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Abstract: Flexible and printed perovskite solar cells (PSCs) fabricated on lightweight plastic substrates
have many excellent potential applications in emerging new technologies including wearable and
portable electronics, the internet of things, smart buildings, etc. To fabricate flexible and printed PSCs,
all of the functional layers of devices should be processed at low temperatures. Tin oxide is one of
the best metal oxide materials to employ as the electron transport layer (ETL) in PSCs. Herein, the
synthesis and application of SnO2 quantum dots (QDs) to prepare the ETL of flexible and printed
PSCs are demonstrated. SnO2 QDs are synthesized via a solvothermal method and processed to
obtain aqueous and printable ETL ink solutions with different QD concentrations. PSCs are fabricated
using a slot-die coating method on flexible plastic substrates. The solar cell performance and spectral
response of the obtained devices are characterized using a solar simulator and an external quantum
efficiency measurement system. The ETLs prepared using 2 wt% SnO2 QD inks are found to produce
devices with a high average power conversion efficiency (PCE) along with a 10% PCE for a champion
device. The results obtained in this work provide the research community with a method to prepare
fully solution-processed SnO2 QD-based inks that are suitable for the deposition of SnO2 ETLs for
flexible and printed PSCs.

Keywords: perovskites; solar cells; low-temperature; solution-processed; quantum dots; electron
transport layer

1. Introduction

With the tremendous improvement in the power conversion efficiency (PCE) up to
25.7% in the matter of a decade, hybrid perovskite solar cells (PSCs) made their mark in
the electronic industry [1–4]. Even though some challenges such as device stability still
need to be addressed, there has been a growing interest in scaling up the PSC fabrication
process. Most high-efficiency PSCs are currently manufactured using the spin-coating
method because of the better control over the film thickness, quality, and reproducibility
of the device functional layers as well as the possibility of applying different spin-coating
techniques such as dynamic spinning, hot-casting, anti-solvent annealing, gas and vacuum-
quenching, etc. [5,6]. In comparison to other solution-processed techniques, spin-coating is
an easy method to fabricate high-quality perovskite films [7]. One of the main limitations of
the spin-coating method is its non-scalability [8]. Hence, various scalable methods including
screen printing, blade coating, inkjet printing, and slot-die coating have been developed to
fabricate PSCs [9–14]. The printing methods provide an appealing strategy for large-scale
and high-throughput fabrication and can help to accelerate the commercialization of PSC
technology [15–18].
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Slot-die coating is one of the more appealing scalable coating methods due to its ability
to produce solution-processed thin films with a high uniformity across large areas, its ability
to coat thin films at a higher speed, its lesser material waste, and its ability to be integrated
into both sheet-to-sheet (S2S) and roll-to-roll coating (R2R) systems. This affords the
fabrication of PSCs on both rigid and flexible substrates [19,20]. Flexible and printed PSCs
are of high interest due to their lightweight nature, portability, and low-manufacturing cost,
along with the possibility of integrating them into other technologies, which promises many
potential lucrative applications of this technology in wearable electronics, the internet of
things (IoT), smart buildings, the automobile industry, etc. Flexible devices can be achieved
by replacing traditional glass substrates with plastic substrates, such as polyethylene
terephthalate (PET) or polyethylene naphthalate (PEN), with a thin layer of transparent
conducting oxide (TCO). The TCO layer is typically made of indium-doped tin oxide (ITO).
However, other alternatives also exist [21–23].

To successfully fabricate flexible PSCs, the three main semiconducting device func-
tional layers, which are the electron transport layer (ETL, n-type), the perovskite photo-
absorber layer (i-type), and the hole transport layer (HTL, p-type), must be processed at
temperatures below the glass transition temperature of the employed plastic substrates
(usually < 150 ◦C) [24–26]. The ETL is responsible for the extraction of electrons from the
perovskite photo-absorber layer and then for their efficient transportation to the TCO layer.
Mostly, metal oxides such as ZnO, TiO2, or SnO2 are used as ETL [27,28]. However, there
are other alternatives that can be based on ternary metal oxides and organic materials (e.g.,
BaSnO3, Zn2SnO4, PEDOT:PSS, PEDOT:PSS:MoS2, etc.) [29,30]. By covering the surface
of TCO, ETL prevents the direct contact between the TCO and perovskite layers [31]. The
selection of an efficient ETL requires a material with a good optical transmittance (in the
visible range), a high electron mobility, a low production cost, and the energy levels (con-
duction and valence band energies) that form a good type-2 junction with the energy levels
of the chosen perovskite material [32]. Among all the candidates, SnO2 stands out as one of
the best candidates for ETL due to its wide optical band gap (3.6–4.0 eV), deep conduction
band, better transparency, high electron mobility (~240 cm2 V−1 s−1), long carrier diffusion
length, excellent chemical stability, and ease of low-temperature preparation (via solution
processing) [33–36]. Due to its solution processibility, SnO2 can be printed and bring advan-
tages such as a low production cost, flexibility, easy scalability, and additive manufacturing
processes within reach [37–39].

