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Abstract: Copper-silver and cobalt-silver alloy nanoparticles deposited on reduced graphene oxide
(CuAg/rGO and CoAg/rGO) were synthesized and examined as electrocatalysts for oxygen reduction
reaction (ORR) and hydrogen peroxide reduction reaction (HPRR) in alkaline media. Characterization
of the prepared samples was done by transmission electron microscopy (TEM), Fourier-transform
infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction analysis (XRD), and scanning
electron microscopy with integrated energy-dispersive X-ray spectroscopy (SEM-EDS). CuAg/rGO
and CoAg/rGO nanoparticles diameter ranged from 0.4 to 9.2 nm. The Ag loading was ca. 40 wt.%
for both electrocatalysts, with that for Cu and Co being 35 and 17 wt.%, respectively. CoAg/rGO
electrocatalyst showed a Tafel slope of 109 mV dec−1, significantly lower than that for CuAg/rGO
(184 mV dec−1), suggesting faster ORR kinetics. Additionally, a higher diffusion current density was
obtained for CoAg/rGO (−2.63 mA cm−2) than for CuAg/rGO (−1.74 mA cm−2). The average value
of the number of electrons transferred during ORR was 2.8 for CuAg/rGO and 3.3 for CoAg/rGO
electrocatalyst, further confirming the higher ORR activity of the latter. On the other hand, CuAg/rGO
showed higher peak current densities (−3.96 mA cm−2) for HPRR compared to those recorded for
CoAg/rGO electrocatalyst (−1.96 mA cm−2).

Keywords: oxygen reduction reaction; hydrogen peroxide reduction reaction; nanoparticles; CuAg
alloy; CoAg alloy; reduced graphene oxide

1. Introduction

As the energy demand increases over the years, the amount of available fossil fuels
decreases. Furthermore, the carbon emissions and other negative environmental impacts
of using fossil fuels deepen the need for clean energy sources. That is why electrochem-
ical energy conversion and storage devices like fuel cells and batteries, which are green,
renewable, and have high energy density output, are essential.
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Both oxygen reduction reaction (ORR) and hydrogen peroxide reduction reaction
(HPRR) are common cathodic half-reactions in fuel cells. ORR can proceed via either a two-
electron or a four-electron pathway, depending on the type of electrocatalyst and electrolyte
composition. The former is more sluggish, as it takes place in two steps—hydrogen
peroxide formation and the hydrogen peroxide reduction reaction (HPRR), whereas the
latter, the one-step process, is favored [1–3].

Regardless of the reaction pathway, energy investment is essential for diffusion, ad-
sorption, desorption, bond breakage, and bond formation to occur and transform O2 into
the reaction products (OH− or H2O). Furthermore, the need to break the high-energy
O=O bond increases the energy barrier, making this reaction at least ten times slower than
HER, which is simultaneously occurring at the cathode. Consequently, it requires high
overpotentials and cannot proceed without an electrocatalyst [4].

Since H2O2 is a reaction intermediate in ORR, it can (under certain conditions) be
the final product of a two-electron reduction process [5–7]. Ideally, the catalysts for ORR
should be active for the HPRR. Furthermore, although oxygen is an available and affordable
reactant, HPRR has certain advantages over ORR. Namely, as a two-electron process
with faster kinetics and higher electrode potential, it results in a higher voltage of the
system. Utilizing liquid reactants instead of gaseous ones facilitates handling, storage,
and transport and eliminates the need for complicated fuel cell construction and gas
management [2]. Thus, HPRR-based fuel cells can have lower activation energy and better
stability, ease of handling, and storage than those based on ORR [8]. HPRR can proceed
by a direct mechanism, involving a two-electron reduction to water, which is preferred,
or by an indirect mechanism that involves H2O2 decomposition to O2 and its subsequent
reduction [1].

