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Abstract: In recent decades, photoluminescence (PL) material with excellent optical properties has
been a hot topic. Graphene oxide (GO) is an excellent candidate for PL material because of its
unique optical properties, compared to pure graphene. The existence of an internal band gap in
GO can enrich its optical properties significantly. Therefore, GO has been widely applied in many
fields such as material science, biomedicine, anti-counterfeiting, and so on. Over the past decade,
GO and quantum dots (GOQDs) have attracted the attention of many researchers as luminescence
materials, but their luminescence mechanism is still ambiguous, although some theoretical results
have been achieved. In addition, GO and GOQDs have fluorescence quenching properties, which
can be used in medical imaging and biosensors. In this review, we outline the recent work on the
photoluminescence phenomena and quenching process of GO and GOQDs. First, the PL mechanisms
of GO are discussed in depth. Second, the fluorescence quenching mechanism and regulation of GO
are introduced. Following that, the applications of PL and fluorescence quenching of GO–including
biomedicine, electronic devices, material imaging–are addressed. Finally, future development of PL
and fluorescence quenching of GO is proposed, and the challenges exploring the optical properties of
GO are summarized.

Keywords: graphene oxide; quantum dots; photoluminescence; fluorescence quenching

1. Introduction

Graphene is an advanced two-dimensional (2D) carbon material with thickness of
a single atomic layer. Since it was first discovered in 2004, it has rapidly attracted wide
attention [1,2]. As the origin of 2D materials, the intriguing physical properties of graphene
and other 2D materials have a wide and promising application potential in many fields of
composite materials [3], biomedicine [4], anti-corrosion coatings [5,6], electronic devices [7],
infrared detection [8] and so on. Graphene oxide (GO), as a product of graphite oxidation,
has more active groups than graphene, due to the increase of oxygen-containing functional
groups (e.g., -C-O, -C=O, -COOH) in the oxidation process. To date, the research on
GO has surpassed that of its parent material [9]. In the research on GO, an array of
unanticipated photophysical structures and subsequent luminescence properties have
emerged through the regulation of the proportion and size of sp2 and sp3 carbon atoms
in different concentrations, which has opened a couple of potential research areas. One of
the major topics regarding GO is the photoluminescence (PL) and quenching of GO, its
quantum dots (GOQDs), and graphene quantum dots (GQDs) [10]. The PL is theoretically
impossible for graphene material to achieve due to the zero band gap [11]. However, with
the insertion of multiple oxygen-containing functional groups into GO and GOQDs, PL
can be realized over a large wavelength range by modulating the band gap. In addition, it
was found that the PL of GO and GOQDs can be quenched under certain circumstances,
and other fluorescent substances could be quenched by GO as well.
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The PL and fluorescence quenching mechanisms of GO, GOQDs, and GQDs in the
ultraviolet and visible light range are still ambiguous so far, although some possible mech-
anisms were proposed based on their experimental phenomena and density functional
theory (DFT) calculations [12]. In addition, clarifying PL and fluorescence quenching
mechanisms plays a vital role in further studying carbon materials and expanding their
application prospects. To address the aforementioned issues, this paper will comprehen-
sively review the following aspects in detail shown in Figure 1: luminescence mechanism,
luminescence influencing factors and regulation, luminescence characterization methods,
fluorescence quenching mechanism and regulation, GO luminescence application, and
fluorescence quenching application.
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2. Luminescence Mechanism

