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Abstract: In general, the insertion of Stone-Wales (SW) defects into single-walled carbon nanotubes
(SWNTs) reduces the buckling resistance of SWNTs under axial compression. The magnitude of
reduction is more noticeable in zigzag-type SWNTs than armchair- or chiral-type SWNTs; however,
the relation between the magnitude of reduction and aspect ratio of the zigzag SWNTs remains unclear.
This study conducted molecular dynamics (MD) simulation to unveil the buckling performance of
zigzag SWNTs exhibiting SW defects with various tube diameter. The dependencies of energetically
favorable buckling modes and the SW-defect induced reduction in the critical buckling point on the
tube diameter were investigated in a systematic manner. In particular, an approximate expression
for the critical buckling force as a function of the tube diameter was formulated based on the MD
simulation data.

Keywords: carbon nanotube; column buckling; shell buckling; Stone-Wales defect; axial compression;
nanomechanics

1. Introduction

A slender member often exhibits axial buckling under compression, which is a sudden
archwise deflection of elastic materials with a large aspect ratio. It is a type of mechanical
bifurcation that is triggered shortly after the axially compressive load exceeds a threshold
value [1]. It is a universal phenomenon that occurs regardless of the length scale of the
material, ranging from macroscopic to micro- and nano-sized materials, provided it is
sufficiently slender. Macroscopic elastic materials have been extensively studied in terms
of their axial buckling performance, as primarily described by the relation of the critical
buckling stress with the slenderness ratio of the materials. In contrast, studies on buckling
behavior of nano- and micro-sized elastic materials are scarce, partly because in addition
to the slenderness ratio, it can be sensitive to the symmetry and irregularity of the atomic
structure as well.

A carbon nanotube (CNT) is a typical example of nanomaterials endowed with a
large aspect ratio. Owing to their superior mechanical flexibility and reversibility, CNTs
exhibit axial buckling under compression [2,3], which has been experimentally observed in
microscope experiments [4–8]. Meanwhile, sample manipulation on the nanometer scale
remains a challenging task despite state-of-the-art microscopy techniques. This hindrance
is particularly noticeable when dealing with single-walled carbon nanotubes (SWNTs),
which are expected to show nontrivial correlation between mechanical deformation and
their physical properties [9,10]. This may be a reason why tremendous efforts based on nu-
merical simulations [10–18] and continuum approximation theory [11,17,19–22] have been
exerted in exploring the buckling behavior of SWNTs under loading. Several theoretical
studies have revealed that axial buckling of SWNTs is highly dependent on the lattice irreg-
ularity [23,24] and tube chirality [25–27]. This is in addition to the aspect ratio [11,26,28–32]
similar to macroscopic tubular structures.
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Among the several types of lattice irregularities, Stone-Wales (SW) defects are those
peculiar to graphene layers with hexagonal symmetry [33]. An SW defect comprises
two pentagon-heptagon pairs of carbon atoms, formed by local rearrangement of the
original four adjacent hexagons [34]. It has been numerically proven that the presence
of SW defects results in pronounced reductions in the buckling stress of SWNTs under
compression [27,29,35–37] as well as their fracture stress under tension [38,39]. In particular,
zigzag SWNTs exhibit a significant reduction in buckling stress caused by SW-defect
insertion than armchair SWNTs, as confirmed in the comparative study of (17, 0) zigzag
SWNTs and (10, 10) armchair SWNTs [27]. This chirality dependence is attributed to the
difference in the relative angle of the central C-C bond to the tube axis. Considering that the
critical buckling stress of tubular materials generally depends on its aspect ratio, the manner
in the tube diameter variation in zigzag SWNTs exhibiting SW defects alter their buckling
performance must be understood. However, studies to systematically investigate this issue
are yet to be conducted.