Generally, platinum group metal (PGM)-based catalysts were used for ORR due to
their ability to decrease the activation energy and the required critical oxygen concentration.
Still, high cost, an easy poisoning limit, and scarcity limit their applicability [9,10]. Conse-
quently, many transition metals [11–13], metal oxides [14–16], metal-organic frameworks
(MOFs) [17,18], zeolitic imidazolate frameworks (ZIFs) [17,18], and carbon-based [19–21]
catalysts have emerged as efficient and robust low-cost alternatives to PGM. Concerning
HPRR, the most potent catalysts can be divided into three categories—enzymes, noble
metals (PGM and Ag), and macrocycle complexes of transition metals. However, the down-
sides of the first and the last are their low chemical, physical, or thermal stability, and the
noble metals’ high price and the catalysis of H2O2 decomposition decrease their applicabil-
ity [22]. The need for low-cost, stable, biocompatible materials with high catalytic activity
for HPRR has resulted in the production of transition metal oxide-based materials [8,22–24]
and carbon materials [25–27].

In this work, CuAg and CoAg-doped reduced graphene oxide (rGO) are proposed
as efficient electrocatalysts for ORR and HPRR in alkaline media. Alkaline media, as
a less corrosive environment compared to acidic media, allows using non-noble metal
catalysts for ORR [28,29]. Additionally, ORR kinetics in alkaline media have been reported
to be faster than in acidic media [30,31]. Thus, ORR can proceed at lower overpotentials
in alkaline media (e.g., NaOH, KOH) than in several acidic media (e.g., H2SO4, H3PO4,
HClO4). The superior performance of Pt electrocatalysts in alkaline media (KOH) than in
acidic media (e.g., H3PO4) was attributed to the minimal adsorption of the OH− ion in case
of the KOH solution [31,32].

Apart from being more abundant and less expensive than PGM, silver exhibits good
activity toward oxygen reduction [9]. Copper and cobalt are proven to enhance the physical
and chemical properties of the catalyst upon addition, including the increase in the number
of active sites, specific surface, and conductivity [10,17]. Andrade et al. [17] have shown
that MOF-derived N-doped carbon with cobalt and copper (M-NC–CoCu) has fast ORR
kinetics with an onset potential, Eonset, of 0.85 V, a half-wave potential, E1/2, of 0.75 V, and
a small Tafel slope (63 mV dec−1) in KOH. Under the same experimental conditions, the
values for Pt/C were an Eonset of 0.93 V, an E1/2 of 0.82 V, and a Tafel slope of 70 mV dec−1.
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It has been well-documented that bimetallic nanoparticle electrocatalysts containing a
noble metal (e.g., Pt, Au, Ag) and a transition metal (e.g., Co, Cu) overcome the performance
of the individual components for the ORR due to the improvement of the electronic
properties [33,34]. For instance, Verma et al. [9] proved that the Ag-Cu bimetallic particle
formation enhances the catalytic properties of the material, which can be explained by
DFT calculations showing that Cu to Ag charge transfer results in the stronger material’s
interaction with oxygen. Yin et al. [35] demonstrated that a catalyst containing both Ag and
Cu particles exhibits a seven-fold enhancement of ORR activity compared to nanoporous
Ag (NP-Ag). The former catalyst had an E1/2 of ca. 0.82 V and a Tafel slope of 100 mV dec−1,
whereas that of NP-Ag and Pt/C was 145 mV dec−1 and 111 mV dec−1, respectively. The
results were supported by presenting XRD and XPS data showing that the d-band center of
Ag moves closer to the Fermi level owing to the alloying effect from Cu. These conclusions
extrapolate to other transition metals, especially 3d elements with fairly good conductivity
and oxygen absorption properties, including cobalt. Carbon-based materials not only
exhibit good catalytic activity for both HPRR and ORR, but the implementation of rGO in
the bimetallic material also increases the specific surface area, improves thermal stability
and electrical and thermal conductivity of the material, and heightens carrier mobility
and adsorptive properties [36,37]. Therefore, the proposed materials are expected to show
excellent activity for ORR.

