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Abstract: Silicon nanoparticles (SiNPs) with lowest-order Mie resonance produce non-iridescent and
non-fading vivid structural colors in the visible range. However, the strong wavelength dependence
of the radiation pattern and dielectric function makes it very difficult to design nanoparticle systems
with the desired colors. Most existing studies focus on monodisperse nanoparticle systems, which are
unsuitable for practical applications. This study combined the Lorentz—Mie theory, Monte Carlo, and
deep neural networks to evaluate and design colored SiNP systems. The effects of the host medium
and particle size distribution on the optical and color properties of the SiNP systems were investigated.
A bidirectional deep neural network achieved accurate prediction and inverse design of structural
colors. The results demonstrated that the particle size distribution flattened the Mie resonance
peak and influenced the reflectance and brightness of the SiNP system. The SiNPs generated vivid
colors in all three of the host media. Meanwhile, our proposed neural network model achieved a
near-perfect prediction of colors with high accuracy of the designed geometric parameters. This work
accurately and efficiently evaluates and designs the optical and color properties of SiNP systems,
thus accelerating the design process and contributing to the practical production design of color inks,
decoration, and printing.

Keywords: silicon nanoparticles; structural color; Lorentz-Mie theory; deep neural networks; Monte
Carlo simulations

1. Introduction

Structural color generation from high-refractive-index dielectric nanostructures con-
nects color organisms in nature with the rapid emergence of nanophotonic coloring tech-
nology. The structural color produced by the light-matter interaction in the nanostructure
is better than traditional color in many aspects. It does not fade as long as the structure
remains unchanged. Therefore, it is widely used in color printing, decoration, and anti-
counterfeiting [1-5]. To avoid iridescence caused by Bragg diffraction, nanostructures of
high-refractive-index dielectrics in the visible range have been widely studied in recent
years [6-8]. High-refractive-index dielectric nanoparticles based on a relatively sharp elec-
tric dipole (ED) and magnetic dipole (MD) Mie resonance, which can generate non-fading
and non-iridescent high-resolution structural colors [9-13], have emerged as an alterna-
tive to plasmonic nanostructures. Moreover, compared to the plasmonic nanostructures
based on the localized surface plasmon resonance, the high-refractive-index dielectric
nanostructure is less costly. Its resonance wavelength depends strongly on the size of the
nanostructure [14,15].

High-refractive-index dielectric materials, such as silicon (Si), titanium dioxide (TiO,),
and germanium (Ge), have attracted widespread attention owing to their excellent opti-
cal properties. Among these, silicon nanoparticles (SiNPs) with a particle size range of
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100-200 nm have been studied most intensively [16-18]. Sugimoto et al. [6] employed sili-
con monoxide (SiO) powder as a raw material to prepare high-sphericity silicon nanospheres-
structured color ink for vivid color. The color inks of silicon nanospheres combined with
a polymer binder can color flexible substrates via a painting process. Flauraud et al. [11]
optimized a silicon nanodisc array to fabricate high-resolution color features and milli-
metric painting replicas. They discussed high-throughput electron beam lithography and
hybrid color elements. This work paved the way for the broader exploitation of nanoscale
color printing. Okazaki et al. [16] presented a process to control the hue, saturation, and
brightness of SiNPs inks and demonstrated that the reflection color is determined by the
balance of Kerker-type backward scattering and multiple scattering. In addition, they
developed a SiNP ink mixed with carbon black to realize vivid reflection colors under
room light. Dong et al. [19] designed a novel nanostructure consisting of silicon and silicon
nitride. It can expand the color gamut while maintaining the print resolution. This nanos-
tructure design achieves a color gamut superior to that of sSRGB and is compatible with
CMOS processes.

