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Abstract: Silicon nanoparticles (SiNPs) with lowest-order Mie resonance produce non-iridescent 

and non-fading vivid structural colors in the visible range. However, the strong wavelength de-

pendence of the radiation pattern and dielectric function makes it very difficult to design nanopar-

ticle systems with the desired colors. Most existing studies focus on monodisperse nanoparticle sys-

tems, which are unsuitable for practical applications. This study combined the Lorentz–Mie theory, 

Monte Carlo, and deep neural networks to evaluate and design colored SiNP systems. The effects 

of the host medium and particle size distribution on the optical and color properties of the SiNP 

systems were investigated. A bidirectional deep neural network achieved accurate prediction and 

inverse design of structural colors. The results demonstrated that the particle size distribution flat-

tened the Mie resonance peak and influenced the reflectance and brightness of the SiNP system. The 

SiNPs generated vivid colors in all three of the host media. Meanwhile, our proposed neural net-

work model achieved a near-perfect prediction of colors with high accuracy of the designed geo-

metric parameters. This work accurately and efficiently evaluates and designs the optical and color 

properties of SiNP systems, thus accelerating the design process and contributing to the practical 

production design of color inks, decoration, and printing. 

Keywords: Silicon nanoparticles; Structural color; Lorentz−Mie theory; Deep neural networks; 

Monte Carlo simulations 
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Figure S1. Variation of chromaticity coordinates with silicon nanoparticle sizes and distributions 

(host medium: water) 

 

 

Figure S2. Variation of chromaticity coordinates with different host medium (water, PMMA, PDMS) 
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Figure S3. (a) The simulated reflectance spectra of monodisperse silicon nanoparticles embedded in 

water, PDMS, and PMMA with h = 2 mm, fv = 1.0×10−5, and different radii. (b-c) The comparison of 

nm and m values for the three media [1-3]. 

 

Figure S4. The loss function of the training and validation sets in the forward neural network (a) 

and inverse neural network (b), respectively. 
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Figure S5. Results of the test samples in the forward network. (a) and (b) are the predicted and 

simulated chromaticity coordinate values for monodisperse and polydisperse (veff = 0.01) SiNPs em-

bedded in PMMA, respectively. 

Section S1. Detailed training process of neural network and numerical simulation 

process 

In this work, the process of colors design includes (1) one−time investment of com-

prehensive simulation data, (2) neural network training and (3) the application of 

well−trained bidirectional neural network model. In general, the CPU calculation time 

mainly takes the first numerical simulation process and depends on computing resources. 

In this work, the calculation time of 13680 sets of parameters spend about 3weeks by using 

our computer workstation (CPU: Intel Xeon 8173, 56 cores, 112 threads, 2.0GHz basic fre-

quency). For the structure optimization of bidirectional neural network, our PC computer 

(CPU: Intel Core i5−11400) can complete the training in about half an hour. After finishing 

the model training, the prediction and inverse design of colors usually finish in several 

seconds. 

The training hyperparameters are listed as follows. Epochs: 2000; batch size: 64; acti-

vation function: ReLU; loss function: mean squared error (MSE); optimizer: Adam; learn-

ing rate: 0.001; learning rate scheduler: MultiStepLR; milestones = [500, 1000, 1500, 1800] 

(forward training) and [1800, 1900] (inverse training); gamma = 0.1. 
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