2. Materials and Methods

Hydrazine hydrate (N2H4.xH2O, 78 wt.%), cobalt chloride (CoCl2·6H2O, 97 wt.%),
copper chloride (CuCl2·2H2O, 97 wt.%), L-ascorbic acid (C6H8O6, 99 wt.%), sodium boro-
hydride (NaBH4, 99 wt.%), silver nitrate (AgNO3, 99 wt.%), potassium permanganate
(KMnO4, 99 wt.%), Nafion (5 wt.%), methanol (CH3OH, 97 wt.%), ethanol (C2H5OH,
99.8 wt.%) sodium hydroxide (NaOH, 97 wt.%), and potassium hydroxide (KOH, 85 wt.%)
were obtained from Sigma-Aldrich (Burlington, MA, USA). The aqueous solutions were
prepared by using distilled water.

Graphene oxide (GO) was synthesized by a modified Hummer’s method [38]. Namely,
GO was prepared from graphite, where 2 g of graphite powder was dispersed in 100 mL
concentrated H2SO4. This solution was cooled at 0 ◦C, and then 8 g of KMnO4 was
gradually added with a constant stirring at 30 ◦C for 1 h. Next, 300 mL distilled water was
added to the solution with a continuous stirring for 30 min at 90 ◦C. 400 mL distilled water
and 6 mL H2O2 (30 wt.%) were added to the solution, where the solution color changed
from dark brown to yellow-green. The obtained GO was separated by centrifuging and
dried at 80 ◦C.

Reduced graphene oxide (rGO) was obtained in the second synthesis phase with
N2H4.xH2O as a reducing agent. Namely, 100 mg GO and 100 mL distilled water were
mixed. This brown-yellow solution was left in the ultrasound bath at 150 W until this
solution stayed without visible particles. Then 1 mL of 32.1 M N2H4.xH2O was added, and
the solution was heated at 100 ◦C, under a condenser, for further 24 h. The rGO was then
separated by filtration as a black precipitate. After filtration, the rGO was washed 5 times
with 100 mL distilled water and 5 times with 100 mL CH3OH, and then dried.

The procedure described by Krishna et al. [39] was followed with some changes. A
total of 35 mg rGO was well dispersed in 11.6 mL distilled water, and then it was mixed
with 167 mg CoCl2·6H2O (or 172 mg CuCl2·2H2O) by magnetic stirring for 30 min at room
temperature. Then, 117 mg of L-ascorbic acid was added to the above solution and stirred
for 10 min. Additionally, 5 mL of 1 M NaBH4 + 0.1 M NaOH solution was slowly added
(dropwise) until the hydrogen was completely released. The obtained product was washed
with distilled water and CH3OH, respectively.

This product was again redispersed in distilled water by sonication for 1 h. A total
of 60 mg AgNO3 was mixed with obtained dispersion by mechanically stirring for 5 min.
Then, 17 mg of L-ascorbic acid was added to the solution with 1 mL of 1 M NaBH4 +
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0.1 M NaOH solution to reduce Ag ions. The CuAg/rGO and CoAg/rGO products were
washed several times with distilled water and dried in the oven at 80 ◦C for 4 h.