Graphene is composed of sp2 hybrid carbon atoms in its 2D layered structure. In its
band structure, the top of the valence band and the bottom of the conduction band intersect
at the Dirac point in the Brillouin zone, which has the characteristics of a zero band gap.
Thus, it is nearly impossible to directly observe the PL of graphene [13]. The band gap
can be obtained by graphene through quantum confinement, chemical modification, or
hybridization [14], among which the chemical modification is the most widely adopted
method. For example, graphene is oxidized to GO, with many oxygen-containing func-
tional groups introduced, such as -C-O, -C=O, -COOH, leading to a stronger confinement
effect. The existence of defects on the surface of GO and smaller sp2 clusters will bring
a considerable band gap [15], which results in the separation of the valence band and
conduction band. In fact, the carbon atoms with sp3 are introduced into the original sp2 as
defects during the reduction process [16]. In 2008, Dai et al. reported for the first time the
PL phenomena of nano graphene oxide (NGO) and polyethylene glycol modified NGO
(NGO-PEG) in the visible and infrared regions. (Figure 2a) [17]. Under the excitation of
400 nm, the emission position of GO was about 570 nm, and, for NGO-PEG, the maximum
emission blue-shifted to roughly 520 nm (Figure 2b), which may be due to the reduction of
the size of the GO sheet by chemical activation and PEGylation.
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2.1. Common Reduction Methods

It is mentioned above that the oxidation of graphene to GO via chemical modification
can introduce the band gap, and the appropriate reduction of GO by different methods to
obtain reduced graphene oxide (rGO) can effectively adjust the band gap of graphene, thus
realizing the tunable optical properties of GO. Essentially, the biggest difference between
GO and rGO is the degree of oxidation [18]. In the work of Al-Gaashani et al., the XPS of
GO and rGO obtained by different methods was studied in detail [19]. The C/O ratios of
GO obtained by three different methods ranged from 1.63 to 2.77, and the C/O of rGO
obviously increased, further illustrating the essential difference between GO and rGO. In
short, it is necessary to review and understand the reduction methods of GO as well as the
luminescence mechanism of GO and GOQDs.

The annealing of GO is a simple heat treatment procedure that can achieve GO
reduction. Chen et al. enhanced the fluorescence properties of GO by annealing NGO under
certain conditions (at 80 ◦C for 9 days) [20]. The results revealed that the annealing process
can keep the content and distribution of oxygen functional groups in the GO structure
efficiently, so that the 2D plane of GO contains both sp2 and sp3 clusters simultaneously,
but the annealing time is longer. According to the confocal imaging results, the green
fluorescence signal on the annealed NGO interface is significantly higher than that on
the GO interface, and the fluorescence intensity of NGO is ~2.5 times higher than that
of GO. Kumar et al. adopted a mild thermal annealing process, which did not involve
chemical treatment. This is also the first detailed study of the PL emission transition of
GO from the ultraviolet range to the blue range during thermal reduction [21]. Tang et al.
prepared fluorinated reduced graphene oxide (F-rGO) by annealing reduced graphene
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oxide (rGO) and xenon fluoride (XeF), and investigated its structure, band gap, and optical
properties. A series of characterization results clearly display that the CF2 group has
affected a substantial number of vacancies in the structure of F-rGO, and the existence of
these vacancies is conducive to the opening and adjustment of the band gap [22]. The band
gap can be enhanced from 0.42 eV to 3.0 eV through the preparation process by raising
the fluorine content from 0.29 at% to 0.98 at%. Wang et al. also reduced GO by a simple
and effective two-step fluorination method to explore its efficient PL, and the relevant test
results show that its fluorescence quantum yield (PLQY) was as high as 66%, which has
been the highest value of PLQY in various modification or reduction methods of GO [23].
Meanwhile, different types of fluorine-related groups in F-rGO have diverse fluorine effects
in boosting PL. They found that during the excitation process, the coexistence of fluorine
and aromatic regions in F-rGO leads to a fresh electronic band gap structure, resulting in a
large number of stimulated electrons, thereby finally improving their PL properties.

Maiti et al. gradually reduced graphene oxide (GO) by infrared irradiation and realized
the optical properties of tunable GO [24]. With the adding of infrared exposure time and
irradiation power density, the yellow-red emission peak of GO gradually decreased and
blue-shifted, while the blue PL emission peak became the prominent peak of continuous
reduction. In addition, laser reduction is an efficient method with flexible operation and
no chemical corrosion. It also shows an excellent reduction effect for other materials
besides GO. Jahanbakhshian et al. successfully prepared rGO suspensions with different
reduction degrees with 405 nm continuous wave laser irradiation, and studied the linear
and nonlinear optical properties of GO and rGO samples with a 532 nm continuous wave
laser beam measurement [25]. Gomaa et al. successfully reduced GO films using a laser
diode with a wavelength of 808 nm at room temperature and air [26]. The maximum PL
peak blue-shifted from 587 nm to 568 nm after a three-minute reduction.