This study investigated the axial buckling of zigzag SWNTs with various tube diameter
using molecular dynamics (MD) simulations. SWNTs were found to exhibit three different
buckling modes depending on the aspect ratio, regardless of the presence of a SW defect.
In addition, the force-strain curve for each SWNTs having different tube diameters were
computed. Consequently, the degree of reduction in the critical buckling force caused
by SW-defect insertion was exhibited. Furthermore, an approximate function describing
the dependence of the critical buckling force on the tube diameter both for defective and
defect-free SWNTs was formulated.

2. Method
2.1. SWNT Model with SW Defect

The atomistic model of zigzag SWNTs was constructed under the following conditions.
As per conventions, zigzag SWNTs with different tube radii are classified based on the
index n that characterizes the chiral vector (n, 0) of the tube. Using the index n, the tube
diameter d of pristine zigzag SWNTs is described by d = (

√
3a/π)n ' 0.0783n nm with

the assumption that the C-C bond length, a, at the undeformed state is a = 0.142 nm. This
study examined the buckling behavior of (n, 0) zigzag SWNT models with 10 ≤ n ≤ 34,
and all the models consist of 60 unit cells aligned along the axial direction with an initial
length of 12.78 nm. The corresponding values of the aspect ratio (i.e., the ratio of the tube
length to the tube diameter) was in the range of 4.81 to 16.3. Further, in actual calculations,
the periodic boundary condition was applied in the axial direction of each SWNT model.
In principle, the energetically optimized axial length of a SWNT may vary depending on n,
due to the effect of curvature (rolling-up) of the graphene sheet on the bond lengths and
angles. Yet in this study, the curvature effect was not taken into account since we have
numerically confirmed that it is considerably small.

For each pristine SWNT model, a SW defect was created through the rotation of a C-C
bond vertical to the tube axis by π/2 with no dangling bonds. Subsequently, the formation
of the pentagon-heptagon pairs altered the geometry of the local area surrounding the
defect. In fact, following energy minimization, the diameter of the defective area was found
to increase slightly. When the SWNT was subjected to axial loading, the initial imperfection
caused by the SW defect expedited the occurrence of the buckling.

However, SW defects are not always artificial imperfections and can be commonly
generated during synthesis of CNTs [40,41]. Furthermore, tensile [42,43] and compres-
sive [29] load application can produce SW defects even in pristine CNTs. Thus, considering
the ubiquity of SW defects in synthesized CNTs, the effect of SW defects on the buckling
performance of zigzag SWNTs with various tube diameters must be quantified.

2.2. Molecular Dynamics Simulation

The SWNT models were subjected to MD simulations wherein axial compression was
applied. The atomic interaction between carbon atoms was represented by the reactive
empirical bond order (REBO) potential [44], which has been widely used for hydrocarbon
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systems. The compressive strain applied to the model was increased stepwise. Further,
to avoid the system being trapped in a metastable state (i.e., the state wherein no buckling
deformation occurs, although the strain has exceeded the critical value for buckling), simu-
lations were conducted performing short-time MD simulations and structural relaxations
alternatively based on the global convergent algorithm [45]. In practice, we gradually
increased the compressive strain stepwise, repeating the following three processes:

1. The axial cell size is reduced by 0.01 nm, which corresponds to a compressive nominal
strain of 0.078%, to increase the compressive strain. In this process, the fractional coordi-
nates of the atoms are fixed so that the SWNT model undergoes uniform deformation;

2. To prevent the system from falling into a state of unstable equilibrium, a short MD
calculation of 10 fs at a temperature of 50 K is performed, where the MD time step is 1 fs;

3. Structural relaxation (optimization of atom positions) is performed until all force
vectors exerted on the atoms are smaller than 10−7 eV per angstrom. For the relaxation
we adopted the GLOC algorithm [45].

All the simulations were performed using in-house software “MDSPASS2”.