Fourier transform infrared spectroscopy (FTIR, Perkin Elmer Spectrum One Spectrom-
eter, Waltham, MA, USA) and Raman spectroscopy (Leica Microsystems GmbH, Wetzlar,
Germany) were used to determine surface functional groups of the rGO, CuAg/rGO, and
CoAg/rGO electrocatalysts. X-ray diffraction analysis (XRD) using a Rigaku Ultima IV
diffractometer (Rigaku, Japan) in Bragg-Brentano geometry, with Ni-filtered CuKα radia-
tion (λ = 1.54178 Å) was used for examining the structure of CuAg/rGO and CoAg/rGO
electrocatalysts. The morphology and microstructure of CuAg/rGO and CoAg/rGO elec-
trocatalysts were examined by transmission electron microscopy (TEM) using a HITACHI
H-8100 microscope (Hitachi, Tokyo, Japan). Scanning electron microscopy with integrated
energy-dispersive X-ray spectroscopy (SEM-EDS) detector was done with a scanning elec-
tron microscope Phenom™ ProX Desktop SEM (ThermoFisher Scientific™, Waltham, MA,
USA) to examine the surface morphology and atomic composition of CoAg/rGO and
CuAg/rGO electrocatalysts. Cu, Co, and Ag wt.% in the two samples were determined by
inductively coupled plasma with optical emission spectroscopy (ICP-OES) using an ICP
optical emission spectrometer Optima 7000DV (Perkin Elmer, Waltham, MA, USA).

A total of 5 mg of powdered CuAg/rGO or CoAg/rGO were mixed with 980 µL of
C2H5OH and 20 µL of Nafion (5%) and left in an ultrasonic bath for 1 h. After that, 14 µL of
the prepared catalytic ink was pipetted onto a glassy carbon rotating disk electrode (RDE,
0.19625 cm2). The electrode was left to dry at room temperature.

Ivium VO1107 potentiostat/galvanostat (Ivium Technologies B.V., Eindhoven, The
Netherlands) was used for all electrochemical studies in a three-electrode system. A
saturated calomel electrode (SCE, HI5412, Hanna Instruments) and a graphite rod (Sigma-
Aldrich, 99.995 wt.%) were employed as reference and counter electrodes, respectively.
The supporting electrolyte was 0.1 M KOH. As the SCE can suffer from instability in
highly alkaline media, the potential difference between the herein used SCE and unused
SCE was regularly measured using a multimeter, to ensure the quality of SCE potential
measurements. All potentials in this work were converted to the reversible hydrogen
electrode (RHE) scale using the following equation: ERHE = ESCE + 0.242 V + 0.059 V × pH.
Current densities were calculated using the geometric area.

Cyclic voltammograms (CVs) of CuAg/rGO and CoAg/rGO electrodes were recorded
from 0.86 to 0.96 V at different polarization rates ranging from 5 to 100 mV s−1 in
0.1 M KOH solution saturated with nitrogen (N2, 99.995 vol.%, Messer).

For ORR studies, linear sweep voltammograms (LSVs) were recorded in a potential
range from 0.2 to 1 V at a scan rate of 20 mV s−1 in 0.1 M KOH solution saturated with
oxygen (O2, 99.995 vol.%, Messer) at room temperature. ORR rotating-disk electrode
(RDE) measurements were carried out at different rotation rates from 400 to 3600 rpm.
Current densities obtained in N2-saturated solutions were subtracted from those measured
in O2—saturated solutions. Stability tests of CuAg/rGO and CoAg/rGO electrocatalysts
were done in 0.1 M KOH O2—saturated solutions at 0.6 V for 4 h. HPRR LSVs were
recorded in a potential range from 0.2 to 1 V at a scan rate of 20 mV s−1 in 0.05 M H2O2 +
0.1 M KOH solution saturated with N2.

