In this case,
micronucleus induction in exposed larvae is considered as a significant genotoxic response.
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3. Results
3.1. Morphological Characterization of the Particles and Aggregates

The sizes of the dispersions of PS in the media were evaluated in the exposure media
of both biological models. PS350 and PSHA did not aggregate in both exposure media and
their size remained around 300–500 nm (Table 2). On the contrary, PS50 tended to homoag-
gregate in both exposure media and was observed thanks to DLS (Table S1) measurements
and TEM observations (Figure 1). In Figure 1, a fractal-like structure of the aggregated PS50
can be observed. Even if these micrometric structures cannot be correctly characterized in
their three dimensions, these observations confirm the aggregation pathways. Moreover, in
the media, PS50 reached a final size larger than the PS350 and the PSHA ones.

Table 2. Size of the particles in the Xenopus and Chironomus exposure media (10 mg L−1).

Size Type Medium pH PS50
dzH (nm)

PS350
dzH (nm)

PSHA
dzH (nm)

Size in water MilliQ 7.00 45 ± 1 349 ± 3 300–500 **
Size in media Chironomus 8.23 2356 ± 294 * 401 ± 8 528 ± 22
Size in media Xenopus 8.05 7255 ± 386 * 403 ± 10 484 ± 64

Size in media after exposure Xenopus + (HA) 6.75 740 ± 124 * 414 ± 6.8 1053 ± 22 *

Since the PSHA size strongly depends on the preparation batch, we decided to put a range. * Out of the size range
by DLS measurements. ** Measurement in water I = 700 mmol. L−1.
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Figure 1. TEM observation of PS50 homoaggregation in Chironomus exposure media.

Since PSHA are aggregated materials, there is a probability that their dilution in the
media could change their final morphology. The stability of these heteroaggregates was
thus tested by diluting the PSHA at 700 mM NaCl in water (decreasing the ionic strength)
(Figure S1). The PSHA size remained remarkably stable, around 300 nm, in the whole range
of salt concentration tested. These results proved that by diluting the PSHA in the media,
the size of the PSHA will not be modified (Figure S1).

Microsphere surface charges were measured through the zeta potential (ZP) determi-
nation in the media at pH 7 (Table 3). In both media, we observed that the charges were
significantly higher for PS350 than for PS50. This can be explained because the PS350 is
more functionalized by carboxylic moieties, as measured by micro-FTIR. For example, the
PS350 zeta potential in the amphibian medium was equal to −30 (±1.1) mV, significantly
more intense compared to the charges of −16.5 (±0.3) mV measured for PS50. Thereby,
the electrostatic repulsions could explain why PS350 presents higher stability towards
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homoaggregation compared to PS50. The charges of PSHA in the amphibian medium,
equal to −23.0 (±0.5) mV, were between the two previous tested microspheres. The zeta
potential differences from one media to another were insignificant (Table 3).

Table 3. Potential zeta of particles in the exposure media after the pH adjustment at 7 (10 mg L−1). In
brackets, the relative standard deviation values are reported.

Particles
Zeta Potential

in Chironomus Exposition
Medium (mV)

Zeta Potential
in Xenopus Exposition

Medium (mV)

PS50 −16.4 (±0.3) −17.8 (±0.9)
PS350 −30.5 (±1.1) −24.8 (±0.7)
PSHA −23.0 (±0.5) −25.5 (±2.8)

3.2. Toxicity Assessment on Biological Models
3.2.1. Toxicity on Chironomids

After 7 days of exposure in static exposure, no mortality was observed up to 100 µg L−1

(data not shown). No growth inhibition was observed on larvae exposed to PS50 and PS350
regardless of the concentration (Figure 2), to the lowest PSHA concentrations and to the
HA control. In contrast, larvae exposed to PSHA from 10 µg L−1 showed a significant
growth inhibition (>10%) compared to the negative control. Similarly, cephalic capsule
measurements also revealed a significant delay in the development of larvae exposed
to PSHA from 10 µg L−1 (<26% of larvae at stage 4 compared to the negative control
to 10 µg L−1 and <11% to 100 µg L−1) (Figure 3). The study of mouthpart deformities
revealed no teratogenicity on Chironomus. Group comparison based on ratings revealed
no teratogenicity whatever the concentration or types of aggregates. Groups were also
compared based on the probability of deformity occurrence, and no difference between
groups was highlighted with this method either (Table 4).

Table 4. Teratogenesis on C. riparius larvae exposed to PS, PS350, and PSHA.

Polymer Treatment (µg/L−1) Deformity Frequency (%)

PS50

0 8.3
0.1 11.1
1 7.5

10 11.1
100 7.1

PS350

0 8.3
0.1 4.5
1 8.6

10 10.9
100 7.1

PSHA

0 0
HA Control 3.4

0.1 8.3
1 0

10 0
100 6.9
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Figure 3. Stages of development of chironomid larvae exposed to PS50, PS350, and PS-HA. *: signifi-
cantly different from their respective control (Kruskal–Wallis test, p < 0.05).