3. Three Buckling Modes of Zigzag SWNTs

Figure 1 shows the axially buckling modes of zigzag SWNTs with and without SW
defects. The models depicted in the upper panels possessed no defect, whereas those in
the lower panels contained a single SW defect at the position marked by red arrows. The
color of each constituent atom represents the magnitude of the local strain energy within a
particular SWNT model. The energy at the red (or blue) atom was relatively higher (lower)
than that at other positions; the energy scale was not fixed to be a constant across all panels
and thus varies from panel to panel.

(a) (b) (c)

(f)(e)(d)

Figure 1. Three buckling modes of zigzag SWNTs with no defect (upper panels) and with a single
SW defect (lower): (a,d) S-mode, (b,e) Z-mode, (c,f) I-mode. The red arrows indicate the locations of
the SW defect. The chiral indices of SWNTs are: (a,d) (12,0), (b,e) (18,0), (c) (24,0), and (f) (28,0).

Three distinct modes were observed in Figure 1 depending on the index n. This
implied that the buckling mode was strongly dependent on the tube diameter. For a small n
value, the SWNTs underwent columnar buckling, wherein the tube deflected into a smooth
S-like shape with no kink; hereafter, this buckling mode is referred to as the “S-mode”.
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Figure 1a,d show the S-mode of a (12, 0) SWNT having no and one SW defect, respectively.
For the defect-free SWNT, the edge-to-edge length shrank from the initial value to 12.43 nm
immediately after buckling. Moreover, no clear critical point was found in the case of
the defective model. In the S-mode of the defective SWNT, the location of the SW defect
coincides with the position at which the generating line of the envelope cylindrical surface
has a maximum curvature, as depicted in Figure 1d. Similar S-modes were found to occur
under conditions of 10 ≤ n ≤ 13 for defect-free SWNTs, whereas they occurred under
conditions of 10 ≤ n ≤ 14 for defective SWNTs.

When the value of n increased, the buckling mode switched from the S mode to
another mode showing “Z-shaped” tube geometry. Figure 1b,e show the Z-mode of the
(18, 0) SWNT models without and with a SW defect, respectively. The edge-to-edge length
immediately after buckling was estimated to be 12.16 nm (defect-free) and 12.24 nm (de-
fective). Further, the Z-mode was endowed with two kinks, implying that this mode is
categorized into shell buckling modes. Moreover, Z-modes were observed under condi-
tions of 14 ≤ n ≤ 23 for defect-free SWNTs, whereas they occurred under conditions of
15 ≤ n ≤ 24 for defective SWNTs. Regarding SWNTs with an SW defect, one of the two
generated kinks tended to occur on the surface opposite to the defect position, as shown in
Figure 1e.

When n was further increased, another type of shell buckling mode was observed,
which was termed as the “I-shaped” mode. Figure 1c,f show the I-mode of the (24, 0)
defect-free SWNT and the (28, 0) defective SWNT, respectively. The edge-to-edge length
immediately after buckling was estimated to be 12.27 nm (defect-free) and 12.42 nm (defec-
tive). Further, the I-mode experienced neither columnar bending nor kinks; instead, it was
endowed with a fin structure comprising two adjoining flattened areas that were oriented
perpendicular to each other. In addition, the I-mode was observed when 24 ≤ n ≤ 34
for defect-free SWNTs, whereas 25 ≤ n ≤ 34 was observed for defective SWNTs. Thus,
the fin-like necking was expected to occur at the defect position (see Figure 1f).

The armchair and chiral SWNTs also exhibited the above-mentioned series of buckling
modes provided the aspect ratio remained unchanged [18]. For instance, previous stud-
ies [31,46] revealed that the I-mode appeared in (10,10) and (11,11) armchair defect-free
SWNTs; the tube lengths were set to be 9.6 and 10.1 nm, respectively, whose aspect ratios
were close to those of (24,0) of the proposed zigzag SWNT model with a length of 12.78 nm.
However, despite the similarities in buckling modes, there a significant difference that
exist between zigzag SWNTs and the other two types of SWNTs in terms of the degree of
reduction in the critical buckling stress caused by SW defect insertion, as mentioned in
Section 1.