3. Results and Discussion
3.1. Characterization of CuAg/rGO and CoAg/rGO Electrocatalysts

The XRD analysis of CuAg/rGO and CoAg/rGO electrocatalysts is presented in
Figure 1A. The peak at about 26◦ was observed at both XRD patterns of CuAg/rGO
and CoAg/rGO electrodes as a reflection of the C (002) plane [40]. Four characteristic
diffraction peaks of bulk metallic Ag at 2θ of ca. 38.3◦, 44.4◦, 64.5◦, and 77.5◦ were noticed
for both electrodes as the diffraction from crystal planes of Ag (111), (200), (220), and (222),
respectively [40–42]. The XRD pattern of the CuAg/rGO electrode showed a diffraction
peak of the Cu2O(111) plane at ca. 36◦ and three diffraction peaks of Cu (111), (200), and
(220) crystal planes at 2θ of ca. 42.3◦, 50.4◦, and 73.6◦, respectively [43]. Two diffraction
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peaks of Co appeared at 2θ of ca. 64.5 and 77.5◦, corresponding to the reflections of the Co
(102) and (103) planes, respectively [44].
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The FTIR spectrum of rGO is presented in Figure 1B, where a broad peak was noticed
at 3438 cm−1, corresponding to the OH− groups of water adsorbed on rGO [45,46]. The
adsorption peaks at 1724, 1623, and 1103 cm−1 were visible for the characteristic carboxyl
group C=O, an aromatic C=C group, and a C–O group, respectively [45,46].

The Raman spectra of rGO, CuAg/rGO, and CoAg/rGO (Figure 1C) show two char-
acteristic strong peaks, known as D and G bands, at 1351 and 1595 cm−1 for rGO, at 1346
and 1591 cm−1 for CuAg/rGO, and at 1350 and 1596 cm−1 for CoAg/rGO [45]. The G
band corresponds to the bond extending of all pairs of sp2 atoms, whereas the D band
represents the presence of structural defects, crystal imperfections, and the measure of the
degree of disorder of carbon-based materials [45,46]. The 2D called G’ band characteristic
for graphite materials was noticed at 2704 cm−1 [45,47,48]. The D + G peak also related
to disorder with structure was obtained at 2933 cm−1 [45,47,48]. The intensity ratio of
the D and G bands (ID/IG) was found to be 0.85 for rGO, CuAg/rGO, and CoAg/rGO.
The broad, low-intensity peak at about 1483 cm−1 for CoAg/rGO could be related to the
specific structure of Ag2O [49]. These results utterly confirmed the presence of an rGO
structure in CuAg/rGO and CoAg/rGO electrocatalysts.

Figure 2A,B shows TEM images of CuAg/rGO and CoAg/rGO electrocatalysts, re-
vealing the formation of metal nanoparticles.
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Figure 2. TEM images of CuAg/rGO (A) and CoAg/rGO (B) electrocatalysts.

SEM images of CuAg/rGO and CoAg/rGO electrocatalysts with corresponding EDS
spectra and mapping are presented in Figure 3. SEM images of CuAg/rGO and CoAg/rGO
(Figure 3A,C) show a uniform distribution of metal nanoparticles (bright parts) over rGO
(gray parts). Corresponding EDS spectra and mapping (Figure 3B,D) show the presence of
Ag, Cu, Co, C, and O elements and confirm their uniform distribution.

The elemental composition of the electrocatalysts determined by ICP-OES shows 27.8
and 31.5 wt.% of Ag and Cu, respectively, for CuAg/rGO and 27.0 and 17.3 wt.% of Ag
and Co, respectively, for CoAg/rGO. Though the present study was “conceived” as an
initial study to confirm or disproof AgCo and/or AgCu on rGO as electrocatalysts for the
ORR and to point out the path that further research should take, it should be noted that the
electrocatalytic performance of bimetallic nanoparticles is governed by their composition,
among other factors, including particle size and surface oxidation state [33,50,51].

Electrochemical double-layer capacitance, Cdl, was calculated from cyclic voltam-
mograms (CVs) of CuAg/rGO and CoAg/rGO electrocatalysts (Figure 4) recorded in
N2-saturated 0.1 M KOH solution at different scan rates. Cdl was found to be 0.9 and
0.8 µF cm−2 for CuAg/rGO and CoAg/rGO, respectively, with these values being directly
proportional to the electrochemically active surface area (ECSA) [52,53]. The somewhat
higher ECSA of CuAg/rGO than CoAg/rGO electrocatalyst represents the higher number
of active sites for ORR and HPRR [52,53]. It should be mentioned that high-surface-area
rGO contributes to the non-faradaic, capacitive currents and, consequently, affects the accu-
rate ECSA determination. Still, the present ECSA estimation by the Cdl method is suitable
for the ECSAs comparison, as both materials contain rGO. Moreover, the Cdl method for
estimating alloys’ ECSA considers all the alloy components [54,55].