Based on the above research on SiNPs, the structural color of the nanoparticle system
depends on the material type, particle-size distribution, radius, volume fraction, and
background medium. Therefore, by designing these parameters, the relevant structural
colors can be adjusted. At present, the conventional design task mainly depends on
finite difference time domain (FDTD) [20,21], particle swarm optimization [22,23], genetic
algorithm, and the trial-and-error method [24-26]. They involve the convergence of the
initial random design to the desired design through continuous optimization. In order to
ensure the needs of practical applications, multiple structural parameters should usually
be adjusted to generate thousands of colors. However, for structures with mixed shape,
size, and other design parameters, the convergence speed of the above method decreases
significantly with the increase of the complexity of structures, so these methods may be
unsuitable for the structural color design of complex micro/nanostructures. Fortunately,
the unprecedented development of machine learning has made it a powerful tool for
solving complex computing and inverse design problems. Several studies have reported
machine learning methods to facilitate the design of structural colors and inverse design of
nanostructures and materials to achieve the desired optical response [27-33]. So et al. [28]
achieved the simultaneous inverse design of materials and structural parameters of core—
shell nanoparticles by using neural networks. In addition, they developed a neural network
to discover spectrally isolated pure magnetic dipole resonances and spectrally overlapping
electric and magnetic dipoles. Dai et al. [30] first reported a bidirectional artificial neural
network to inversely design the Fabry-Perot cavity structure parameters for deep learning.
Its range of color space coverage was 215% wider than sRGB. The bidirectional artificial
neural network was first proposed by Liu et al. [34]. It solves the problem caused by non-
uniqueness in all inverse scattering problems and paves the way for deep neural networks
to design complex nanophotonic structures.

The studies mentioned above have made significant progress in the structural color
design of micro/nanostructured materials, especially for SINP systems. However, the
efficient evaluation and design of nanoparticle systems remains challenging when numer-
ous factors, such as the particle size distribution and host medium, are considered. In
this study, the color and radiative properties of polydisperse SiNPs embedded in three
different host media were systematically investigated. A bidirectional deep neural network
was established to accurately predict the color properties of SiNP systems and inversely
design the geometric parameters for the desired colors. This study provides a simple
and convenient method to design the structural colors of SiNP systems accurately and
efficiently, as is beneficial for practical applications of color printing, decoration, and inks.

2. Model and Methods

Our theoretical evaluation and design process for the structural colors of silicon
nanoparticle systems are represented schematically in Figure 1. The simulation domain
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consists of a thin medium layer containing SiNPs (Figure 1a). It can be viewed as a typical
model of colloidal suspensions and nanocomposite coatings. In this work, three different
background media (water, polydimethylsiloxane (PDMS), and polymethyl methacrylate
(PMMA)), four geometric parameters (particle effective radius, r.¢f; particle volume fraction,
fv; effective variance, v,g; and layer thickness, ), and color properties (L, 4, and b) in the
CIE-1976 color space are significant features for evaluating and designing colored SiNP
systems. The optical and color properties of SiINP systems were obtained from extensive
simulation processes, including Mie scattering calculations, Monte Carlo simulations, and
spectrum-to-color conversion, as shown in Figure 1c—e. We then created a bidirectional
deep neural network to predict the generated colors of SiNP systems and inverse design
the geometric parameters for the desired colors, as depicted in Figure 1b. In general, SiNPs
have good potential application prospects in regard to structural color.
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Figure 1. Overall process of evaluating and designing the parameters of SiNP systems. (a) Schematic
diagram of the radiative transfer process of the SiNP system. (b) The architecture of a bidirectional
neural network for predicting colors and design geometry parameters of SiNPs system. (c) The re-
flectance spectra of SiNP systems for different geometric parameters with 71 = 1 mm and fy = 1 x 1075,
(d,e) The color generated by dispersing SiNP system in water in CIE-1931-XYZ and CIE-1976-Lab
chromaticity diagram.

2.1. Optical Properties of a Single Nanoparticle

The optical properties of single nanoparticles should be determined before solving the
radiative transfer problem of the nanoparticle systems. An isolated spherical particle with
radius, r, and complex refractive index is solved by using the Lorentz-Mie theory [35,36].
Therefore, the scattering and extinction cross-sections can be obtained by using the follow-
ing equations [35,36]:

2 &
Csca = k1_2 21(2n+1)(|an|2+ |bn|2> (1)
n=
2m &
Cext = 2 Z;l(zn +1)Re(ay + by) )
n=
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where ki = 2mtny, /A is the wave number in the host medium, nyy, is real part of refractive
index of the host medium, and a,, and b,, are the Mie coefficients.