4. Force-Strain Curve

Figure 2a shows the relation between the applied compressive force F and the resulting
strain ε of SWNTs: the defect-free (upper panel) and defective (lower) cases are displayed.
In defect-free SWNTs, the axial force and strain were proportional until the axial force
reached the maximum value. The larger the value of n, the larger the gradient of the
force-strain curve. Upon exceeding the maximum point, the force suddenly dropped off
and the defect-free SWNTs transformed into one of the three buckling modes described
in Section 3. Thereafter, in the buckled states, the applied force remained approximately
constant with an increase in the strain, except for the S-mode of defect-free SWNTs observed
at 10 ≤ n ≤ 13. In contrast, in the S-mode, the further applied force resulted in a secondary
drop immediately after the strain was increased to a certain value (0.037 for the (12,0)
defect-free SWNT). Moreover, upon exceeding the secondary threshold, the local surface
curvature of the smoothly curved SWNTs in S-mode increased significantly at specific
positions, resulting in a local kink similar to those observed in Z-mode. Such a two-step
post-buckling deformation in S-mode was not observed in the other two buckling modes
of defect-free SWNTs.
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Figure 2. (a,c) The force-strain curve (F vs. ε) of zigzag SWNTs under axial compression, and (b,d)
diagram of the critical buckling force Fc and critical buckling strain εc. The top (bottom) panels
correspond to pristine (defective) SWNTs. The difference in the color of data points represents the
value of the chiral index n shown in the legend of the panels (a,c); i.e., the red (n = 10) and purple
(n = 34) lines are corresponding to the thinnest and thickest SWNTs, respectively.

In case of SWNTs containing a SW defect, the force-strain curve for the S-mode
(i.e., 10 ≤ n ≤ 14) are different from the defect-free case. They exhibit a smooth arc,
rather than a sharp peak, at the maximum point, as demonstrated in Figure 2c. Moreover,
the disappearance of the sudden drop in the force-strain curve was because the defective
SWNTs cannot maintain the initial straight cylindrical shape—even in the elastic region.
Prior to reaching the maximum force, they deform slightly into an S shape in a gradual
manner, which renders the defining of the critical buckling point associated with the S-
mode of defective SWNTs as non-trivial. However, this study defined the S-mode buckling
point for defective SWNTS considering the maximum point of the applied force, despite the
disappearance of a sharp peak. The buckling of Z-mode and I-mode continued exhibiting
discontinuous behavior both in the slope of force-strain curves and deformation, even for
defective SWNTs.

Figure 2b is a diagram of the critical buckling force Fc and critical buckling strain
εc of zigzag SWNTs with various index n. With an increase in n from n = 10, the two
critical quantities increased until n reached 16 or 17 (depending on the presence of a SW
defect). A further increase in n resulted in the reduction in εc and complex (non-monotonic)
fluctuations in Fc, as depicted in the diagram. This feature was applicable overall regardless
the presence of an SW defect. Further, the maximum value of εc was smaller for defective
SWNTs (∼0.042) than defect-free SWNTs (∼ 0.052). It will be shown later that the maximum
values of both Fc and εc that the SWNT can withstand are associated with the Z-mode
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buckling state. Thus, SWNTs showing Z-mode buckling with a moderate diameter have
the strongest ability to resist buckling deformation.

5. Phase Boundary for Buckling Mode Switching

Figure 3a,b show the modulation in Fc and εc with increasing n, respectively. For
defect-free SWNTs, the curves of Fc and εc exhibited two cusps. The left cusp was located
near the phase boundary that separated the S- and Z-mode phases. Whereas, the right
cusp was located near the boundary between the Z- and I-mode phases. The occurrence
of the two cusps can be attributed to the curves of Fc and εc being composed of the three
downward-convex parabolic curves that are depicted by dotted curves in Figure 3. Each
parabolic curve corresponded to one of the three different buckling modes. Consequently,
among the three buckling modes, the mode with the smallest force and strain required to
generate buckling was realized.
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Figure 3. Tube diameter-driven modulations in: (a) the critical buckling force Fc, and (b) critical
buckling strain εc. The presence/absence of a SW defect and the buckling mode occurred are
distinguished by differences in colors and symbols, respectively. The curve profile with two cusps in
the data of the defect-free models is fitted with three parabolas each (solid and dashed lines), which
are corresponding to the S, Z, and I buckling modes.

