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Abstract: In recent years, the use of inexpensive and efficient catalysts for the electrocatalytic CO2

reduction reaction (CO2RR) to regulate syngas ratios has become a hot research topic. Here, a series
of nitrogen-doped iron carbide catalysts loaded onto reduced graphene oxide (N-Fe3C/rGO-H) were
prepared by pyrolysis of iron oleate, etching, and nitrogen-doped carbonization. The main products of
the N-Fe3C/rGO-H electrocatalytic reduction of CO2 are CO and H2, when tested in a 0.5 M KHCO3

electrolyte at room temperature and pressure. In the prepared catalysts, the high selectivity (the
Faraday efficiency of CO was 40.8%, at −0.3 V), and the total current density reaches ~29.1 mA/cm2

at −1.0 V as demonstrated when the mass ratio of Fe3O4 NPs to rGO was equal to 100, the nitrogen
doping temperature was 800 ◦C and the ratio of syngas during the reduction process was controlled
by the applied potential (−0.2~−1.0 V) in the range of 1 to 20. This study provides an opportunity to
develop nonprecious metals for the electrocatalytic CO2 reduction reaction preparation of synthesis
and gas provides a good reference

Keywords: N-Fe3C/rGO-H; electrochemical CO2 reduction; synergistic effect

1. Introduction

The Earth’s temperature is rising, and extreme weather, forest fires and ice shelf
collapses are a growing problem. Curbing climate warming has become an urgent issue for
the international community. CO2, as the most dominant greenhouse gas, is considered to
be the breakthrough point to curb warming. The concept of “carbon neutrality” was born.
Among the many carbon neutral technology pathways, there is one governance idea that
has attracted particular attention due to its high efficiency in reducing CO2 concentrations
in the atmosphere, namely, carbon capture and resource utilization. CO2 is an extremely
stable molecule that is involved in chemical synthesis as a raw material and requires
the absorption of large amounts of energy [1]. Therefore, transforming CO2 into syngas
under mild conditions is an urgent need for protecting the environment and reducing
energy consumption. [2]. The electrocatalytic CO2 reduction reaction (CO2RR) is mild,
does not require high temperature and pressure and only requires electricity consumed
from sustainable energy sources to convert CO2 to CO [3,4]. In addition, some electricity
waste is inevitable due to the cyclical nature of solar and wind power [5]. This process is
economically feasible through the use of excess CO2 and waste electricity [6–8].

CO2RR in aqueous solution is always combined with hydrogen evolution reaction
(HER); therefore, H+ in water is used as a source of hydrogen to prepare syngas [9–11].
Syngas is a mixture of hydrogen (H2) and carbon monoxide (CO) that can be used as a
raw material or intermediate in chemical synthesis, such as Fischer–Tropsch synthesis for
the preparation of alcohols and olefins. In recent years, researchers have designed a large
number of catalysts for the preparation of syngas from CO2RR [12,13]. Precious metals,
such as Au [14], Ag [15] and Pd3Bi [16], and other metals, such as Zn [17], Pb/CNT [18],
Co3O4-CDots-C3N4 [19], CdSxSe1−x [20], E-MoS2 [21] and Cu-Sn alloys [22], have been
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reported, with the latter making great progress. For example, Zou et al. [23] reported Ni-Co
double monoatomic loading to carbon nanotubes for the preparation of syngas with CO/H2
ratios between 1.3 and 1.5 and Ni-N4 and Co-N4 as the active sites for the CO2RR and HER,
respectively. Wang’s group [8] converted CO2 to syngas by selective phosphorylation of
reduced partial Cu3P nanowires, and the vacancies created by phosphorylation accelerated
charge transfer and significantly improved the activity and selectivity of CO2. However,
achieving high current density applications in aqueous solutions is still difficult in practice
and limited in scale due to the small reserves of precious metals in the Earth’s crust.
Therefore, the search for catalysts that are inexpensive and suitable for application in CO
conversion to H2/CO in Fischer–Tropsch synthesis is urgent.