Hasan et al. treated GO with ozone to achieve the purpose of changing the optical
band gap [27]. The underlying mechanism for the change of the band gap is that the
ozone-induced functionalization reduces the size of the sp2 cluster, thereby affecting the
GO band gap and emission energy. Kumar et al. used three different methods to reduce
the produced GO to rGO–green chemical reduction of vitamin C, hydrothermal reduction
techniques, and thermal reduction techniques–and compared these three methods [28].
Caballero-Briones et al. added cesium hydroxide (CsOH) solution to the GO suspension.
Cs-modified reduced graphene oxide (CsRGO) was synthesized, and its PL spectrum was
studied. The emission at 461 nm in the PL spectrum was ascribed to the π-π* transition of
the sp2 carbon atoms [29].

Umadevi et al. employed the dielectric properties of ionic liquid crystal (ILC) to
promote fast-speed microwave heating to prepare rGO. The reduction of GO by ILC
exhibits a better effect compared with other reduction methods [30]. Compared with
the several aforementioned reduction methods, the electrochemical reduction has the
merits of environmental protection, energy-saving, and excellent controllability. It has
gradually become the prevalent reduction method for researchers. Bai et al. summarized
the electrochemical reduction of GO to change the band gap of GO, and some shortcomings
of electrochemical reduction methods were also mentioned; for instance, the reduction
reaction only occurs on the surface of the electrode, and the reduction capacity is restricted
by multiple factors such as the electrode area [31]. Ménard et al. prepared rGO using
the spray pyrolysis deposition method, which also shows a high degree of reduction [32].
Figure 3 displays the schematic diagram of the partial reduction of GO. Although it is
remarkable that the above reduction methods have ideal reduction effects, they may change
the original properties of GO irreversibly [33].
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Figure 3. Summary of common reduction methods: (a) Annealing. Reprinted with permission
from [20]. Copyright 2022, American Chemical Society. (b) Infrared radiation. Reprinted with
permission from [24]. Copyright 2014, IOP Publishing Ltd. (c) Using the dielectric properties of
ILC to promote rapid microwave heating. Reprinted with permission from [30]. Copyright 2022,
Elsevier. (d) Fluorination method. Reprinted with permission from [23]. Copyright 2020, Elsevier.
(e) Electrochemical reduction. Reprinted with permission from [31]. Copyright 2022, Elsevier.

2.2. Luminescence Mechanism of GO

Many studies have noticed that the PL of GO mostly consists of two bands: one is in
the blue range (blue band), while the other is in the 500~650 nm range (long wavelength
band). However, the PL mechanism of GO is still ambiguous. Clarifying the luminescence
process is critical for understanding and regulating the optical characteristics of GO and
will expand the design of graphene-based materials.