Regarding the nature of active sites in the two electrocatalysts, the Ag(111) plane has
been pointed out as highly active toward ORR, where the presence of different defects
further increases the surface’s activity for ORR [56]. The higher availability of active sites
for ORR on Ag(111) is attributed to the weaker OH− adsorption. Furthermore, Co (moiety)
has been presented as an important active site for ORR in alkaline media [57–60]. Cu shows
high theoretical ORR activity in the volcano plot and has four valence states (Cu(I), Cu(II),
Cu(0), and Cu(IV)) which contribute to ORR electrocatalysis [61]. Finally, the presence
of rGO also brings different types of surface active sites for ORR, including unsaturated
carbons defect sites and carbon-oxygen polar groups.
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3.2. ORR Activity of CuAg/rGO and CoAg/rGO Electrocatalysts

CVs of CuAg/rGO and CoAg/rGO electrocatalysts recorded in N2-saturated solution
are presented in Figure 5A,B. Two well-defined anodic peaks appearing at 0.47 and 0.76 V
(Figure 5A) are attributed to the oxidation of the CuAg/rGO surface, where the first anodic
peak presents the oxidation of Cu(0) to Cu(I), and the second anodic peak presents the
oxidation of Cu(I) to Cu(II) [62,63]. An additional cathodic peak was noticed at 0.55 V corre-
sponding to the reduction of Cu(II) to Cu(I) [62,63]. The CoAg/rGO electrocatalyst showed
one anodic peak at 0.92 V (Figure 5B) corresponding to the oxidation Co(II) to Co(III) [64,65].
Figure 5C,D presents ORR polarization curves of CuAg/rGO and CoAg/rGO electrocat-
alysts, where both materials show ORR activity in 0.1 M KOH. The CoAg/rGO elec-
trocatalyst exhibited a current density of −1.56 and −0.34 mA cm−2, at 0.6 V, in O2
and N2-saturated solution, respectively (Figure 5D). The current density of −0.58 and
−0.03 mA cm−2, at 0.7 V, for the first cathodic peak and −1.1 and −0.82 mA cm−2, at 0.5 V,
for the second cathodic peak were noticed for the CuAg/rGO electrocatalyst in O2 and
N2-saturated solution, respectively (Figure 5C). CuAg/rGO and CoAg/rGO gave about
20 (first reduction peak) and 5 times higher cathodic current densities, respectively, in
O2−saturated than in deaerated solution (Figure 5C,D). Even 50% times higher ORR cur-
rent was observed for CoAg/rGO than for the CuAg/rGO electrocatalyst. An Ag/Co/C
hybrid electrocatalyst was recently pointed out as a promising candidate for ORR in al-
kaline media because of its excellent ORR activity and stability [13]. This behavior of
Ag/Co/C during ORR was described by density functional theory (DFT), where ORR
starts due to the strong interaction between Co and O in the first step, and the following
steps on the Ag surface occur with a small barrier [13]. Additionally, Verma et al. showed
that oxygen adsorption on Ag clusters increased by doping with copper atoms, confirmed
by binding energy DFT calculations [9].

ORR polarization curves of CuAg/rGO and CoAg/rGO electrocatalysts obtained at
1600 rpm in O2-saturated solution are presented in Figure 6A. Eonset and E1/2 were found
to be 0.81 and 0.71 V for CuAg/rGO and 0.76 and 0.62 V for CoAg/rGO, respectively. Thus,
CuAg/rGO showed 50 and 90 mV more positive ORR Eonset and E1/2, respectively, com-
pared to the CoAg/rGO electrocatalyst. Ag@CuO nanoparticles showed E1/2 of 0.74 V [66],
which is ca. 30 mV more positive than the herein examined CuAg/rGO electrocatalyst.