The scattering phase function shows the spatial distribution of scattering energy, which
is calculated as follows [35,36]:

@p(0) = 2= [IS11(O) + [52(0) ] ©

where 517 and S, are the amplitude scattering matrix elements.

For the polydisperse SiNP system, the nanoparticle size distributions obey some
statistical laws. Here, the conventional gamma distribution was applied to represent the
particle size distribution of the SiNPs. The gamma distribution function, n(r), is as described
by Hansen and Travis [37]:

n(r) = constant x P exp(;l:),b € (0,0.5) 4)
1 Tmax 3
Toff = —— mron(r)dr 5
eff = TGy, /rmin (r) &)
1 Tmax )
Ve = 7/ (r = ree) rron(r)dr (6)
¢ (G)y7% Jrmin ¢

where a and b correspond to effective radius, g, and effective variance, vegr, when 7yin =0
and 7max = c0. The size distribution with veg = 0 corresponds to monodisperse situations,
and (G), represents the average area of the geometric projection of each particle. The
ensemble-averaged extinction and scattering coefficient factor per particle can be calculated
as follows [36]:

Tmax Nr
(Coayr = [ Cocalr)nr)dr ~ Y- iCocalrn(r) @)
Tmin i=1
max N I
Congr= [ Conln(r)dr = Y- uiCexs(ri)n(r) ®
Tmin i=1

where r; and u; are the division points and weights of the quadrature formula, respectively,
in the interval [#min, "max], and N; is the number of quadrature division points.

2.2. Optical Properties of Nanoparticle Systems

For dilute SiNP systems, the total radiative properties of the SiNP system can be
expressed as follows [36]:

. . max . fU
Hsca = Hsca,p = N0 /7’min n(r)Csca (r)dr = <V>r <Csca>7 ©)
Hext = Hextp T Hextn = fiv <C ext)’ + Hext,m (10)
v,
_ 1o max
D(0) = ” ' Dy (r,0)n(r)Csca(r)dr (11)

where Jisca, Hext, and P(0) are the scattering coefficient, extinction coefficient, and scattering
phase function of the SiNP system, respectively; ysca,p and pextp are the scattering coeffi-
cient and extinction coefficient of the particles; prextm = 47tkm /A is the extinction coefficient
of host medium; «n, is the imaginary part of refractive index of the host medium; (V), is
the average volume per particle; and f is the volume fraction of silicon nanoparticles. In
addition, the dielectric function of SiNPs was taken from Aspnes and Studna’s dataset
in 1983 [38]. The complex refractive index of a pure medium (water [39]; PMMA and
PDMS [40,41]) was used.
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2.3. Monte Carlo Simulation of Radiative Transfer Process

The Monte Carlo calculation model is illustrated in Figure la. In the model, the
range of ¢ was set to be 50 to 120 nm with 2 nm intervals. The range of f, was set to be
5.0 x 107% to 1.0 x 10~* with 5.0 x 10~° intervals. The range of & was set to 0.5-10 mm in
0.5 mm intervals. The effective variance, vo, was set to 0, 0.01, and 0.05, respectively. The
external medium of the system was air.

To understand the multiple scattering behavior of monodisperse and polydisperse
SiNP systems and predict their reflection colors, we designed a Monte Carlo-based com-
putational package simulation [42,43]. For known radiative properties of the sparsely
dispersed medium, the radiative energy transfer can be computed by solving the radiative
transfer equation (RTE). It is written as follows [44]:

- VI=—poul + 22 [ [()D(QY,Q)d (12)
471t Jan

where I is the radiation intensity along the propagation direction, s. An infinitely thin light
beam is perpendicularly incident on the upper boundary of the layer by default. After
interaction with the layer, the reflected photons are collected. The directional-hemispherical
reflectance, R, of the layer is determined from the following [44]:

Yo7 Nret
R = 13
o (13)
where N is the total number of photons that are incident on the layer. Ny is the number
of photons that are collected using detectors positioned in the hemispherical space outside

the upper surface.