Chhowalla et al. deemed that the π-π* transition of sp2 clusters isolated by sp3 matrix
in the plane after reduction of GO by hydrazine is the dominant factor of blue band lumi-
nescence or enhanced PL (Figure 4a) [34]. I, II and III correspond to GO structural models
of different reduction stages (reduction degree gradually increased). In the atomic structure,
the origin of GO luminescence comes from the bottom and vicinity of the conduction
band to the electron-hole recombination in a wide range of valence bands, and the size
of the sp2 clusters determines the local energy gap. In essence, the fluorescence emission
of GO is due to the behavior of excitons (electron-hole pairs), according the most widely
accepted theory, which is currently the basis of many PL studies on GO [35]. Galande et al.
proposed that the PL of GO originates from the quasi-molecular fluorescence group, and
thought that the three functional groups of -C-O, -C=O and -COOH are related to the PL
of GO, because they observed that -COOH has electronic coupling with the atoms near
the graphene sheet (G) [36]. In addition, they found that the blue band dominates when
pH > 8, and attributed this to the optical transition from (G-COO−)* to G-COO−. On the
other hand, the long-wavelength band becomes obvious when pH < 8, which is attributed
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to the optical transition from (G-COOH)* to (G-COOH), as -COOH was protonated into
carboxylic acids.
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Figure 4. GO luminescence mechanism: (a) sp2 cluster π-π* transition. Reprinted with permission
from [34]. Copyright 2010, John Wiley and Sons. (b) Free serrated (theoretical expectation). Reprinted
with permission from [37]. Copyright 2005, John Wiley and Sons. (c) Free serrated (experimental
confirmation). Reprinted with permission from [38]. Copyright 2010, American Chemical Society.
(d) Disorder-induced localized state. Reprinted with permission from [39]. Copyright 2012, John
Wiley and Sons. (e) Chemical reduction. Reprinted with permission from [40]. Copyright 2013, John
Wiley and Sons. (f) Energy transfer process. Reprinted with permission from [41]. Copyright 2014,
Royal Society of Chemistry.

Moreover, the free sawtooth position similar to the triplet state is also theoretically
expected and experimentally confirmed to be the possible mechanism of PL of chemically
derived GO (Figure 4b,c) [37,38]. Chien et al. proposed that PL is induced by the disorder-
induced localized state [39]. They found that GO in water exhibited a process of multi-
exponential decay kinetics from 1 picosecond (ps) to 2 nanoseconds (ns) by a time-resolved
fluorescence measurement. It was found that fluorescence was mainly due to the electronic
transition between the boundary of the non-carbon oxide region and the carbon oxide
atomic region, according to the concept of molecular orbital theory. In addition, chemical
reduction is also considered to be one of the reasons for PL of GO; the mechanism diagram
they proposed is displayed in Figure 4e [40]. Chu et al. deemed that the strong emission
in the blue band is related to the carbon defect state formed during the reduction process,
and the long-wavelength PL enhanced by functionalized rGO is generated by the sp2
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cluster size effect [40]. He et al. studied the Mn2+-mediated energy transfer process as
a multifunctional source of PL in GO (Figure 4f) [41]. They found that the excitation-
independent blue emission and the two fixed PL peaks near 330 nm and 450 nm were
related to the Mn2+-mediated energy transfer process.

2.3. Luminescence Mechanism of GOQDs

Quantum dots are a kind of material with nanoscale in three-dimensions, which have a
high quantum confinement effect due to their tiny sizes. These distinctive effects also have
an impact on their optical qualities. Usually, there are two principal ideas for preparing
fluorescent quantum dots: “top-down” from different carbon sources and “bottom-up”
from small molecules or polymers. Cutting GO by reduction or oxidation is a popular
method to prepare quantum dots GOQDs. However, the PL mechanism of GOQDs is also
ambiguous like GO.

In Section 2.2, it is mentioned that the sp2 cluster in the GO plane is the main source
of PL, and the size of the sp2 cluster will affect PL. Meanwhile, the size of the sp2 cluster
depends on the size of GOQDs, thereby affecting the band gap and even the emission
wavelength. Nevertheless, the theory does not seem to be applicable for GOQDs, because
it was found that PL quantum dots that are both size-dependent and size-independent can
be synthesized [34,42].