For defective SWNTs, the two cusps were rounded and then merged into a single broad
peak, whereas the position of the phase boundary appeared insensitive to the insertion
of an SW defect. In particular, at the Z- and I-mode phases, the magnitudes of Fc and εc
were reduced by approximately 10–20 and 15–25%, respectively, compared with those for
defect-free cases.

6. Normalization of Axial Force Applied

Because the compressive force being dealt with is an extensive variable, the larger
the tube diameter, the larger the force proportionally. Thus, to eliminate this volumetric
effect and obtain a material-specific property, the compressive force is usually divided
by the cross-sectional area of the tube, resulting in pressure p. However, in the case of
SWNTs, there is no unique way to define the wall thickness because it is composed of a
single monatomic layer [47]. Therefore, to avoid the ambiguity of the definition of the wall
thickness h, the applied force F was divided by the perimeter length πd of the cylinder’s
cross section, which is referred to as the normalized force f :

f =
F

πd
. (1)
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The subsequent discussion considers f as an alternative measure to F and p, considering
that f has the same meaning as pressure p if it were further divided by the wall thickness h
of SWNTs.

Figure 4a,c shows the relation between the normalized force f and strain ε; the upper
(lower) panels correspond to defect-free (a single SW defect induced) SWNTs, respectively.
It is evident that within an elastic region, almost all data points are located on a slanted
straight line, similar to that in stress-strain curves for macroscopic elastic materials. The
slope of the slanted lines estimated from Figure 4a,c are 255–325 N/m and 257–321 N/m,
respectively. The similarity in the slopes indicates that Young’s modulus of SWNTs are
independent of the presence or absence of an SW defect, which is consistent with the
conclusions arrived at by a tight-binding molecular dynamics simulation [48].
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Figure 4. (a,c) Normalized force f ≡ F/(πd) (i.e., applied compressive force F divided by circum-
ferential length πd) as functions of the compressive strain ε. (b,d) Diagram of the critical buckling
normalized force fc ≡ Fc/(πd) and critical buckling strain εc. The top (bottom) panels correspond to
pristine (defective) SWNTs. The colors of data points and lines represent the chiral index n.

Figure 4b,d depict the diagram of critical buckling normalized force fc and the cor-
responding strain εc for defect-free and defective SWNTs, respectively. Almost all data
points were observed on a common straight line, except for a few left-bottom data points
(colored in red and magenta) that correspond to the S-mode buckling. Comparisons of
the two diagrams revealed that the insertion of an SW defect resulted in reduction in the
maximum values of fc and εc by approximately 19 and 24 %, respectively (represented by
the data point located in the upper right corner in the diagram).
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7. Diameter Dependence of fc

7.1. Logarithm Plot of fc(d)

As mentioned in Section 1, the buckling performance of SWNTs under compression
should be strongly dependent on the aspect ratio of the tube geometry. Consequently,
the value of fc deduced from the proposed SWNT model both with and without an SW
defect is expected to exhibit strong tube-diameter dependence, as demonstrated below.