2.4. Spectrum to Color Conversion

Color is a subjective perception of the observer rather than a property of electromag-
netic radiation. Therefore, the obtained reflectance spectra must be transformed into the
corresponding color coordinates in the color space. The CIE-1976-Lab and CIE-1931-XYZ
color spaces are typically utilized to evaluate the colors generated by nanoparticle systems.
The color coordinates of the CIE-1931-XYZ color space can be calculated as follows [45,46]:

X — 100f Ipes(A)R(A)x(A)dA

- (14)
J Ipes(A)y(A)dA

y — 1004 ID65(A)R(/})];(/\)‘1/\ (15)
J Ipes(A)y(A)dA

7= 100f 1D65()\)R(i\)5()\)d)\ (16)
J Ipes(A)y (A)dA

where Ipgs(A) is the spectral power distribution of the standard Dgs illuminance; x(A),

y(A), and z(A) are the spectral tristimulus values that contain information about the light
source used. The chromaticity coordinates x and y were determined by using the following
normalized parameters [45]:

X

Y= Xiviz (17)
Y

Y= X¥v+z (18)
z (19)

T XrY+Z
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Normalization parameter matched the corresponding chromaticity coordinates in the
color space. The CIE-1976-Lab color space is more homogeneous and closely corresponds to
CIE-1931-XYZ. Therefore, it is more suitable as a color space for identifying color differences.
The CIE-1976-Lab color space is defined by three tristimulus values L, 4, and b. L represents
color brightness, a stands for redness (+) and greenness (—), and b represents yellowness
(+) and blueness (—). The conversion functions between (X, Y, and Z) and (L, a, and b) are
as follows [47]:

L= 116f(;;> —~16 (20)
-sal(2)o(3)
-sal(¥) (%)

with X;;, Yy, and Z,, being the tristimulus values of a reference white object:

3
f(s) =3 ifs > <12146> (23)

841 16 24 \°
= _— 1 < _—
f(s) (108>S+116 ifs < (116) @)
AE1976 fits well with the way human observers perceive small color differences. Hence,
the three tristimulus values L, 2 and b are more suitable for the quantitative comparison
of color than X, Y, and Z. The CIE color-difference function, AE, can be defined as the
Euclidean distance between two color vectors (L, 2, and b) and (L', ’, and V') [47]:

AE = \/(L’ —L)? + (a' —a)* + (V' — b)* (25)

2.5. Deep Neural Network Framework

A schematic diagram of this bidirectional neural network model is shown in Figure 1b.
It consists of forward and inverse networks. The backward network is connected in series
with the trained forward network [34]. Subsequently, a large amount of normalized training
set data was input into the forward neural network for training. In the training process,
considering the geometric parameters, the forward neural network can accurately predict
the structural color.

In the inverse design, we input the desired color parameters into the inverse neural
network for training and predicting the corresponding geometric parameters. Owing to the
non-uniqueness of the predicted results, we input the predicted geometric parameters into
the previously trained forward neural network to obtain the corresponding color parame-
ters. We further evaluate the performance of the inverse neural network, using the mean
squared difference between the two calculated types of color parameters. Further-more,
the numbers of layers and neurons in the hidden layer of neural network are determined
by continuously minimizing the loss function, which is defined as the mean squared error
between the predicted and true Lab values:

1Y / 2 / 2 ! 2
MSE g = N 2 (Lpredicted - Ltrue) + (apredicted - atrue) + ( predicted btrue) (26)
i=1

where N is the total number of datasets. The loss function notably compares the parameters
of the CIE-1976 color space (Lab) rather than the geometric parameters. The loss function
determines the accuracy of the prediction. Therefore, in an inhomogeneous CIE-1931-XYZ
space, identical Euclidean distances between XYZ vectors may mean different color differ-
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ences, leading to bias optimization for some colors [48]. In the CIE 1976-Lab space, the same
Euclidean distance represents the same chromatic aberration with a higher design accuracy.