Lau et al. studied the PL origin of GOQDs, and thought that the unique optical
properties of GOQDs were attributed to the self-passivation layer formed by the surface
state between the π* band and the π level (Figure 5) [43]. Rao et al. prepared GOQDs in
two different solvents. The PL spectra of these samples show that functional groups did
not contribute to PL [44]. In addition, it was observed that PL appeared to originate from
the edge state of GOQDs, and the edge was passivated due to annealing, which led to the
quenching of PL signals. Finally, they proposed that quantum dots could be regarded as
a highly conjugated benzene ring system. Its emission peak comes from HOMO-LUMO
energy levels similar to aromatic molecules.
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Yang and co-workers deemed that the competition between the defect state emission
and the eigenstate emission is considered to be the PL mechanism of GOQDs, and the energy
level shift between the eigenstate and the edge state determines their optical properties [45].
If the energy level shift between the eigenstate and the edge state is large enough, the
fluorescence is dominant; if the energy level offset is small enough, the long carrier lifetime
in the eigenstate provides the possibility for the system to cross from the single excited
state to the triple excited state of the edge state. Afterwards, Yang et al. found that the
principal PL center of quantum dots contains the quantum confinement effect of conjugated
π domains, the surface/edge state, and the cooperative effect of these two factors [46].
Behzadi et al. thought that the possible luminescence mechanism can be classified as the
eigenstate emission and the non-eigenstate emission. The intrinsic emission is caused by
the smallest oxidized sp2 cluster or size effect [47]. On the other hand, the external emission
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comes from the surrounding functional groups, including hydroxyl, epoxy, carbonyl, and
carboxyl groups, which are formed on the edge and base.

3. Influence Factors and Regulation of Luminescence

The PL of GO, GOQDs, and GQDs is affected by many factors, and the effective
regulation of PL can be realized by clarifying its influencing factors. It is found that
the influencing factors of PL include temperature, pH, size, elements, oxygen-containing
functional groups, and some unconventional regulatory factors, according to previous
studies [48–51]. The following will discuss the influencing factors on PL.

3.1. Temperature

The temperature dependence of GO has long been reported in the literature [52]. He
et al. observed two obvious PL bands in the study of GO temperature dependence, with
3.18 eV (A band) and 2.53 eV (B band) as the centers (Figure 6a) [53]. The energy band
A gradually became insignificant as the temperature increased, and the energy band B
dominated PL. Figure 6a (I–V) displays five typical PL spectra recorded at 13, 150, 200, 240,
and 300 K, respectively. It is evident that the evolution of PL with temperature indicates
the competition between the two bands (band A and band B). Simultaneously, the integral
intensities of bands A and B at different temperatures were extracted and displayed in
Figure 6b,c. In the whole temperature range, the intensity of band A showed an overall
decreasing trend, except for a slight increase from 140 to 180 K, which is similar to the
temperature-dependent band gap contraction of semiconductors, indicating the quasi-
band-to-band transition property of band A. If a large number of defects strongly interfere
with the GO plane, electron jumps will occur in the sp2 cluster at low temperature, which
is related to the defect freezing effect. He et al. attributed band A to the exciton hopping
process between sp2 clusters. Contrary to band A, band B was strongly suppressed at low
temperatures. The strength of band B remained almost constant below 150 K, and then
it was observed to rise sharply. The strength reached a peak at roughly 240 K, and then
dropped sharply (Figure 6c). It is worth noting that it showed a typical negative thermal
quenching (NTQ), and the energy of band B remained almost constant throughout the
temperature range. This means that the emission of band B comes from the deep localized
state. This is probably due to sp3 defects in the π-π* band gap.
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Figure 6. (a) PL spectra of GO deposited films at 13 K (I), 140 K (II), 180 K (III), 240 K (IV), and
300 K (V); (b) and (c) are the change of PL intensity of GO sheet in band A and band B with tempera-
ture. Reprinted with permission from [53]. Copyright 2014, Royal Society of Chemistry. (d) PL spectra
of CRG and (e) TRG were obtained at temperatures from 10 K to 300 K. Reprinted with permission
from [54]. Copyright 2011, AIP Publishing.
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Cuong et al. found that the two different reduction methods, thermal reduction of
graphene (TRG) and chemical reduction of graphene oxide (CRG), were temperature-
dependent (Figure 6d,e) [54]. When the temperature increased from 10 K to 300 K, the peak
position of the CRG sample shifted blue with the fluctuation of temperature, while the
peak position of the TRG sample remained almost unchanged. The results showed that the
carrier localization effect in the sp2 cluster played a dominant role in the emission peak
shift, and the temperature-induced band gap shrinkage effect led to the red shift of the PL
peak. In addition, the peak of CRG film was located at a lower wavelength than that of
TRG film at room temperature (300 K). Cuong et al. thought that this is because TRG has a
larger sp2 size compared with CRG, and the relatively weak carrier limitation leads to a
smaller band gap.