In 2018, T. Bu et al. reported slot-die coated flexible PSCs with an ETL made of commer-
cially available SnO2 NPs (15% of colloidal dispersion in H2O, Alfa Aesar). The resultant de-
vices, in which a mixed cation and mixed anion perovskite (Cs0.05(FA0.85MA0.15)0.95Pb(I0.85-
Br0.15)3) are employed as a photoactive layer and Spiro-OMeTAD is employed as an HTL,
showed PCE values around 18% [40]. In 2020, Vijayaraghavan et al. reported the use of
solution-processed SnO2 quantum dots as an ETL for PSCs. The ETL was prepared in an
aqueous medium using DI water, SnCl2·2H2O, and thiourea as precursors. PCE values of
around 13.5% have been achieved at an annealing temperature of 180 ◦C, and the devices
are fabricated on glass substrates via the spin-coating method [41]. In 2021, Ashina et al.
deposited the SnO2 ETLs using a dip-coating method on glass substrates with a fluorine-
doped tin oxide (FTO) layer as the TCO. The authors deposited multiple layers (1–4) of a
SnO2 precursor solution and achieved PCE values around 3.2%. The annealing temperature
for the ETL was set to 150 ◦C [1]. While the aforementioned PCE values obtained with the
SnO2 ETLs are appreciable, the annealing temperatures used in these studies, however,
are still too high from the flexible PSC fabrication perspective. In 2021, Ren et al. reported
a fabrication of PSCs on glass/FTO substrates using the blade coating method, in which
the ETLs of devices are made of SnO2 QDs with an annealing temperature of 200 ◦C. The
authors achieved devices with PCE values around 21.6%. The obtained devices are fabri-
cated by using a mixed perovskite consisting of FAI:MABr:MACl:PbBr2:PbI2 (molar ratio:
1.1:0.2:0.5:0.2:1.2) in DMF:DMSO solvent and by employing an air-knife for the deposition
of the perovskite layer [42]. Using SnO2 QDs instead of NPs provides the advantage of
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having a thin, dense, and uniform film of ETL. QDs have a wider bandgap (about 4.20 eV)
compared to NPs, and this enhances the optical transmittance of the resulting ETL [43]. The
main issue that limits the use of SnO2 ETL for flexible devices is its annealing temperature,
which has been found > 150 ◦C, while the typical flexible substrates such as PET and
PEN usually have temperature limitations in terms of their structural integrity [40,44–46].
One of the possible solutions for this could be the use of already crystalline SnO2 QDs
for the solution-processed deposition of SnO2 ETLs. Here, the use of already crystalline
SnO2 QDs would not only result in crystalline SnO2 ETLs but would also allow for the
avoidance of the high-temperature processing step, which is crucial for devices based on
plastic substrates. The low-temperature and solution-processed deposition of SnO2 ETL is
advantageous from the perspective of flexible and printed optoelectronics.

In this work, a method to employ SnO2 quantum dots, synthesized via a solvothermal
method, to prepare ETLs of flexible PSCs fabricated on PET/ITO substrates is demon-
strated. For the synthesis of SnO2 quantum dots, tin chloride and ethanol are used as the
solute and solvents, respectively. The obtained quantum dots are crystalline with sizes
~2.4 nm [47]. The obtained SnO2 QDs are used to prepare aqueous inks with different
SnO2 QD concentrations to slot-die coat ETLs on PET/ITO substrates with a low annealing
temperature. The obtained ETLs on PET/ITO substrates are then used to fabricate flexible
and printed PSCs by also using the slot-die coating method. The metallic contacts (gold
electrodes) of the devices are deposited using a thermal evaporator and a shadow mask.
The solar cell performances of the devices are compared to rule out the best ETL ink com-
position. A statistical analysis of the device performance parameters is carried out, and the
performance of the champion device is discussed. The findings of this study can be useful
in the synthesis and use of SnO2 QDs for application in printed and flexible optoelectronics.