3.2.2. Toxicity on Amphibians

The results show no mortality of Xenopus larvae exposed to PS50, PS350, or PSHA
after 12 days of exposure (data not shown). Significant growth inhibitions are observed in
larvae exposed to PS50, regardless of the concentration, from 10 µg L−1 of PS350 and to
100 µg L−1 of PSHA (Figure 4). Nevertheless, these inhibitions are weak (less than 10%).
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Significant genotoxicity was only observed in larvae exposed to PSHA from 10 µg L−1

(Figure 5).
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4. Discussion

During the exposure, no mortality was observed no matter the nature or the concen-
tration of plastic particles for either Xenopus or Chironomus. However, mortality was not the
expected effect during this study dealing with nanoplastics such as PS50, PS350, and PSHA.
Indeed, direct mortality of organisms is mainly observed in the case of ingestion of larger
particles of plastics (debris), which could lead to gut impaction or perforation. Moreover, in
this study, we were interested in the toxic effect of polystyrene particles with regard to their
size, while other deleterious effects, such as co-ingestion of a toxic compound or a cocktail
of compounds adsorbed on environmental plastics, are not studied here. In any case, an
increase in mortality is generally not observed in organisms exposed to such low concen-
trations (in the order of µg L−1) but rather in the order of grams per liter, as was the case
for Tubifex tubifex, which was overexposed to 2 mg L−1 of microplastics [47]. Nevertheless,
this work has highlighted other significant effects on Chironumus and Xenopus.

In the case of Chironomus, neither PS50 nor PS350 affect their growth or teratogenicity.
Only PSHA induced significant, but low, growth inhibition at 10 and 100 µg L−1. The effect
of these particles could be discussed in regard to their size and aggregation state. Although
PS50 showed the smallest size in pure water, it also forms the largest aggregates in the
media exposure. It could be suggested that a direct effect of these aggregates would be
inhibited because of their large size (>1 µm) preventing their ingestion. PS350 (401 ± 8 nm),
which is smaller than PS50, but similar to PSHA (528 ± 22 nm) in size, induced fewer effects
than PSHA (528 ± 22 nm), similar in size to PS350 (401 ± 64 nm). Size alone, even if well
known as one of the main parameters that control the toxicity, cannot explain the observed
differences in effects. The results suggest that other parameters would consider influencing
their biological interactions. In the same way, the nature of the groups identified at the
surface of the particle in the pure water (Table 1) with a COOH/NH2 group for PS-HA and
a single COOH group for PS50 and PS350 could suggest that NH2 would contribute to the
media exposure, above a specific concentration, to growth inhibition and to delay the stage
of development in Chironomus, without affecting teratogenicity. As the AH controls also
carry the NH2 functions, interactions and suspension processes in the water column would
finally have more effect than the aggregated NP, whatever their size.

For Xenopus, the measured effects are different. PS50 induced significant growth
inhibition regardless of the concentration. PS350 and PSHA also caused considerable
growth inhibitions, but at higher concentrations (i.e., 10 and 100 µg L−1 for PS350, and
100 µg L−1 for PSHA). In this case, PS50, which induces the most significant effect on the
growth of Xenopus, is made of the smallest particles but forms the larger aggregates in the
culture media (>1 µm). Indeed, size is known as one of the main parameters modulating
particle toxicity. These effects have already been demonstrated in Xenopus in the case of
exposure to carbon nanoparticles, for example [48,49]. This toxicity can be qualified as
direct when it is mechanical or indirect when it is nutritional. Most of the time, both direct
and indirect types are probably expressed since they are linked, the first leading to the
second. In the case of particles of plastic, Besseling et al. [50], for instance, observed a
reduction in the body size of D. magna exposed to PS particles (70 nm in diameter) but
from much higher concentrations (30–130 mg L−1). In the same way, Tang et al. [51] did
not observe any mortality in D. magna exposed to PS particles (i.e., 1.25-µm; 2 to 8 mg L−1),
but they also noted a reduction in body growth rate and increased transcription of arginine
kinase and permease (enzymes involved in oxidative defense and energy production). In
contrast, De Felice et al. [52] showed no alteration in growth in X. laevis larvae exposed to PS
microparticles (3 µm in diameter) at higher concentrations (0.125 to 12.5 mg L−1). However,
the test’s duration and the larvae’s development stage are different; the comparison is not
suitable (stage 36 at the start of the 7-day test vs. stage 50 at the beginning of 12 days).
Moreover, the PS beads used in De Felice et al. [52] have a much larger diameter than those
used in the present study, 3 µm and 50–350 nm, respectively. However, in the present study,
size alone cannot explain here the observed differences in terms of effects. These results
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suggest that other parameters could influence their biological impact, such as the structure,
shape and surface of the aggregates/particles.