Saha et al. used 2,6-diaminopyridine (DAP) to functionalize GO (DAP-fGO), in order
to obtain excellent optical properties, and the temperature-dependent PL measurements of
DAP-fGO films prepared on quartz plates were carried out at temperatures ranging from
78 to 300 K using a low temperature optical thermostat (Figure 7b), and the temperature-
dependent PL lines from 78 K to 300 K are represented by lines of different colors in
Figure 7b. The hybridization energy levels due to the functionalization of GO were clar-
ified [55]. The PL spectra related to the excitation wavelength are shown in Figure 7c,
which demonstrates that a third peak was observed in the red region with the increase
in the excitation wavelength, and black, blue and red lines represent the spectra excited
at 340 nm, 420 nm and 480 nm respectively. When the DAP-fGO film was excited at the
wavelength of 420 nm, a strong peak was observed in the green region (530 nm), and a
tail was observed in the red region (650 nm). When the excitation wavelength was 480 nm,
this tail became more obvious. Therefore, it was confirmed that the emission occurred in
blue, green, and red regions by measuring the temperature and excitation-related PL of the
DAP-fGO sample.
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3.2. pH

When GO and quantum dots are dispersed in different pH conditions, their optical
properties will also change, which is also conducive to the study of the contribution of
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different groups to the fluorescence emission. Ouyang et al. reported on the relationship
between the PL spectra of GO and the conditions of the aqueous solution, such as pH value
and concentration, and found that when the pH value is low or the concentration of GO is
high, the PL in the visible range becomes obvious [56]. Meanwhile, the lifetime of PL in
the visible range is longer than that in the ultraviolet range via time-resolved PL spectra.
Pan et al. proved that blue fluorescence from GQDs is pH-dependent [38]. At high pH
levels, the fluorescence is strong enough to be observed by the naked eye, while at low
pH conditions, the fluorescence is almost quenched. They thought that the protonation
of the emission zigzag site of the ground state of σ1π1 under acidic conditions leads to
fluorescence quenching, and the fluorescence recovery is achieved through deprotonation
under alkaline conditions.

Zou et al. studied the PL of GO dispersions with different pH values of 2, 4.5, 7.5,
10, and 11.5 [57]. Figure 8 presents a 2D luminescence diagram of GO dispersions, which
is treated by ultrasound with different energies up to 20 MJ·g−1 at pH values of 2 to
11.5. Halder et al. used anionic surfactant (SDS) to regulate the PL of GO in different pH
environments [58]. When pH ≈ 2, the surface micelles of GO sheets formed, resulting in a
nonpolar environment around the fluorescent groups of GO, which hindered the solvent
relaxation. As a result, the PL band showed an abnormal 36 nm blue shift. However, at
pH ≈ 10, due to the negative-charged -COO- at the edge of GO, SDS experienced multiple
interactions with GO sheets. The rejection between the negative-charged GO sheets and
the embedding of SDS in the GO substrate weakened the π-π stacking interaction and
changed its electronic environment, thus forming many separated GO layers, resulting in
an enhanced PL intensity at 303 nm.
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3.3. Size