Figure 5 shows the logarithm plot of the critical buckling normalized force fc(d)
as a function of tube diameter d. At small d, the slope of the curve is nearly equal to
2, indicating a nearly square power law of fc ∝ d2. However, a further increase in d
resulted in a decreasing tendency of fc, while the limit appeared to converge to a constant
value. The two contrasting behaviors of fc(d) at small and large d are explained in the
following discussion.
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Figure 5. (a) Logarithm plot of fc(d) as a function of tube diameter d. Two dashed curves, labeled
by f col

c and f shl
c , are deduced from Equations (3) and (6), respectively. The solid curve corresponds

to the approximated expression expressed as Equation (7) with the parameter setting of α = 4.0.
(b) Numeric data of Eh obtained by MD simulations published in Ref. [47]. An exponential fitting
curve to the data point, calculated by a nonlinear least square method, is depicted by a solid curve;
the explicit functional form is provided in the text. (c) Reduction in the critical buckling normalized
force caused by insertion of a SW defect; f SW

c and f Id
c are the value of fc for defective and defect-free

SWNTs, respectively.
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7.2. Square Power Law of fc at Small d

The square power law of fc ∝ d2 at small d region is the manifestation of columnar
buckling described by Euler’s formula. The formula states that a sufficiently slender elastic
material under the periodic boundary condition at both ends will buckle at the critical
buckling force Fcol

c expressed by

Fcol
c =

4π2

L2 EI, (2)

where E is the modulus of elasticity, I is the second moment of area of the cross section,
and L is length of the slender material. The application of the formula to a thin hollow
cylinder with diameter d and wall thickness h(� d) yields the associated normalized force
f col
c as

f col
c =

Fcol
c

πd
=

π2Eh
4
· d2

L2 , (3)

where the following approximation was used

I =
π

64

[(
d +

h
2

)4
−
(

d− h
2

)4
]
' π

16
hd3 at

h
d
� 1. (4)

Equation (3) is consistent with the square power law of fc ∝ d2 at small d, as observed in
Figure 5a.

7.3. Decreasing Behavior of fc at Large d

The decreasing trend of fc at large d can be plausibly explained from the two different
perspectives. First, it is deduced from the continuum elastic theory that an elastic hollow
tube does not undergo archwise column buckling when d is not extremely small compared
to L. Rather, it exhibits a circumferential shell buckling characterized by the periodic
modulation of the tube diameter along the axial and circumferential directions [32,49]. This
type of buckling mode is accompanied by the change in the cross-section shape with the
m-fold symmetry (m is an integer larger than 1). The threshold compressive force Fshl

c for
the circumferentialshell buckling of mode m is expressed as

Fshl
c =

2πEh2√
3(1− ν2)

· m2 − 1
m2 + 1

, (5)

which leads to

f shl
c =

Fshl
c

πd
=

2Eh2√
3(1− ν2) · d

· m2 − 1
m2 + 1

. (6)

The present cases (the Z and I modes) are corresponding to the 2-fold buckling mode
(m = 2). The axi-symmetric shell buckling is regarded as the extreme case of circumferential
buckling mode of m→ ∞ [1,50].

The second perspective is based on the negative correlation between the bending
rigidity of a rolled sheet and its tube diameter. As intuitively understood, rolling a flat
paper renders bending it harder; more precisely, rolling a soft flat paper into a cylinder
provides the paper, which was originally unable to stand on its own, with sufficient bending
rigidity to stand on its own. This phenomenon is also applicable to graphene sheets. Thus,
when the diameter d of the SWNT formed by rolling a flat graphene sheet is gradually
increased, the rigidity D against the axial compression decreases gradually. Finally, it
converges to the bending rigidity of the flat graphene sheet under in-plane compression.
In addition, this negative correlation between d and D may contribute to the decreasing
behavior of fc at large d, as observed in Figure 5a.
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7.4. Approximate Curve for fc(d)

Summarizing the discussion so far, the d-dependence of fc observed in Figure 5 can be
approximated by the following expression [51]:[

1
fc(d)

]α

=

[
1

f col
c (d)

]α

+

[
1

f shl
c (d)

]α

, f col
c (d) = Ad2, f shl

c (d) = Bd−1, (7)

with the proportionality constants A and B defined in Equations (3) and (6), respectively.
When d is sufficiently small, the first term in the rightmost side of Equation (7) should be
dominant and thus fc ∝ d2 holds. In contrast, if d is sufficiently large, the second term
becomes dominant and thus fc becomes a decreasing function of d as fc ∝ d−1. These two
asymptotic behaviors of fc at large and small d imply the existence of a maximum of fc at a
moderate value of d, as demonstrated in Figure 5a.