3. Results and Discussion
3.1. Effects of Particle Size and Distribution on SINP Systems

Geometric and structural parameters, such as the particle radius, volume fraction,
thickness, surface condition of the layer, and dispersion of the particle system, are significant
for the optical properties of nanoparticle systems. To clarify the relationship among different
influencing parameters, especially particle size and size distribution, the optical and color
properties of monodisperse and polydisperse SiNPs embedded in water are discussed in
Figures 2 and 3.
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Figure 2. (a—c) Structural colors of SiNP systems (medium is water) for different geometric parameters
with /1 = 2.0 mm. (d—f) The corresponding chromaticity diagram (CIE-1931) of the SiNPs for different
particle sizes and distributions with & = 2.0 mm and fy = 1.0 x 10~°. (g—j) The color properties (L, a,
b, and C,p) correspond to different particle radii and effective variances.

Figure 2a—c presents the vivid generated colors for different particle effective radii,
volume fractions, and effective variances of the SiNP system. Figure 2d—f shows the
corresponding chromaticity diagrams (CIE-1931) of SiNP systems with different effective
radii and effective variances. The specific color coordinates corresponding to each color
are shown in Supplementary Figure S1. To facilitate the analysis, the color properties L, a,
b, and C,y, of SiNP systems are also illustrated in Figure 2g—j. The combination of 2 and b
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determines its chromaticity, which includes the saturation Cy, = v a2 + b? of the color. As
shown, the generated colors of monodisperse SiNPs embedded in water are affected by
the particle effective radii and volume fractions. As the particle effective radius increases,
the colors generated by the SiNP system change from blue to green, and then from orange
to red. Meanwhile, the particle size has a greater influence on chromaticity. The volume
fraction only changes the lightness of the color. In the polydisperse SiNP system, increasing
the effective variance fades the corresponding color. The color gamut in the CIE-1931 color
space tends to be white. These phenomena can be explained by the variations of color
properties L, a, b, and Cgp,, as shown in Figure 2g—j. For example, under three different v,
the lightness, L, increases at first with the increasing r and then decreases after reaching
the maximum value. As the v increases, the range of variation of redness and greenness,
a, and blueness and yellowness, b, gradually decreases. It proves that the color gamut in
the CIE-1931 color space of SiNP systems gradually decreases, as shown in Figure 2h,i. In
addition, vegs also affects the saturation, Cyy,, of the generated color of the SiNP system. For
example, in SiNPs with particle radius less than 100 nm, the color saturation decreases with
increasing vegs.
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Figure 3. (a—c) The reflectance spectra of SiNP systems (medium is water) with different particle
sizes and distributions. (d—f) Represent the scattering efficiency factors of polydisperse SiNPs with
Veft = 0, 0.01, and 0.05, respectively.

To facilitate understanding, the effects of particle size and distribution on the optical
properties of SiNP systems are presented in Figure 3. Figure 3a—c shows the simulated
reflectance spectra of the monodisperse and polydisperse SiNP systems. Figure 3d—f
shows the efficiency factors of single particles for different sizes and distributions. The
optical properties of the particles are closely related to the particle sizes and distributions.
They are crucial for the radiative transfer of the SiNP system and influence the results
of multiple scattering effects between the SiNPs. Thus, they have different degrees of
influence on the optical and color properties of SiNP systems. As the particle effective
radius increases, additional lowest-order scattering modes are introduced into the spectra,
increasing the number of sharp scattering peaks in the visible range. It causes the resonance
peaks to shift red, as shown in Figure 3a—c. This phenomenon explains the vivid color
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change in the monodisperse SiNP system. Meanwhile, the increase in the effective variance,
Ueff, Smoothens the low-frequency scattering of individual particles and causes the sharp
resonance peaks into smooth, broad, and few peaks, and this further leads to a significant
change in the resulting colors. This is because the reflection color properties are determined
by the lowest-order scattering peaks at different wavelengths. If the resonance peaks
are influenced by particle sizes and distributions, the corresponding color properties will
also change.