Among many nonprecious metals, carbon-based materials intrigue researchers in
CO2RR due to their cheap price, large specific surface area and high electrical conductiv-
ity [24,25]. In particular, transition metals loaded onto N-doped carbon substrates (M-N-C)
have attracted the attention of researchers as new materials. Zhao et al. [26] prepared a se-
ries of Fe-N-C catalysts to control the ratio of H2/CO in the range of 4:1 to 1:3. Yue et al. [27]
designed the in situ loading of Fe-Ni alloys onto N-doped carbon substrates by changing
the applied potential and adjusting the Fe-Ni molar ratio to flexibly modulate the syngas
ratio. Jia’s group [28] developed a N-Fe3C/rGO catalyst for CO2RR syngas preparation
and found that the synergistic effect of C-N and Fe-N facilitated CO generation, while
rGO as a carrier improved the electrical conductivity. To date, M-N-C catalysts for oxygen
reduction reactions have also shown efficient catalytic activity [29,30]. Although M-N-C
for CO2RR can produce CO, HCOOH and C2H4 [31–33], there are relatively few studies
based on low-cost M-N-C materials to investigate the ratio of syngas fractions through
adjustment of the applied electric potential. Here, we prepared Fe3O4 NPs using iron oleate
precursors and assembled them into rGO with different mass ratios and then doped with
nitrogen at different temperatures to investigate the effects of Fe3O4/rGO and nitrogen
doping temperature on the CO2RR. The catalysts prepared at mass ratio of 100 and 800 ◦C
were applied to the CO2RR, showing good activity and selectivity.

2. Results and Discussion

The iron oleate precursors were first prepared using FeCl3·6H2O and NaOA oil baths,
and the precursors were pyrolyzed to generate Fe3O4 NPs [34], which would be assembled
into rGO with different mass ratios of nanoparticles, as shown in Figure S1. The SEM
images of Fe3O4/rGO obtained after using HCl etching to obtain Fe3O4/rGO-H are shown
in Figure S2. The successful loading of Fe3O4 onto the rGO surface can be observed from
the SEM image. Comparing the distribution of Fe3O4 NPs on the rGO surface before and
after etching, it was found that the NPs discretely stacked and then agglomerated with
increasing nanoparticle loading before etching; after strong acid etching, the number of
nanoparticles decreased significantly, and a hole-like structure appeared. The addition
of a nitrogen source continued the sintering at high temperature, and it was found that
the dispersion of nanoparticles was better at 800 ◦C with an Fe3O4/rGO mass ratio of 100,
and agglomeration started to occur at 120, as illustrated Figure 1. Comparison of the SEM
images for different nitrogen doping temperatures showed no influence of temperature on
the morphology of the catalyst.

Figure 2a,b show the XRD patterns of Fe3O4/rGO before and after etching with strong
acid. The diffraction peaks are located at 30.0◦, 35.4◦, 43.1◦, 56.9◦ and 62.5◦ according to
the (220), (311), (400), (511) and (440) Fe3O4 crystal planes (PDF#99-0073), respectively. It
was observed that the crystal planes did not change before and after etching, but the peak
intensity was slightly weakened. XRD patterns of N-Fe3C/rGO-H obtained by calcination
of Fe3O4/rGO doped with dicyandiamine at high temperature are shown in Figure 2c. The
2θ positions of the peaks are at 26.4◦, 37.6◦, 39.8◦, 40.6◦, 42.8◦, 43.7◦, 44.5◦, 44.9◦, 45.8◦,
49.1◦, 51.8◦, 54.4◦, 58.4◦ and 70.8◦ corresponding to Fe3C’s (020), (121), (002), (201), (211)
(102), (220), (031), (112), (221), (122), (230), (231) and (123) sides of Fe3C (PDF#35-1-0772),
respectively. The XRD results demonstrate the successful preparation of Fe3O4 NPs by
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pyrolysis of iron oleate precursors, which were converted to Fe3C by sintering at high
temperature after nitrogen doping. The XRD of the comparison samples N-Fe3C/rGO-H-
700 and N-Fe3C/rGO-H-900 are shown in Figure S3, and the calcination temperature has
no effect on the formation of the crystalline phase of Fe3C.
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(d) N-Fe3C/rGO-H-700, (e) N-Fe3C/rGO-H-900, and (f) N-Fe3C-H.