2. Materials and Methods
2.1. Materials

Methylammonium iodide (MAI, 99.995%) was purchased from GreatCell Solar. Tin
chlo-ride dihydrate (SnCl2·2H2O, 98%), lead iodide (PbI2, 99%), chlorobenzene (CB, 99.80%),
4-tert-Butylpyridine (4tBp, 98%), bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI,
99%), acetonitrile (ACN, 99.80%), methylamine solution (MA, 33 wt% in ab-solute ethanol),
and acetone (99.80%) were purchased from Merck. 2,2′,7,7′-Tetrakis-(N,N-di-4-methoxyphe-
nylamino)-9,9′-spirobifluorene (Spiro-MeOTAD, 99.50%) and potassium hydroxide pellets
(KOH, 85%) were purchased from Lumtec and ACS reagent, respectively. 2-Propanol (IPA,
99.80%) and ethanol (96.3%) were purchased from a local supplier. Gold (Au, 99.99%)
was purchased from Kurt. J. Lesker. All the chemicals were used as received without
any treatment.

2.2. SnO2 QDs Synthesis

SnO2 QDs were prepared by dissolving 1 mol of SnCl2·2H2O in 10 mL of ethanol in
the presence of oxygen. The mixture of precursors was vigorously stirred for 4 h using
a magnetic stirrer. The obtained QD solution was then transferred into a 50 mL Teflon
liner in a stainless-steel autoclave (Toption). The solvothermal treatment was carried out at
150 ◦C in an oven for 24 h [48]. After this, the obtained solution was centrifuged to
precipitate the SnO2 QDs. The obtained precipitate (SnO2 QDs) was washed consecutively
with DI water, acetone, and ethanol. Then, the SnO2 QDs were dried at 80 ◦C in the oven for
12 h. A flow chart in Figure 1 shows the process for the synthesis of SnO2 QDs to prepare
SnO2 QD inks.
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Figure 1. Preparation of ETL ink with SnO2 QDs.

2.3. Ink Preparations

The aqueous SnO2 QD inks were prepared using freshly synthesized SnO2 QDs. For
this, the dried powder of SnO2 QDs was ground and redispersed in DI water (at different
wt%) with the help of 1 M KOH (in water) solution as a pH mediator (see Figure 1). The
obtained colloidal solution was then filtered using a 0.45 µm-sized PTFE filter and further
diluted with DI water to obtain the final ink solutions, with the concentrations of SnO2 QDs
being 1, 1.5, 2, 2.5, and 3 wt%. The perovskite (methylammonium lead iodide, MAPbI3) ink
was prepared using PbI2 and MAI as precursors, while MA and ACN were used as solvents.
For this, 1 mol of PbI2 and MAI were dissolved in 700 µL of MA by stirring at 70 ◦C and
460 rpm for 1 h using a hot plate with a magnetic stirrer. Next, 700 µL of ACN was added
to the solution and stirred at room temperature for an additional 3 h. The obtained final
perovskite ink solution was then filtered using a 0.45 µm-sized PTFE filter and was ready
for use. The HTL ink was prepared by simply dissolving 45 mg of Spiro-MeOTAD in
1 mL of CB using a vortex shaker. After 1 h of shaking, 28.8 µL 4tBp and 17.5 µL lithium
salt solution (520 mg mL−1 of Li-TFSI in ACN) were added to the Spiro-MeOTAD/CB
solution. The final HTL ink solution was then filtered using a 0.45 µm-sized PTFE filter for
further use.