The estimation of the constants A and B requires the numeric values of Eh and Eh2,
as well as ν, for SWNTs. However, the manner in which to properly define the values of
these mechanical constants in SWNTs has been a long-standing problem. Many theoretical
consequences have proposed that these values are not ideally constants—rather, they can
vary depending on the tube diameter. Among the several theoretical suggestions, this
study employed the numeric data of E and h obtained through MD simulations in Ref. [47].
The approximation function of the h-d and ν-d relationships are provided in a previous
study, respectively, as follows:

ν(d) = −0.314 ln
(

d
2

)
+ 0.307, (8)

h(d) = 0.13749− 0.18515 exp
(
−0.5156d

2a

)
[nm], (9)

where a denotes the C-C bond length in SWNTs. However, no approximation function is
available for the E-d relationship (although the numerical simulation data was provided
in Ref. [47]). Thus, this study attempted to develop an approximation function. The Eh-d
relationship was fit instead of directly fitting the E-d relationship itself for the following
two reasons: (i) the Eh product (also referred to as “2D elastic modulus”) can be uniquely
determined from the normalized force-strain ( f -ε) curve; and (ii) with increase in d, the Eh
product is expected to converge quickly to a certain value (2D elastic modulus of graphene).
Consequently, these features render the approximation process easier, and a sufficiently
simple function form can be presumed.

Figure 5b shows the values of the product Eh as a function of d deduced from Ref. [47];
the solid curve is an exponential fitting curve defined by

Eh = c1 exp
(
− d

c2

)
+ c3, (10)

where the appropriate values of the fitting parameters, ci (i = 1, 2, 3) were calculated by
employing a nonlinear least square method. All the data points were found to be well
fitted by Equation (10) with c1 = 13.3 N/m, c2 = 0.907 nm, and c3 = 331 N/m. The E-d
relationship can be obtained by dividing Equation (10) by Equation (9). Based on this,
the values of A and B were evaluated for different ds, followed by substituting them into
Equation (7) to obtain the approximate curve of fc(d). The solid lines shown in Figure 5a is
the obtained approximate curve with setting of α = 4.0. The square power law at small d
was accurately reproduced by the curve. At large d, the curve was fairly consistent with
the data points, even though Equation (7) was originally introduced for prediction of the
buckling behavior in the continuum bodies.

It is noteworthy that the influence of the model dimensions on the buckling behavior
is expected to differ between thick and thin SWNTs. Thus, change in the SWNT model size,
such as length, can lead to different buckling behaviors. Indeed, how the SWNT model
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size affects the buckling behavior can be estimated from Equations (3) and (6). In the case
of thin SWNTs (i.e., small aspect ratio, d/L), Euler’s buckling law of Equation (3) holds
approximately. In this case, the buckling behavior is governed by the single parameter of
the aspect ratio, d/L, rather than being influenced by d and L independently. In the case of
thick SWNTs, on the other hand, the effect of the model size is given only by d. The above
consideration leads to the possibility that the boundaries between the S, Z and I buckling
modes may change with varying the model size.

7.5. Defect-Induced Reduction in fc(d)

Figure 5c shows the reduction in the critical buckling normalized force fc, defined by
the ratio of

f SW
c − f Id

c

f Id
c

, (11)

where f SW
c and f Id

c are the values of fc in a defective and defect-free (i.e., ideal) SWNT for
a particular chiral index n, respectively. This ratio accounts for the fc-reduction caused
by the insertion of an SW defect into the pristine SWNT model. Figure 5c shows that an
SW-defect insertion results in a reduction in fc by approximately 10–25% depending on
n. In particular, the magnitude of reduction in fc was enhanced at n = 16 and n = 22;
these values of n coincided with the tube diameters d at which fc for the defect-free system
showed upward sharp cusps as observed in Figure 5a. This finding implies that the SWNT,
which shows the strongest buckling resistance in the absence of SW defects, exhibits the
most significant reduction in the buckling resistance when a SW defect is inserted.