Nanomaterials 2022, 12, 2546 3 of 10 
 

 

 
Figure 1. SEM images of (a) N-Fe3C/rGO-H-80, (b) N-Fe3C/rGO-H-100, (c) N-Fe3C/rGO-H-120, (d) 
N-Fe3C/rGO-H-700, (e) N-Fe3C/rGO-H-900, and (f) N-Fe3C-H. 

Figure 2a,b show the XRD patterns of Fe3O4/rGO before and after etching with strong 
acid. The diffraction peaks are located at 30.0°, 35.4°, 43.1°, 56.9° and 62.5° according to 
the (220), (311), (400), (511) and (440) Fe3O4 crystal planes (PDF#99-0073), respectively. It 
was observed that the crystal planes did not change before and after etching, but the peak 
intensity was slightly weakened. XRD patterns of N-Fe3C/rGO-H obtained by calcination 
of Fe3O4/rGO doped with dicyandiamine at high temperature are shown in Figure 2c. The 
2θ positions of the peaks are at 26.4°, 37.6°, 39.8°, 40.6°, 42.8°, 43.7°, 44.5°, 44.9°, 45.8°, 49.1°, 
51.8°, 54.4°, 58.4° and 70.8° corresponding to Fe3C’s (020), (121), (002), (201), (211) (102), 
(220), (031), (112), (221), (122), (230), (231) and (123) sides of Fe3C (PDF#35-1-0772), respec-
tively. The XRD results demonstrate the successful preparation of Fe3O4 NPs by pyrolysis 
of iron oleate precursors, which were converted to Fe3C by sintering at high temperature 
after nitrogen doping. The XRD of the comparison samples N-Fe3C/rGO-H-700 and N-
Fe3C/rGO-H-900 are shown in Figure S3, and the calcination temperature has no effect on 
the formation of the crystalline phase of Fe3C. 

 
Figure 2. XRD patterns of (a) Fe3O4/rGO, (b) Fe3O4/rGO-H and (c) N-Fe3C/rGO-H. 

TEM further observed the morphological changes of Fe3O4/rGO before and after 
strong acid etching and nitrogen-doped high-temperature calcination. Figure 3a shows 
the integration of nanoparticles on the carrier surface after calcination of Fe3O4 NPs and 
rGO components at 500 °C. Since the number of nanoparticles anchored on the carrier 
surface was limited, the excess and poorly anchored particles on the rGO surface were 
etched off with 1 M HCl, as shown in Figure 3d. Observation of the pictures revealed that 
the remaining Fe3O4 NPs were more uniformly dispersed on the carrier surface after the 
accumulation of particles in rGO was successfully etched off. Then, dicyandiamide was 

Figure 2. XRD patterns of (a) Fe3O4/rGO, (b) Fe3O4/rGO-H and (c) N-Fe3C/rGO-H.