2.4. Device Fabrication

For the fabrication of flexible and printed PSCs, a freshly cleaned PET/ITO substrate
was placed onto the chuck of a slot-die coater (VectorSC, FOM Technologies, Copenhagen,
Denmark) and fixed using vacuum suction to keep the substrate perfectly flat on the surface
of the chuck. The PET/ITO substrates were cleaned by (1) washing them consecutively
in DI detergent water, clean DI water, acetone, and IPA for 10 min in each media using
an ultrasonic bath, (2) drying them with the flow of compressed air, and (3) subjecting
them to UV-Ozone treatment for 10 min. The SnO2 QDs inks were printed on the PET/ITO
substrates using a clean slot-die head. Then, the substrates were annealed in the oven at
140 ◦C for 30 min. This step is necessary to remove the remaining water from the ETL film
prior to the deposition of the perovskite layer on top of it. Once the substrates were cooled
down to room temperature, they were placed onto the chuck of the slot-die coater again,
and the perovskite ink was printed on top of the ETL using a clean slot-die head. Then, the
substrates were annealed again in the oven at 100 ◦C for 10 min to crystallize the perovskite
layer. Next, the HTL ink was printed on top of the perovskite layer using a clean slot-die
head. All of the device functional layers were printed in an ambient environment at room
temperature (17 ◦C) and a relative humidity of 20–24%. After depositing all the functional
layers, the substrates were left in the atmosphere of oxygen at room temperature for 4 h
(oxygen annealing). This step helps to enhance the hole transporting properties of the Spiro-
MeOTAD HTL. Finally, the 80 nm-thick Au electrodes were deposited using a vacuum
thermal evaporator (Mini SPECTROS, Kurt J. Lesker, USA) and a shadow mask. Overall,
the devices have the following structure: PET/ITO/SnO2/MAPbI3/Spiro-MeOTAD/Au.
Figure 2 represents a schematic diagram of the device fabrication process and an energy
level diagram for the fabricated PSCs [49,50]. The reference devices without ETL were also
fabricated using the exact same steps as those in the regular devices (with ETL), except
for the ETL deposition step, which was omitted. Hence, the reference devices have the
following structure: PET/ITO/MAPbI3/Spiro-MeOTAD/Au.
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2.5. Characterization

A transmission electron microscope (TEM, JEOL JEM - 1400 Plus, Tokyo, Japan) was
used to estimate the particle size and crystallinity of the obtained SnO2 QDs. An X-ray
diffractometer (XRD, SmartLab Rigaku, Austin, TX, USA) was used to examine the crystal
structure of the SnO2 QDs (using Cu Kα = 1.5418 Å). A scanning electron microscope
(SEM, Zeiss Crossbeam 540, Oberkochen, Germany) was used to obtain the cross-section
images of the fabricated devices and to study the morphology of the prepared ETLs. The
optical transmittance of the samples was measured using a UV-Vis spectrometer (Lambda
1050, PerkinElmer, Waltham, MA, USA). The performance of the fabricated devices was
characterized using a solar simulator (Oriel Sol3A, Newport, Irvine, CA, USA) and a
Keithley 2400 source (Keithley, Solon, Ohio, USA). The current density-voltage (J-V) curves
of the devices were recorded at a scan rate of 400 mV s−1 between −0.2 V and +1.2 V. The
device area was 0.1 cm2, and a mask with an active area of 0.03 cm2 was used to measure
the device J-V curves. An external quantum efficiency (EQE) measurements system (ORIEL
IQE-200, Newport, Irvine, CA, USA) was used to record the EQE spectra of the devices.

3. Results and Discussion
3.1. Crystallinity of SnO2 QDs

The XRD measurements were performed on as-prepared SnO2 QDs to analyze their
structure. Figure 3 shows an XRD pattern of as-prepared SnO2 QDs. The XRD pattern
shows the diffraction peaks at 2θ = 26.7◦, 34.05◦, 38.24◦, 52.1◦, 58.07◦, 62.5◦, and 65.00◦,
which correspond to the reflections from the (110), (101), (200), (211), (002), and (301)
lattice planes of SnO2, respectively. All of the peaks match well with JCPDS Data Card
No. 77-0452, indicating that the current structure is for SnO2, which exists in the tetragonal
rutile crystalline phase. The crystal lattice parameters were calculated to be a = 0.4739 nm
and c = 0.3221 nm (JCPDS card # 77-0452) [51–53]. The estimated average crystallite size
for the SnO2 QDs is around 2.4 nm, which was calculated from the two major peaks at
(110) and (211) using Scherrer’s equation (see Supporting Information) [38,39]. The full
width at half-maximum (FWHM) values for the (110) and (211) peaks are about 3.6◦ and
3.5◦, respectively.
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3.2. Transmission Electron Microscopy