The ORR kinetics was examined by Tafel analysis of the curves presented in Figure 6A.
Tafel slopes of 184 and 109 mV dec−1 for CuAg/rGO and CoAg/rGO were calculated.
The CoAg/rGO electrocatalyst showed a lower Tafel slope than CuAg/rGO, indicating
faster ORR kinetics. The big difference in Tafel slopes can be a consequence of differences
in the physicochemical properties of the CuAg/rGO and CoAg/rGO surface, such as
oxygen coverage and the number of active sites [56]. Nanoporous Ag (NP-Ag) [35] and
monometallic Ag nanoparticles (Ag NPs) [67] showed a Tafel slope of 145 and 113 mV dec−1

during ORR in 0.1 M KOH, respectively. A Tafel slope of 96 mV dec−1 was determined
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for Ag/OCPN at the low current density region [68]. S. Zoladec et al., determined Tafel
slopes of 100 and 120 mV dec−1 for silver nanoparticles deposited on rGO-carboxylate
and rGO-SiO2, respectively [56]. Five different nanoporous AgCu (NP-AgCu) catalysts
gave Tafel slopes ranging from 100 to 124 mV dec−1 in 0.1 M KOH [35]. CuO nanoparticles
(CuO) and CuO nanoparticles on graphene (CuO/G) showed a Tafel slope of 207 and
141 mV dec−1, respectively [69].
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Furthermore, a higher diffusion current density, jd, was obtained for CoAg/rGO
(−2.63 mA cm−2) than for the CuAg/rGO (−1.74 mA cm−2) electrocatalyst. Ag/C gave a
jd of ca. −1.8 mA cm−2 than herein tested silver electrocatalysts in alkaline media [70]. A jd
of −2.8 mA cm−2 was obtained for Ag/Co3O4–C composite in 1 M KOH, comparable with
the jd obtained for CoAg/rGO [70]. ORR performance of two prepared electrocatalysts
was further compared to that of commercial Pt/C (40 wt.% Pt), Figure 6A. As expected,
higher current densities were recorded with the Pt/C electrode, along with a Tafel slope
of 94 mV dec−1. However, the significantly lower price of the herein prepared electrocata-
lysts and the possibility of further improvement of their performance justify their use for
ORR studies.

Figure 6B,C shows the ORR polarization curves of CoAg/rGO and CuAg/rGO electro-
catalysts, respectively, at different rotation rates, ranging from 400 to 3600 rpm. From these
data, Koutecky-Levich analysis calculated the number of exchanged electrons, n, during
ORR in alkaline media [41]. The value of n was found to range from 2.8 to 4.0 and from 2.5
to 2.9 for CoAg/rGO and CuAg/rGO electrocatalysts (inset of Figure 6B,C), respectively,
suggesting that ORR occurred by the mixed 2e− and 4e− reduction pathway. [70,71]. It
is worth noting that at a more positive potential, four electrons were transferred during
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ORR at CoAg/rGO. The transfer of four electrons during ORR at Ag-based electrocatalysts
often involves a 2e− + 2e− series mechanism rather than a direct 4e− mechanism. Thus,
the HPRR activity of the prepared electrocatalysts was also probed.
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Figure 7 shows LSVs of CuAg/rGO and CoAg/rGO electrocatalysts recorded in
0.1 M KOH solution as a supporting electrolyte in the absence and presence of H2O2. Both
materials showed electrocatalytic activity for HPRR with a reduction peak at ca. 0.50
and 0.45 V for CuAg/rGO and CoAg/rGO electrocatalysts, respectively. Carbon paste
electrodes modified by Ag-supported carbon microspheres (Ag-CMS/CPE) obtained by the
hydrothermal method showed a similar HPRR peak potential value in alkaline media [72].
CuAg/rGO showed a higher peak current density of −3.96 mA cm−2 than CoAg/rGO
electrocatalyst (−1.96 mA cm−2).