In conclusion, the particle size and distribution have a significant impact on the
optical and color properties of the SINP systems by changing the position and shape of the
resonance peak. Therefore, a vivid and wide range of structural colors can be presented by
controlling the geometric parameters of the SiNP system.

3.2. Effect of Background Media on Nanoparticle Systems

In practical applications of color inks and films containing SiNPs, different background
media also affect the optical and color properties of the SiNP system. In this section,
we focus on the color and optical properties of SINP systems by using three different
background mediums (i.e., water, PDMS, and PMMA).

Figure 4a—c illustrates the structural colors for different host media, particle radii, and
particle volume fractions. Figure 4d—f shows the corresponding chromaticity diagrams
(CIE-1931) of the SiNP systems with different radii and host media. The specific color
coordinates corresponding to each color are shown in Supplementary Figure S2. Figure 4g—j
shows the variations in the color property parameters L, a, b, and C,, of the generated
colors, respectively. To further investigate the effect of different host media on the generated
colors and optical properties of SiNP systems, the optical constants of three different media
and simulated reflection spectra of monodisperse SiNPs in different media are shown in
Supplementary Figure S3. As shown, the SiNPs embedded in the three media exhibited
similar vivid and colorful structural colors. This is because of the similar optical constants
(nm and k) of the three host media, as shown in Supplementary Figure S3b,c. For SiNPs
with a radius smaller than 70 nm, corresponding color coordinates on the CIE color space
shift significantly as the background medium changes. Compared to the other two media,
the color gamut of the corresponding chromaticity diagram is obviously larger for the
SiNPs embedded in water. Meanwhile, the values of the color hues a and b of the generated
colors are significantly different for the SiINPs embedded in different media, as shown in
Figure 4g—j. When the medium is water, the range of variation of redness and greenness,
a, and blueness and yellowness, b, is the largest. This explains why its color gamut is the
largest in the CIE color space.

Furthermore, the host medium impacts the lightness, L, and saturation, C,p,, of the
nanoparticle systems, as shown in Figure 4g—j. The lightness, L, of the SiNP system with
three different background media increased first and decreased after the particle radius
reached approximately 70 nm. The lightness increased more rapidly in water than in the
other two media. As the particle size increased to approximately 70 nm, the saturation, Cyp,,
of the SiNP system embedded in water and PDMS first decreased. It then increased rapidly
to the maximum after the particle size increased to approximately 60 nm. The saturation of
the SiNP system in PMMA continued to increase until the maximum. The saturation value
of SiNPs embedded in water was the highest at particle radii of less than 100 nm. This is
due to the multiple scattering effects of the SiNPs in different media.

As discussed above, SiNPs embedded in three different background media have simi-
lar optical properties, and different media have little effect on color properties. Therefore,
they all generate vivid colors and have broad application prospects.
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Figure 4. (a—c) Structural colors of monodisperse SiNP systems for different background mediums
with /1 = 2.0 mm. (d—f) The corresponding chromaticity diagram (CIE-1931) of mono-disperse SiNP
systems for different background mediums with # = 2.0 mm and fy = 1.0 x 1075. (g-j) The color
properties (L, a, b, and Cy},) correspond with different particle radii and background mediums.

3.3. Forward Prediction and Inverse Design of Color Generation of Si Nanoparticles

A bidirectional neural network is first trained to obtain accurate color prediction
based on geometric parameters. It is then used for the inverse design of the structure
based on the desired color. A total of 80% of the entire dataset is used for the training set
(10,944). A total of 10% is used for the validation sets (1368) and test sets (1368). To further
evaluate the performance of the bidirectional neural network, we consider the example
of monodisperse and polydisperse SiNPs embedded in PMMA for color prediction and
structure inverse design.