A TEM analysis is conducted to obtain the electron micrographs of as-prepared SnO2
QDs and to estimate their particle size. The average particle size estimated from the TEM
images (see Figure 4 and Figure S1 in Supporting Information) is around 2.4 nm, which
is in good agreement with the crystallite size determined using the XRD data shown in
Figure 3 [48]. The TEM image also indicates that the prepared particles have a uniform
size distribution (Figure S1 in Supporting Information) and a crystalline structure, which
is evident from the fringes shown in Figure 4b. The estimated value of d-spacing from
the TEM image of the as-prepared SnO2 QDs is around 0.33 nm (see the inset image in
Figure 4b). This corresponds to the {110} planes of SnO2. Since the size of the prepared
SnO2 QDs is smaller than the Bohr exciton radius (around 2.7 nm), it is reasonable to state
that the prepared particles are QDs of SnO2 [48,54].
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Figure 4. TEM micrographs of SnO2 QDs synthesized via a solvothermal route at a magnification of
(a) 40 kX and (b) 1500 kX. The inset image in (b) shows the fringes and d-spacing of SnO2 QDs.
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3.3. Optical Analysis

The investigation of the optical properties of the ETLs prepared using SnO2 inks with
different SnO2 QD concentrations was carried out using a UV-Vis spectrometer. Figure 5
shows the measured transmittance spectra of the slot-die coated ETLs on glass substrates
for the 250–900 nm wavelength range. A comparison of the UV-Vis spectra for different
ETLs shows that the transmittance of the ETL made with a 1 wt% SnO2 QD ink is the
highest and is well above 90% throughout the entire visible spectrum. The second highest
transmittance is for the ETL made with a 2 wt% SnO2 QD ink, which is slightly higher than
the one made with a 1.5 wt% SnO2 QD ink. The UV-Vis transmittance of the ETL made
with a 3 wt% SnO2 QD ink is slightly lower than the one made with the 1.5 wt% SnO2
QD ink. The lowest transmittance is observed for the ETL made with a 2.5 wt% SnO2 QD
ink. Overall, the UV-Vis transmittance measurements for the ETLs made with the 1, 2, and
3 wt% SnO2 QD inks show that, with an increase in the concentration of SnO2 QDs in the
inks, the obtained ETL films become thicker. This is expected, since inks with a higher
SnO2 QD content should produce thicker films. The observed minor inconsistencies with
the ETLs made with the 1.5 and 2.5 wt% SnO2 QD inks could be associated with some
small deviations in the ink preparation and deposition steps, which may influence the
thickness of the resulting films. It is noteworthy to point out that the transmittance of all
the ETLs is above 90%, which is beneficial from the PSC device perspective. Such high light
transmittances of the obtained ETLs allow more photons to pass into the perovskite layer
and enable the generation of more charge carriers in the complete devices [55–58].
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Figure 5. UV-Vis transmittance spectra of ETLs on glass substrates prepared using ETL inks with
different SnO2 QD concentrations.

3.4. Scanning Electron Microscopy

The SEM imaging is used to determine the thickness of the device functional layers.
Figure 6a shows the cross-section of an ETL on glass/FTO made using a 2 wt% SnO2 QD
ink. The thickness of the SnO2 QD ETL is about 25 nm. The cross-section SEM images
of ETLs made using the 1, 1.5, 2.5, and 3 wt% SnO2 QD inks are shown in Figure S2 in
Supporting Information. Figure 6b shows all three functional layers of a PSC slot-die coated
on glass/FTO. Here, the ETL is about 21–25 nm thick (see inset image), while the MAPbI3
and the HTL have thicknesses of around 600 and 650 nm, respectively. Figure 6c shows
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a top view SEM image of a bare PET/ITO substrate, in which the crystallites of the ITO
layer are clearly visible. Figure 6d shows the top view SEM image of a 2 wt% SnO2 QD
ETL slot-die coated on a PET/ITO substrate. The image indicates that the layer of SnO2
QDs completely covers the surface of the PET/ITO substrate, as no visible pinholes can be
observed from the ETL through which the surface of the ITO can be seen. By comparing
Figure 6c,d, the SnO2 QD ETL prepared by our technique can uniformly cover the surface
of the PET/ITO substrate. A uniform coverage of the TCO layer by an ETL is necessary for
good device operation.
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section view of slot-die coated device functional layers on glass/FTO (inset shows the presence of
ETL between the FTO and perovskite layers. (c) SEM top view image of the PET/ITO substrate
(magnification at 100 kX). (d) SEM top view image of the SnO2 QD ETL on the PET/ITO substrate
(magnification at 100 kX).