8. Buckling of SWNTs with Two SW Defects

Intuitively, it is expected that the larger the number of defects contained in a system,
the smaller the value of the critical buckling force of the system. However, this expectation
is not always applicable to SWNTs having SW defects, as demonstrated below.

Figure 6b shows the force-strain curve for (10,0) zigzag SWNTs having two SW defects.
The defect position varied as depicted in Figure 6a, wherein the SW defect indicated by
the bottom red square was fixed but the one indicated by the upper red square was shifted
step-by-step along the direction parallel to the circumference of the tube. Regarding the
defect configurations labeled by H0 and H1, the maximum point of the force-strain curve
exceeded the maximum for the single-SW case, implying that the SWNT having two defects
can withstand a compressive force larger than the SWNT having only one defect. However,
such a counter-intuitive phenomenon does not occur for the defect configurations shown in
Figure 7a, where the two SW defects are always located on opposite sides of the cylindrical
axis of the (10,0) zigzag SWNT. In the latter case, the maximum value of the force-strain
curve for two-defect systems were always below that for a single-defect system as shown
Figure 7b, regardless of changes in the distance between the two SW defects.

The resistance to the axial compression increased with the increase in the number of
SW defects because the buckling mode that occurred in (10,0) zigzag SWNT was always in
the S-mode. In the S-mode buckling, the two positions at which the Gaussian curvature
of the deformed cylindrical surface acquired the maximum positive value were always
located on opposite sides of the cylindrical axis. If an SW defect was present at each of
these two positions, the original straight shape of the SWNT became slightly unstable
under compressive force because the carbon atoms near the SW defect preferred to be
displaced in the out-of-plane direction. This is exactly the case realized in the defect
configuration labeled by V15 in Figure 7a. However, if one of the two SW defects located at
the position where the surface curvature exhibited a negative maximum value, as shown
in the configuration labeled by H0 in Figure 6a, the out-of-plane displacement of the SW
defect tended to suppress the archwise deflection of the tube that locally promoted the
negative Gaussian curvature of the surface.
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Figure 6. (a) Configuration of the two SW defects. The defect position is shifted in the direction hori-
zontal to the circumference of the tube. (b) Force-strain curve for the different defect configurations.
The critical point for the defect configurations labeled by H0 and H1 exceed the one-SW-defect curve,
indicating the paired-defect-induced enhancement in the resistance to axial compressive force.
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Figure 7. (a) Configuration of the two SW defects. The defect position is shifted in the direction
vertical to the circumference of the tube. (b) Force-strain curve for the different defect configurations.
The critical points of almost all defective curves are below that of the one-SW-defect curve.

Thus, increasing the number of SW defects may increase the mechanical resistance of
the SWNT to the compressive load, depending on the relative configuration between the
positions where the surface Gaussian curvature is maximum in the buckled states and the
position where the SW defect exists.

9. Summary

This study investigated the axial buckling of zigzag SWNTs having SW defects while
changing the value of the tube diameter d. The effect of changing the tube diameter d
was manifested primarily in the transition between the three buckling modes (S, Z, and I)
and the contrasting behavior of the critical buckling load at large and small d regions.
The square power law at small d was due to the Euler-type columnar buckling, whereas
the decreasing trend at large d was explained by considering the local shell buckling mode.
In addition, it was found that the inclusion of multiple SW defects in zigzag SWNTs resulted
in the counterintuitive phenomenon of the buckling resistance being strengthened with an
increase in the number of defects increases.
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