TEM further observed the morphological changes of Fe3O4/rGO before and after
strong acid etching and nitrogen-doped high-temperature calcination. Figure 3a shows
the integration of nanoparticles on the carrier surface after calcination of Fe3O4 NPs and
rGO components at 500 ◦C. Since the number of nanoparticles anchored on the carrier
surface was limited, the excess and poorly anchored particles on the rGO surface were
etched off with 1 M HCl, as shown in Figure 3d. Observation of the pictures revealed that
the remaining Fe3O4 NPs were more uniformly dispersed on the carrier surface after the
accumulation of particles in rGO was successfully etched off. Then, dicyandiamide was
added and scorched at 800 ◦C. The Fe atoms overflowed on the rGO surface, leaving a
hollow shell (Figure 3g). These shell structures may become the active sites of the CO2RR.
In addition, the Fe3O4/rGO-100 and Fe3O4/rGO-H-100 grain sizes are approximately
10.2 ± 1.2 nm and 9.73 ± 1.2 nm, respectively, and the grain size of the empty shells is
approximately 6.74 ± 1.2 nm. The grain size data indicate that the decrease in the number of
iron atoms on the substrate and the high-temperature carbonization cause the nanoparticle
size and the size of the empty shells to gradually decrease. By measuring the lattice stripes
in the HRTEM of Fe3O4/rGO-100, Fe3O4/rGO-H-100 and N-Fe3C/rGO-H-100 as 0.241 nm,
0.200 nm and 0.288 nm, 0.195 nm responding to the (222), (400), (220) planes of Fe3O4 and
(112) faces of Fe3C, respectively. The diffraction rings of Figure 3c,f,i illustrate that all three
nanoparticles are polycrystalline in structure. The energy-dispersive X-ray spectroscopy
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(EDS) of N-Fe3C/rGO-H-100 clearly shows that C, Fe and N are uniformly distributed on
the rGO surface (Figure 3j–m).
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The interaction between rGO and Fe3C was studied and the Raman spectra of the
catalysts were determined (Figure S4). One band at approximately 1350 cm−1 (D-band)
corresponds to the hexagonal graphene plane in the samples tested. Another band at about
1586 and 1580 cm−1 (G-band) is attributed to defects in N-Fe3C/rGO-H-100, and rGO,
respectively [35]. ID/IG (the ratio of D-band to G-band intensity) is used to measure the
disorder of carbon materials [36]. The ID/IG value of N-Fe3C/rGO-H-100 (1.03) is greater
than that of rGO, suggesting that the loading of Fe3C onto the carbon-based material leads
to an increase in disorder leading to an increase in defects and the acquisition of more
active sites thus improving the performance of CO2RR [26].

Using XPS to understand the composition and valence of the catalyst, it can be seen
from Figure 4a that it mainly contains four elements, C, N, Fe and O, without other spurious
peaks, in agreement with the mapping results. As shown in Figure 4b, the fine spectra of
C1s coincide with peaks positioned at 284.6, 285.7 and 286.6 eV, corresponding to C=C, C-N
and C=O, respectively [37]. The characteristic peaks of the high-resolution spectra of N1s
were located at 398.5, 399.7, 400.8 and 403.9 eV, corresponding to pyridine N, Fe-N, graphite
N and oxidized N, respectively, as shown in Figure 4c [38,39]. The Fe-N peak is observed at
399.7 eV, indicating that an iron atom is coupled with two N atoms [40]. Figure 4d exhibits
the Fe 2P spectrum of N-Fe3C/rGO-H-100. The binding energies at 710.3 and 723.2 eV
would correspond to 2P3/2 and 2P1/2 of Fe2+; those located at 713.4 and 725.4 eV would
correspond to 2P3/2 and 2P1/2 of Fe3+ [41]. Furthermore, 710.3 eV is also considered the
chemical shift of Fe coordinated to N, which is consistent with the analysis of N1s. Fe-NX
provides N doping that provides strong evidence and can enhance the charge transfer
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between rGO and Fe [30,42,43]. The peak at 707.8 eV can be considered the peak of Fe0