3.5. Device Analysis

Flexible and printed PSCs on PET/ITO substrates without and with ETLs, prepared
using SnO2 QD solutions with different concentrations (0, 1, 1.5, 2, 2.5, and 3 wt%), were
fabricated to rule out the suitable concentration of SnO2 QDs in the ETL inks. For this,
devices are fabricated for each concentration of SnO2 QDs in the ETL inks. Hereon, the
ETLs prepared with SnO2 QDs with 0, 1, 1.5, 2, 2.5, and 3 wt% will be referred to as E0,
E1, E2, E3, E4, and E5, respectively. It should be noted that E0 refers to bare ITO. The
prepared devices are tested, and a statistical analysis of the performance parameters of the
top 40 well-performing devices for different ETLs (E0, E1, E2, E3, E4, and E5) is carried out.

Figure 7 shows the statistical data for the solar cell parameters (obtained from the
reverse scans) such as open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor
(FF), PCE, series resistances (Rs), and shunt resistances (RSh) presented for devices with
E0, E1, E2, E3, E4, and E5 ETLs. Figure 7a shows that the average Jsc values increase from
E0 to E4. For E0, the Jsc value is around 1.12 mA cm−2, which, for E1, increases up to
7.7 mA cm−2. For E2, the Jsc value is 12.95 mA cm−2, which is higher than that in E1 by
around 40%. The average Jsc value for E3 (13.28 mA cm−2) is only slightly higher than that
in E2. The average Jsc value of E4 is about 14.31 mA cm−2, which is the highest among the
compared devices. As for E5, there is a small drop in the average Jsc value as compared to
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E4. Figure 7b shows that there is also a continuous increase in the average Voc values from
E0 to E3. The average Voc value in E3 is around 0.93 V, which is ~2.5 times higher than that
in E0 and ~13% higher than that in E1. Afterwards, a continuous decrease in the average
Voc values was observed for the devices with higher concentrations of SnO2 QDs in the
ETL inks (E4 and E5).
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of printed and flexible PSCs for different SnO2 ETLs prepared using SnO2 QD inks with different
QD concentrations.

The observed variations of the Voc and Jsc values with the change in the concentration
of SnO2 QDs in the ETL inks might be due to the impact of the ETL morphology and
thickness on the carrier recombination processes and series resistance in the devices (see
Table 1) [59]. With an increase in the concentration of SnO2 QDs in the ETL ink, the resulting
devices show higher RS values, as depicted in Figure 7e. The increase in RSh values with an
increase in the concentration of SnO2 QDs in the ETL inks (see Figure 7f) might indicate
that the resulting ETL becomes more compact and has fewer pinholes. This helps to reduce
charge carrier back-reaction, which is possibly the reason for the initial increase in the
average Voc and Jsc values (E0 to E3). The following decrease in the average Jsc value in E5
might originate from the suboptimal thickness of the ETL, which decreases the transmission
of photons through the ETL (see Figure 5). As for the average Voc values in E4 and E5, it
might be due to the higher charge recombination at the ETL/perovskite interface due to
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high the RS in the devices and the lower transmittance of the ETL films as compared to
E3 [60].

Table 1. Statistical analysis of the performance parameters of the top 40 well-performing devices for
different ETLs.

ETLs. Scan
Direction Jsc, mA cm−2 Voc, V FF, % PCE, % RS, Ω RSh, kΩ

E0 (ref.) Reverse
Forward

1.15 ± 0.113
0.94 ± 0.102

0.37 ± 0.046
0.33 ± 0.048

33.06 ± 1.326
27.95 ± 0.484

0.21 ± 0.050
0.12 ± 0.027

689.6 ± 119
994.8 ± 252.2

4.6 ± 2.4
16.6 ± 10.4

E1 (1 wt%) Reverse
Forward

7.72 ± 0.293
5.56 ± 0.264

0.82 ± 0.017
0.72 ± 0.021

38.69 ± 0.849
28.85 ± 0.723

2.52 ± 0.164
1.19 ± 0.096

238.4 ± 16.6
447.8 ± 121.1

3.7 ± 0.5
3.9 ± 0.4

E2 (1.5
wt%)