First of all, the chemical nature of the surface of the aggregates were compared. The
chemical nature of the groups identified at the surface of the particle in the pure water were
different (Table 1). While COOH/NH2 groups were found for PSHA surfaces, only COOH
groups were identified for PS50 and PS350. These NH2 groups are likely originated from
the AH. As AH controls did not exhibit any toxicity, it can be argued that the deleterious
effect is due to the whole PSHA particle. This could suggest that these amides could
be misrecognized as an extra source of energy by the organisms. Once ingested, PSHA
could disaggregate in the insect gastrointestinal tractus and lead to important damages as
observed by Matthews et al. on the flies Drosophila melanogaster [53]. This phenomenon
could explain the growth rate reduction in the case of chironomes.

As a second approach, it is essential to comment on the behavior of the particles
in each medium to understand their impact. PS50 is the particle with the lower surface
charges in comparison to the two other particles (see ZP measurements). These charges
are not sufficient to maintain the stability of the dispersion by electrostatic repulsion in the
exposure media. This phenomenon results in a significant aggregation of PS50 during the
exposure in both media, but at a different level. As PS50 is prone to aggregation in Xenopus
exposure media, other nanomaterials undergo the same mechanism. Indeed, particle size is
a critical factor affecting accumulation’s toxicity [54], and it is also the case for all particles
that are non-soluble and behave like nano-objects.

Other mechanisms could also modify the size of the particles during the biological
tests. While PSHA had a similar size in water and fresh media, it is enlarged when in
aged exposure conditions. Conversely, PS50 is less aggregated in aged media than in the
fresh media. Finally, the medium exposure of Xenopus did not impact the size of PS350
(Table 1). During the exposure, proteins, polysaccharides, carbohydrates, lipids, and so
on, are produced by the organisms and are likely to adsorb the surface of the particles and
form a corona. This phenomenon may have a fundamental role in the colloidal stability of
particles. By changing their surface properties, size and density, these substances could
destabilize the particle dispersion inducing aggregation and settling, for example, [55].
Moreover, the formation of a bio-corona could lead to misrecognition of the particles as
energy sources, as already discussed.

In a general matter, the effects observed in terms of growth inhibition may be related
to the particles of plastic ingestion in the intestinal tract. The literature reports that mi-
croplastic particles could be actually taken as prey for animals. This could induce their
bioaccumulation, especially in the digestive tract as described by Ding et al. [56] and,
therefore, a decrease in terms of food assimilation and body growth. Nanoplastics are
expected to diffuse deeply into tissues and organs, crossing biological membranes. This
could be the case for PS50 that induces significant inhibition of growth in Xenopus, even at
low environmental concentrations (0.1 and 1 µg L−1).

Mechanisms of genotoxicity, which affect the integrity of the genetic material of cells,
are different to those that induce growth inhibition. Genotoxicity may also be direct or
indirect in organisms. The question of the direct nanogenotoxicity of nanoparticles comes
down to whether the particle has crossed the membrane or not. In the case of indirect
genotoxicity, this may be generated by immune, inflammation, or oxidative stress responses.
For example, Li et al. [57] showed significant differences in differentially expressed genes
between micro and nanoplastic exposure in Corbicula fluminea about the microbial disorder
and the cascade pathway of the complement system induced by microplastics and with
mucosal damages via the mitochondrial pathway in indirectly contacted tissues induced
by nanoplastics. Some other authors demonstrated that micro- and nanoplastics induced
no or low toxicity because they cannot cross cellular membranes in mammals [58].

Here, in this study, only PSHA is genotoxic at the highest concentrations from
10 µg L−1. It is true that PSHA is significantly smaller than PS50 in the culture medium of
Xenopus (Table 2). Thus, this result would follow the principle of the toxicity of the small
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particles, which are known to be more bioavailable and, therefore, more toxic because of
their large surface/volume ratio [59–61]. On the other hand, PSHA does not disaggregate
during the processing of the toxicity tests and is finally the most aggregated in aged media
of Xenopus, suggesting that the formed corona and COOH/NH2 groups could be impli-
cated either directly or not in the genotoxic response to the highest concentrations. PSHA
is also the most toxic polymer form against Chironomus. As already commented in this
discussion, the presence of HA could increase the appetence of plastics leading to their
grazing by Xenopus and Chironomus. Additionally, plastics are known to be palatable to
microorganisms [62], and the plastisphere (mixed with the corona) would become even
more palatable to these grazers.