or iron carbide, and the weaker peak intensity is due to the low density of metallic iron
agglomerates and the encapsulation of the FeNx active site by the carbon substrate [44–46].
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Both the mass ratio of Fe3O4/rGO and the nitrogen-doped carbonization temperature
affect the performance of the CO2RR. As shown in Figure 5, all electrochemical tests were
performed in a 0.5 M KHCO3 solution saturated with CO2. Three tests were performed
at the same time interval at each applied point and then averaged. The prepared catalyst
N-Fe3C/rGO-H produces CO and H2 as the main products for the reduction of CO2.
The Faraday efficiency at different mass ratios is closely related to the applied potential.
Figure 5a depicts the effect of Fe3O4/rGO at different mass ratios. It can be observed that
the FECO of N-Fe3C/rGO-H-100 gradually increases, reaching a maximum value of 40.8%
when the potential is from −0.2 to −0.3 V. While at −0.4 to −1.0 V, the FECO gradually
decreases as the potential becomes negative. The CO2RR and HER are competing reactions;
therefore, FEH2 shows the opposite trend. In Figure 5b, FEH2 first decreases sharply to
37.0% at −0.2 to −0.3 V and then progressively increases with increasing potential. The
maximum FE potential for the reduction of CO2 to CO by N-Fe3C-H was located at −0.5 V,
in contrast to the lower catalytic activity and selectivity of rGO for the CO2RR, indicating
that N-Fe3C/rGO-H can provide the catalytic active site to promote the CO2RR. Compared
to N-Fe3C/rGO-H (mass ratios of 80 and 120), N-Fe3C-H and rGO, N-Fe3C/rGO-H-100
exhibited good activity for the CO2RR. This is because small loadings do not provide
enough catalytic active sites, and too high loadings cause the active sites to accumulate [47].
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Therefore, N-Fe3C-H, rGO, and N-Fe3C/rGO-H-100 were performed by linear scan-
ning voltammetry (LSV) at a sweep rate of 50 mV/s (Figure 5c). N-Fe3C/rGO-H-100
exhibited positive onset and high current density over the entire potential range tested,
indicating its high catalytic activity in the CO2RR [48,49]; the current density of each cata-
lyst at different potentials was also tested, as shown in Figure S5, and it was found that
rGO increased the current density of N-Fe3C; this also implies that the synergistic results
of N-Fe3C and rGO can improve the catalytic performance. Combined with XPS analysis,
it can be speculated that C-N and Fe-N are the catalytic active sites of the CO2RR. This is
because the introduction of N atoms into the carbon substrate provides an optional oppor-
tunity to directly tune the electronic structure of the metal centre of the anchored molecular
catalyst. The doping of N in the conducting carbon substrate as an axial ligand for the
iron centre reduces the electron density of the iron 3D orbitals, thus reducing the Fe-CO π

back-donation, facilitating the desorption of CO and improving the electrocatalytic activity
and selectivity [50–52]. The bilayer capacitance (Cdl) of the three catalysts was tested using
cyclic voltammetry; since the bilayer capacitance is proportional to the electrochemically
active specific surface area (ECSA), Cdl can be used to represent the ECSA. The interval
without any Faraday potential is selected and tested with different sweeps, as shown in
Figure S6. The Cdl values of N-Fe3C-H, rGO and N-Fe3C/rGO-H-100 were 5.4, 3.9 and
6.5 mF/cm2, respectively. The Cdl of N-Fe3C/rGO-H-100 was significantly better than that
of N-Fe3C-H and rGO, so its high catalytic activity contributed to having a large ECSA. We
investigated the stability of N-Fe3C/rGO-H-100 for CO2 reduction at −0.4 V (Figure S7).
The FECO was found to remain at approximately 26% after 12 h, indicating that the catalyst
still has high catalytic activity and its morphology remains largely unchanged after a long
stability test. As shown in Figure S8, by varying the applied potential (−0.2 to −1.0), the
syngas H2/CO ratio varies from 1 to 20 and was compared with other recently reported
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catalysts for syngas preparation (Table S1). It can be clearly shown that the desired syngas
ratio can be obtained by adjusting the potential.

We found a suitable Fe3O4/rGO mass ratio (100), and, at this mass ratio, the effect of ni-
trogen doping temperature on the CO2RR performance was investigated. Figure S9a shows
the LSV of N-Fe3C/rGO-H at different nitrogen doping temperatures. The onset potentials
are similar for temperatures of 700 and 800 ◦C, but the current density of N-Fe3C/rGO-
H-100 is slightly higher than that of N-Fe3C/rGO-H-700, as further demonstrated in
Figure S9b. To further investigate the effect of temperature on the CO2RR, electrochemical
tests were performed using these three catalysts and compared (Figure S9c,d). The FECO
of N-Fe3C/rGO-H-100 increases and then decreases as the potential becomes negative,
reaching a maximum of 40.8% at −0.3 V. Similarly, the corresponding FEH2 decreases to a
minimum value of 37.0%. This is because different nitrogen doping temperatures affect the
active sites formed between Fe, N and C, and, hence, show variable catalytic properties.
The level of nitrogen doping temperature affects the active site of the reaction, and only the
right temperature can show the best catalytic performance.