Reverse
Forward

12.95 ± 0.491
10.08 ± 0.572

0.89 ± 0.013
0.82 ± 0.014

51.15 ± 1.576
36.29 ± 1.453

5.84 ± 0.338
2.99 ± 0.23

246.6 ± 14.1
230.7 ± 11.4

3.9 ± 0.3
3.7 ± 0.3

E3 (2 wt%) Reverse
Forward

13.28 ± 0.22
8.52 ± 0.35

0.93 ± 0.01
0.88 ± 0.01

59.22 ± 0.75
28.27 ± 0.97

7.23 ± 0.18
2.15 ± 0.12

222.7 ± 11.2
221.3 ± 10.3

6.3 ± 1.4
3.3 ± 0.3

E4 (2.5
wt%)

Reverse
Forward

14.31 ± 0.63
10.34 ± 0.64

0.92 ± 0.01
0.85 ± 0.01

53.10 ± 1.82
32.50 ± 1.44

6.98 ± 0.46
3.08 ± 0.32

232.6 ± 12.9
223.5 ± 15.4

7.4 ± 1.1
4.2 ± 0.4

E5 (3 wt%) Reverse
Forward

11.76 ± 0.30
7.52 ± 0.30

0.83 ± 0.02
0.75 ± 0.02

50.62 ± 1.90
25.41 ± 0.77

5.16 ± 0.31
1.50 ± 0.12

297.2 ± 28.6
271.0 ± 27.4

11.7 ± 1.7
5.4 ± 0.8

Statistically, E3 ETL is found to be the most suitable to obtain well-performing devices. It is also noteworthy that
the highest performing device (champion device) is also obtained using E3 ETLs. Figure 8a shows the J-V curves
of the champion device with E3 ETL. The Voc, Jsc, and FF of the champion device for the reverse scan are around
0.96 V, 17 mA cm−2, and 63%, respectively. This results in a device PCE of around 10%. The solar cell parameters
obtained from both the forward and reverse J-V scan directions are presented in Table 2. The J-V curves of the
‘champion devices’ with E0, E1, E2, E4, and E5 ETLs and the corresponding solar cell parameters are presented in
Figure S3 in Supporting Information.

Table 2. Solar cell performance parameters for the champion device.

Scan
Direction Jsc, mA cm−2 Voc, V FF, % PCE, % Integrated Jsc,

mA cm−2

Reverse 16.6 0.958 62.9 10.006
10.76

Forward 12.3 0.925 25.4 2.906

Figure 7c depicts that there is a steep increase in the average FF values from E0 to
E3, followed by a slow decrease for E4 and E5. This trend is somewhat similar to the ones
observed in Voc and Jsc. The average FF value has a remarkable increase of around 37%
when the SnO2 QD concentration in the ETL ink is doubled (from 1 wt% (E1) to 2 wt%
(E3)). Generally, FF is a complex phenomenon. It depends on many device parameters
and processes taking place in solar cells. Here, the initial increase in the average FF values
from E0 to E3 could be associated with a decrease in the charge carrier recombination and,
possibly, an increase in the electrical conductivity of the ETLs due to an increase in their
thickness [61–63]. For E4 and E5, the decrease in FF might be due to an increase in RS in
the devices [60].

The trends in the Voc, Jsc, and FF values determine the final trend for the overall
variation of the average PCE with the change in the concentration of SnO2 QDs in the ETL
inks. As expected and consistent with the variations in the average values of Voc, FF, and,
to a certain extent, Jsc, the average PCE values of the devices increase from E0 to E3 and
then decrease. The average PCE in E3 is almost three times higher than that in E1. This
is mostly due to the significant increases in the average Jsc (by a factor of ~1.8) and FF
(by a factor of ~1.5) values when the SnO2 QD concentration in the ETL ink is doubled
(from 1 wt% (E1) to 2 wt% (E3)). All the devices with ETLs (E1, E2, E3, E4, and E5) have
significantly higher performances compared to the devices without any ETL (E0). This
indicates the necessity of ETLs to obtain a good performance of PSC devices. A detailed
overview of the solar cell parameters is presented in Table 1. We note that most of the metal
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oxide (e.g., ZnO, SnO2, and NiO) inks that are commercially available and used in printed
optoelectronic devices also have a metal oxide solid content at around 2–2.5 wt%. In light
of this, the trends observed in this work appear reasonable and somewhat consistent with
the commercially available inks [64–67].
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Figure 8. (a) J-V curves and (b) EQE spectrum with an integrated Jsc curve for the champion device.