The forward neural network consists of an input layer, several hidden layers, and
an output layer with many neurons in each hidden layer. By minimizing the training
and validation loss and continuously optimizing the structural parameters, we finally
determined that the forward neural network has three hidden layers, and each hidden layer
contains 200 neurons. The loss functions of the training and validation sets over the epochs
are shown in Supplementary Figure S4a. It takes the parameters 7., fv, and h as inputand L,
a,and b as outputs, which can be converted to other color vectors, such as sSRGB, for different
applications. To test the accuracy and generalization ability of the forward neural network,
1368 groups of new test data were used and analyzed. The color differences, AE, between
the predicted and simulated colors and their statistical distributions are shown in Figure 5.



Nanomaterials 2022, 12, 2715

11 of 16

The color-difference values, AE, are less than 1.0. It demonstrates that the forward neural
network has good prediction ability. Figure 5c,f compares the color coordinates in CIE-1931
obtained by prediction and simulation. The specific color coordinates corresponding to each
color are shown in Supplementary Figure S5. In this case, it is more intuitive to analyze
the performance of the forward neural network. In summary, the above results indicate
that a forward neural network can predict the structural color of the SiNP system with
high accuracy.
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Figure 5. Results of the test samples in the forward network: (a-c) and (d—f) are the predicted results
for monodisperse and polydisperse (ve¢ = 0.01) SINPs embedded in PMMA, respectively. (a,d) Show
the color difference, AE, between the predicted and true colors. (b,e) Show the Statistical distribution
of test results in different color-difference ranges. (c,f) Compare the predicted (blue pentagons) and
simulated (red hollow circle) colors in the CIE—1931 color map.

For the inverse design, the training of the inverse neural network is more difficult
due to its non-unique nature (one color can be formed by different nanoparticle system
structural parameters). This multi-solution property may pull weights to different local
or global minima during the training process, making it difficult to achieve convergence
during training. Therefore, the bidirectional neural network architecture with a tandem
training strategy is employed to solve the multi-solution problem in this work. The
output parameters (7o, fv, and 1) from the inverse neural network are directly input into
our pretrained forward neural network to predict the color property (L', @, and V'), as
shown in Figure 1b. After continuous optimization, the inverse neural network consists
of four hidden layers with 100 neurons. The loss functions of training and validation sets
over epoch are shown in Supplementary Figure S4b. Figure 6 shows the color-difference
values, AE, of monodisperse and polydisperse (vegs = 0.01) SiINP systems. Most of the
color-difference values (monodisperse (96.56%) and polydisperse (99.34%)) are less than 1,
and only a few color-difference values are larger than 1.0 for monodisperse (3.44%) and
polydisperse (0.66%) SiNP systems, which also proves that our model based on the inverse
neural network can accurately design the structural parameters corresponding to the
target color.

In addition, we randomly selected five groups of polydisperse (veg = 0.01) SINP system
test data to evaluate the performance of the inverse neural network. Figure 7a compares the
target spectrum (colored line) and design spectrum (dashed line) obtained by calculation.
Figure 7b compares the design color and target color coordinates in the CIE-1931. As listed
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in Table 1, the target values of Lab are then fed into the inverse neural network to obtain
the design geometry parameters. After converting the design structures to design color
through simulation calculation, the design results are in good agreement with the targeted
results. Even if there are two cases with the color difference of AE > 1, it is still difficult for
the human eyes to distinguish their color difference, and their corresponding spectra and
color coordinates are very similar, thus further demonstrating the reliability and accuracy

of our inverse neural network.
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Figure 6. Results of the test samples in the inverse network for monodisperse and polydisperse

(vegs = 0.01) SiNP systems. (a,c) The color differences, AE, between the predicted colors and true

colors and (b,d) the statistical distribution of test results in different color-difference ranges.
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line). (b) Comparison of design (blue pentagons) and target colors (red hollow circle) in CIE-1931

color map.
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Table 1. Inverse design comparison of five randomly selected targets in a polydisperse (veg = 0.01)
SiNP system (medium is PMMA).