The relatively low genotoxic response in Xenopus exposed to PSHA could be related to
the fact that the OM that coats plastics may have a protective effect up to a certain limit.
In the same way, Fadare et al. [63] showed that HA alleviates the toxicity of polystyrene
nanoplastic particles to Daphnia magna. Some other authors found that HA has absorbed
particles co-forming the corona without causing agglomeration or precipitation, finally lead-
ing to alleviated toxicity. In Xenopus larvae, the stomacal pH of around 2.5 [64] could modify
the PS50 and HA interactions, allowing the bioavailability of more PS50 nanoparticles than
when they are homoaggregated.

The measured effects are different from one species to another. Indeed, significant
growth inhibition was observed in Xenopus exposed to PS50 whatever the concentration
in contrast to Chironomus for which no significant inhibition is observed. In the same
way, significant growth inhibition is also observed in Xenopus exposed to PS350 to the
highest concentrations (from 10 µg L−1) and any growth inhibition in Chironomus. On the
other hand, in Chironomus, PSHA induces a significant growth inhibition from 10 µg L−1

while it induced to only to the highest concentration of 100 µg L−1 in Xenopus. These
results may suggest that the difference in sensitivity of both species may be concerning
their habitat. Even if both primary consumers are grazers, Xenopus is more pelagic and
spends most of its time in the water column. At the same time, the chironomid is associated
with the sediment compartment at the interface water–sediment. PS50 homoaggregated
in both media and would appear to be micrometric during the exposure. PS50 could
be more available for Xenopus in the water column since PS50 would mainly be in the
column water compared to the water–sediment interface. This result is surprising as the
literature would suggest that for density reasons, PS microplastics may be available not
only in the water column but also in the sediment, representing a higher risk for both
pelagic and demersal organisms. In comparison, PE microplastics have a lower density,
presenting a higher availability in the water column, and potentially pose a higher risk for
pelagic organisms [65–67]. Furthermore, despite exposure to similar concentrations, the
bioaccumulation kinetics parameters of nanoplastics (e.g., concentration factor, assimilation
efficiency, elimination rates) from these two biological models are unknown and most likely
different. The concentrations of nanoplastics found in their tissues would be distinct as well
as detoxification processes, explaining the differences in effects and increased tolerance
from one species to another.

This study allows one to compare the toxicity of three types of nanoplastics on three
aquatic organisms under the same conditions. From a characterization perspective, the
in situ DLS characterizations showed that it is not possible to predict the state of the
particles in the media and that measuring their size in the media before, during, and at
the end of the toxicity test is mandatory. To summarize the biological tests, the sensitivity
of Xenopus was higher than that of Chironomus, which in turn was higher than that of
algae [32], all exposed to the three same nanoplastics. Moreover, even if the positive effect
on growth is not statistically significant in Chironomus, a tendency to increase is noted
after exposure to 0.1 and 1 µg L−1 of PS50, as is the case for algae. The next step will
be to evaluate the toxicity responses of organisms from different trophic levels (primary
producers and consumers) within the same reconstituted environment in microcosms,
allowing for measuring potential modulated toxicity.
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5. Conclusions

This study evaluated the impact of polystyrene nanoplastics on two primary aquatic
consumers, Xenopus and Chironomus. The low concentrations that have been carried out in
this study make it original, as only a few studies were conducted at such environmentally
relevant conditions. Nevertheless, these low levels of concentration may also explain
why the recorded toxicity is mild in Chironomus. The results show that the effects of
the same nanoplastics depend on the exposed organism and its characterizations in the
media exposure (concentration, size, surface, aggregation state, etc.). The work ultimately
underlines how difficult it is to accurately relate a biological response to a physicochemical
characterization of nanoplastics. One of the further challenges to tackle would be to locate
and quantify the nanoplastics in the exposed organisms and characterize them directly in a
biological matrix. Overall, this study suggests that the toxicity evaluation of nanoplastics
should be done conjointly with a solid physicochemical characterization of these particles.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12152730/s1, Figure S1: Stability of the PS-HA with ionic
strength. The PS-HA were initially in water with NaCl (I = 700 mmol·L−1). They were diluted by
adding deionized water, and DLS measurements were performed in situ. The cumulants and SBL
methods showed that the heteroaggregates were stable during dilution. Table S1: Characterization
of exposition media prepared with tap water (Ionic strength about 9 mM). Exposition media were
prepared with numerous salts dissociated into ions when dissolved in water. Their pH was slightly
basic, and their conductivity was above 1 mS/cm and similar. It is worth noting that the ionic strength
of the tap water had to be considered in calculating the ionic strength. Thanks to data from “Eau
de Paris” (http://www.eaudeparis.fr/leau-au-quotidien/une-eau-de-qualite/ accessed 31 October
2018), the ionic strength of the tap water was found to be 9 mmol·L−1. This value was added to the
media ionic.
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