The external quantum efficiency (EQE) measurements are also performed on the cham-
pion device with E3 ETL to obtain its spectral response. Figure 8b shows that the device has
an EQE spectrum that is typical for the MAPbI3-based PSCs [68,69]. The device shows more
or less stable EQE values at around 50% throughout the visible spectrum. The integrated
Jsc value obtained from the EQE spectrum of the champion device is around 11 mA cm−2

(Figure 8b). This is comparable to the Jsc value of the device extracted from the J-V curve
for the forward scan direction (see Table 2). The EQE spectra of the ’champion devices’
with E0, E1, E2, E4, and E5 ETLs are presented in Figure S4 in Supporting Information.

In order to study the mechanical stability of flexible PSCs, the fabricated device with
E3 ETLs is subjected to a repeated cycle of compressive bending to a radius of around 1 cm,
and their solar cell performance is measured after every 10 bending cycles. Overall, the
devices are subjected to 50 bending cycles. Figure 9 shows the variations in the solar cell
parameters of a device with E3 ETL upon bending. After the first 10 bending cycles, the
Jsc value of the device decreases by 45%, and the FF value decreases by 37%. These fast
decays in the Jsc and FF values after the first 10 bending cycles could mainly be associated
with the deterioration of the structural integrity of the device due to the appearance of
cracks in the ITO layer [70–74]. This significantly increases the device series resistance.
Between the 10th and 50th bending cycles, the FF value of the device decays rather slowly
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and monotonously. A somewhat similar but slightly faster decay of the device’s Jsc value
is observed for the same bending cycle range. These decays could be due to the further
and more complex deterioration (e.g., micro-delamination of the device functional layers,
formation of micro-cracks and micro-voids in the device[s functional layers, etc.) of the
device’s structural integrity [75–77]. As for the device’s Voc, there is almost a linear decay
trend with the increase in the number of bending cycles. This indicates the formation
of many defects (microcracks) in the perovskite layer, which increases the rate of charge
carrier recombination in the layer and leads to a corresponding decrease in the Voc and Jsc
values of the devices [78–81]. These trends in the behavior of the Jsc, FF, and Voc during
the bending test result in a fast decay of the device’s PCE after the first 10 bending cycles (a
decrease from 7% to 2.5%) and a slower decay between the 10th and 50th bending cycles.
After the 50th bending cycle, the PCE of the device becomes around 0.84%. This is smaller
(by a factor of ~8) than the initial PCE value (7%) of the device. The mechanical stability
could be further improved by the modification of the functional layers and their interfaces
in PSCs as well as the application of more durable TCO layers [82].
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4. Conclusions

In summary, the synthesis and application of SnO2 QDs as ETLs for flexible and
printed PSCs based on PET/ITO substrates are demonstrated. SnO2 QDs with diameters
around 2.4 nm are obtained using a solvothermal synthesis method. The QDs of SnO2 in
the prepared inks are crystalline and well-dispersed. The device functional layers (ETL,
perovskite, and HTL) are deposited using a slot-die coating method under ambient air
conditions. In order to optimize the printed PSCs, the water-based inks with different SnO2
QD concentrations for preparing different thicknesses of ETLs are investigated. The devices
with ETLs obtained by using a 2 wt% SnO2 QD ink show the best performance (the average
PCE for the reverse scan direction is around 7.23%). The champion device, which shows a
PCE value of around 10%, is also obtained with the ETL prepared using the 2 wt% SnO2
QD ink. The mechanical stability of a device with the 2 wt% SnO2 QD ETL is investigated
by subjecting the device to a bending test. The initial fast degradation of the performance
of the device is attributed to the cracking of the ITO layer in the device, whereas the further
slower decay is a result of more complex deterioration in the structure of the device. The
findings of the work can be useful in developing new electronic inks for optoelectronic
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applications and in establishing the advanced low-temperature manufacturing protocols
for the printing of optoelectronic devices on heat-sensitive substrates.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12152615/s1, Figure S1. Particle size distribution; Figure S2.
SEM cross-section images of ETLs on glass/FTO made with (a) 1 wt%, (b) 1.5 wt%, (c) 2.5 wt% and,
(d) 3 wt% of SnO2 QD inks; Figure S3. J-V curves of champion devices with (a) E0, (b) E1, (c) E2, (d)
E4, and (e) E5 ETLs; Figure S4. EQE spectra of champion devices with different ETLs (E0, E1, E2, E4,
and E5) [83,84].
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