Target Geometry Target Target G]z::li%? Design Design AE
Parameters Color Loab Yy L,a,b Color
Parameters
Toff = 50 NM R:144 L =52.90 Toff = 52.57 nm L' =52.76 R:144
Case 1 h=5mm . G:122 a=591 h=5.74mm a =6.79 . G:121 2.138
fy=30x107° B:106 b=1210  f,=258x10"° ¥ =10.15 B:109
Toff = 52 NM R:89  L=42.80 Toff = 50.64 nm L'=4281 R:89
Case 2 h=1mm . G104 a=-442 h=4.05mm a' =—441 . G:104 0.443
fy=15x107° B:109 b=-494  f,=52x10"° b =—4.49 B:108
Toff = 52 NM R:128 L =50.40 Toff = 51.09 nm L' =50.80 R:129
Case 3 h=9.5mm . G:118 a=2.04 h=574mm a =123 . G:120 1.391
fy=10x107° B:108  b=6.87 v =147 x 107° b =793 B:108
Toff = 80 Nm R:169 L =58.60 Toft = 80.00 nm L' =58.61 R:169
Case 4 h=2mm . G:136 a=442 h=5.88mm a' =443 . G:136 0.1184
fyv=85x107° B:73  b=38.10 fy=81x107° v =38.22 B:73
Toff = 100 nm R:156 L =52.20 Toif = 99.09 nm L'=5221 R:156
Case 5 h=2mm . G:117 a=9.61 h=3.34mm a =9.61 . G:117 0.046
fv=6.0x107° B70  b=31.90 fyv=36x107° V' =31.94 B:70

In summary, compared with time-consuming numerical simulation methods, our bidi-
rectional neural network enables quick and highly accurate color prediction and structural
parameter design for complex nanoparticle systems, thus greatly reducing the time and
cost of color design. The detailed training process of the neural network and the process
of numerical simulation are described in the Supplement Materials. This deep-learning
method will be extremely beneficial for the development of nanophotonics.

4. Conclusions

In summary, we focused on the effects of geometrical parameters and background
medium on the radiative properties and reflected color of a SiNP system through Monte
Carlo and Mie scattering simulations. As the effective variance, v, increases, the color
gamut of the SiNP systems becomes narrower, and the brightness and saturation values
are also affected. When v is 0.01, the effect is not significant. However, when v
increases to 0.05, the reflectance color and spectrum of the SiNP systems change significantly.
Meanwhile, the SiNP systems embedded in water, PMMA, and PDMS all exhibit vivid
colors. This indicates that SINP systems can be widely used in the manufacturing of
colored inks and films by adjusting the geometrical parameters of the SiNP system. In
addition, we propose a bidirectional deep neural network that can accurately extract the
complex relationship between the geometric parameters and color properties. The neural
network model achieves nearly perfect accuracy on the predicted colors and achieves high
accuracies of 96.56% and 99.34% on the design of geometric parameters of monodisperse
and polydisperse SiNPs, respectively, embedded in PMMA. Our work evaluated and
designed colored SiNP systems, which will provide opportunities to explore the related
applications of SiNP-based materials.
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Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/nano12152715/s1. Figure S1: Variation of chromaticity coordinates
with silicon nanoparticle sizes and distributions (host medium: water). Figure S2: Variation of
chromaticity coordinates with different host medium (water, PMMA, and PDMS). Figure S3: (a) The
simulated reflectance spectra of monodisperse SiNPs embedded in water, PDMS, and PMMA with
h=2mm, fy =1.0 x 10~%, and different radii. (b,c) The comparison of ny, and ky values for the
three media. Figure S4: The loss function of the training and validation sets in the forward neural
network (a) and inverse neural network (b), respectively. Figure S5: Results of the test samples in the
forward network. (a,b) The predicted and simulated chromaticity coordinate values for monodisperse
and polydisperse (vegs = 0.01) SiNPs embedded in PMMA, respectively. Section S1: Detailed training
process of neural network and numerical simulation process. References [39—41] are cited in the
Supplementary Materials.
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