It should be mentioned that the ORR at the currently examined CoAg/rGO electrocat-
alyst led to a higher n than at Ag/C, with 2.7 electrons exchanged during ORR in alkaline
media [70]. Ag@C nano cables delivered 3.3 electrons during ORR in 0.1 M KOH [71]. Silver
and copper nanocatalysts supported with multi-walled carbon nanotube (AgCu/MWCNT)
delivered 3.5 electrons during ORR in alkaline media [73]. Table 1 compares the ORR pa-
rameters determined for CuAg/rGO and CoAg/rGO electrocatalysts with that previously
reported for similar materials.
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Table 1. Comparison of ORR parameters of CuAg/rGO and CoAg/rGO electrocatalysts with the
activity of similar materials reported in the literature.

ORR Catalysts jd@(1600 rpm)
/mA cm−2 Eonset/V E1/2/V n Source

CuAg/rGO −1.74 0.81 0.71 2.5–2.9 This work
CoAg/rGO −2.63 0.76 0.62 2.8–4.0 This work

Ag9Cu1/MWCNT * −2.7 − − 3.5 [73]
Ag/C −1.8 − − 2.7 [70]
Co/C −2.48 0.88 0.83 − [13]

Ag@CuO − − 0.74 3.8 [66]
Ag@C nanocables −2.5 0.75 − 3.3 [71]

Ag/Co3O4–C −2.8 0.84 0.78 3.8 [70]
Ag/CPN ** −4.8 0.83 − 3.7 [68]

Ag/OCPN *** −5.4 0.87 − 4.0 [68]
* MWCNT—multi-walled carbon nanotubes, ** CPN—carbonaceous polypyrrole nanotubes, *** OCPN—oxygen-
doped carbonaceous polypyrrole nanotubes.

To confirm the stability of the electrocatalysts’ activity towards ORR in alkaline media,
chronoamperometric curves of CuAg/rGO and CoAg/rGO electrocatalysts were run for
4 h (Figure 6D). Both electrocatalysts showed good stability for ORR. Current densities
of −0.046 and −0.055 mA cm−2 were obtained for CuAg/rGO and CoAg/rGO at 4 h,
representing ca. 28 and 29% decrease of the corresponding initial values. For both elec-
trocatalysts, the decrease was observed within the first 200 s, with fairly constant current
densities for the rest of the measurement. Thus, the authors believe this decrease is caused
by the adsorption of impurities on the surface of the electrocatalysts rather than by the
metal nanoparticles’ agglomeration or detachment [34].

4. Conclusions

Silver copper and silver cobalt nanoparticles were deposited on synthesized rGO
(CuAg/rGO and CoAg/rGO) and tested for ORR in alkaline media. Raman spectroscopy
clearly showed that rGO was obtained during synthesis, and the surface morphology and
atomic composition of CuAg/rGO and CoAg/rGO electrocatalysts were confirmed by
SEM-EDS analysis. The average particle diameter obtained by TEM analysis for CuAg/rGO
and CoAg/rGO electrocatalysts was 5.7 and 5.5 nm, respectively. CoAg/rGO showed a
lower Tafel slope than the CuAg/rGO electrocatalyst. The lower Tafel slope, higher ORR
current densities, jd, and n of CoAg/rGO demonstrate faster ORR kinetics and better ORR
catalytic activity than the CuAg/rGO electrocatalyst. Additionally, both electrocatalysts
showed reasonable activity for HPRR, with a reduction peak at ca. 0.50 and 0.45 V for
CuAg/rGO and CoAg/rGO, respectively. These electrocatalysts can potentially replace
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high-cost platinum group metal-based catalysts because of their easy, fast, and low-cost
synthesis, coupled with their good ORR activity and stability in alkaline media.
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