Electrochemical tests reveal that: the assembly of different masses of Fe3O4 NPs to
rGO for CO2RR results in a consistent trend of CO generation (FE reaches a maximum at
−0.3 V) as shown in Figure S10. The applied potential of the maximum FE corresponding
to the reduction of CO2 to CO by N-Fe3C-H increases (−0.5 V), indicating a lower activity
than N-Fe3C/rGO-H. Pure rGO is dominated by the hydrogen evolution reaction.

Based on the above expression, the optimal nitrogen-doped carbonization temperature
and mass ratio are 800 ◦C and 100, with 40.8% and 37.0% FECO and FEH2 for catalyst N-
Fe3C/rGO-H-100 at −0.3 V, respectively (Figure 5d). The reasons for the high performance
of N-Fe3C/rGO-H-100 on the CO2RR are as follows: (1) the high catalytic activity after
strong acid etching of part of Fe3C leaving empty shells on the rGO surface and the
interaction between Fe, N and C to regulate the electron and mass transport [26]; (2) the
bonding of the metal to the nitrogen site causes an increase in the density of positive
charges on the adjacent carbon atoms, which facilitates the doping of the metal Fe-N-C
active site [53]; and (3) rGO acts as a catalyst substrate to provide good reaction conditions
and improve the conductivity of the reaction.

3. Conclusions

In this study, N-Fe3C/rGO-H-100 was used for the electrocatalytic CO2 reduction
reaction to regulate the syngas ratio. The electrochemical test results showed that the
reduction of CO2 exhibited good activity at lower potentials. At −0.3 V. The Faraday
efficiency of CO was 40.8%, and the syngas ratio was adjusted to 1–20 by adjusting the
applied potential (−0.2~−1.0 V); and the total current density reached 29.1 mA/cm2

at −1.0 V. N-Fe3C/rGO-H-100 has good activity, selectivity and long-term stability at
relatively low potentials and can be used as an effective catalyst for the electrocatalytic CO2
reduction reaction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12152546/s1, Figure S1. SEM images of (a) Fe3O4/rGO-80,
(b) Fe3O4/rGO-100, (c) Fe3O4/rGO-120 and (d) Fe3O4. Figure S2. SEM images of (a) Fe3O4/rGO-
H-80, (b) Fe3O4/rGO-H-100, (c) Fe3O4/rGO-H-120 and (d) Fe3O4-H. Figure S3. XRD patterns
of N-Fe3C/rGO-H. Figure S4. Raman spectra of N-Fe3C/rGO-H-100 and rGO. Figure S5. Total
current density of N-Fe3C-H, rGO and N-Fe3C/rGO-H-100 in CO2-saturated 0.5 M KHCO3
solution. Figure S6. (a–c) Double-layer capacitance of N-Fe3C/rGO-H-100, N-Fe3C-H and rGO;
(d) determination of double-layer capacitance over a range of scan rates. Figure S7. (a) Stability of
N-Fe3C/rGO-H-100 catalyst at −0.4 V; (b) TEM image after testing stability. Figure S8. N-Fe3C/rGO-
H-100 syngas components at different applied potentials. Figure S9. CO2RR of N-Fe3C/rGO-H-100,
N-Fe3C-H and rGO: (a) LSV; (b) total current density; (c,d) Faradaic efficiency of CO and H2 at
different nitrogen doping temperatures (700~900 ◦C). Figure S10. FECO obtained for N-Fe3C/rGO-
H at −0.3 V. Table S1. The performance comparison of N-Fe3C/rGO-H-100 and other catalysts.
References [54–62] are cited in the supplementary materials.
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