It is mentioned in Section 2.2 that the band gap between sp2 carbon atoms is one of the
possible reasons for PL. Obviously, appropriate size will be one of the factors affecting its PL,
because size can change the sp2 region, thereby changing the band gap. Li et al. synthesized
high PL GOQDs via a simple one-pot hydrothermal method, and then separated them
with dialysis bags of different molecular weights to obtain four separated GOQDs with
different sizes [50]. The study found that four separated quantum dots showed different
PL intensities. The intensity of the emission peak becomes stronger as the size of the
separated quantum dots decreased (Figure 9). Finally, the smallest size quantum dots
show the strongest PL intensity among the four separated quantum dots. Matsuda et al.
reported that the PL of GOQDs separated by size exclusion high performance liquid
chromatography changed dramatically from ultraviolet to red [59]. The 2D PL of GOQDs
showed four different emission peaks at 330 nm, 440 nm, 520 nm, and 600 nm. The main
luminescence characteristics of the separated GOQDs showed discrete changes depending
on the overall size of GOQDs. This indicates that PL changes occur due to the differences
in the density, shape, and size of the available sp2 fragments in GOQDs.
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Figure 9. PL spectra of four separated quantum dots excited at 330 nm. Reprinted with permission
from [50]. Copyright 2021, MDPI.

3.4. Elements and Oxygen Functional Groups

The doping of different elements and the presence of oxygen-containing functional
groups will also affect PL [51,60,61]. The doping of some elements promotes luminescence,
while the doping of some other elements has a significantly negative effect on luminescence.

Li et al. studied the PL behavior of GQDs doped with different elements (Figure 10a) [51].
The GQDs and GQDs doped with Cl, N, P, S were prepared by electrochemical method
and hydrothermal method respectively (Figure 10b). It was found that the doping with Cl
and N can form luminescence centers and improve the luminescence intensity of GQDs
(Figure 10c,d). The luminescence intensity of Cl-GQDs increased by one time over the
undoped GQDs. The doping of the S element forms a small amount of quenching centers,
and the luminescence intensity is slightly lower than that of undoped GQDs. The doping
of P forms a large number of quenching centers, resulting in almost no luminescence of
P-GQDs (Figure 10e). Yang et al. also studied the effect of S and N doping and simultaneous
doping on the fluorescence properties of GO (Figure 10f) [60]. N, S co-doping will result
in different surface states of GO, and many of the captured electrons may have greater
radiative recombination probability, resulting in higher fluorescence intensity than the
original GO.
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Kim et al. found that the red shift was observed in the emission spectra of GO with
the increase of oxidation degree [61]. They thought that it was due to the increase of
the concentration of oxygen-containing functional groups, resulting in the increase of sp2

cluster size, which highlighted the understanding of the effect of oxidative functional
groups on the PL properties of GO. Cui et al. found that the position of hydroxyl on the
base surface of GOQDs would accelerate the non-radiative decay, while the position of
hydroxyl on the edge of GOQDs would inhibit the non-radiative decay, thereby affecting
its optical properties [62].

3.5. Other Factors

In addition to the influence of temperature, pH, size, elements, and oxygen-containing
functional groups, the PL of GO, GOQDs, and GQDs is also affected by some unconven-
tional factors, such as metal ions, ion irradiation, and solvent induction. Wang et al. first
studied the metal enhanced fluorescence (MEF) of GO sheets [63]. Compared with the glass
substrate, the fluorescence intensity of GO on the silver substrate was enhanced by about 10
times. It is different from other fluorescent materials in that the direct contact between GO
and metal exhibits a strong MEF, which indicates that GO sheets could potentially be used
as fluorescent probes for three-dimensional optical imaging and sensing. In addition, they
also studied the effects of other metal ions on the PL of GO. K+, Ca2+, and Mg2+ cause the
increase of the fluorescence intensity of GO, while most transition metal ions except Zn2+

decrease the fluorescence intensity of GO. Wang et al. did not provide a clear mechanism
on the reasons for the enhancement of PL. Nevertheless, they speculated that this may be
due to the interaction between GO and metal ions with different electronic configurations
and ionic radii, which led to different changes in the structure of GO.

Jayalakshmi et al. found that ion irradiation can also change its optical properties [64].
They obtained GO sheets by controlling the reduction method with 500 keV Ar+ ion
irradiation, and measured their PL properties. In the process of ion irradiation, the content
of sp2 hybrid carbon atoms in the sp3 matrix gradually increased with the Ar+ flux, and
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the PL and electrical properties of GO can be adjusted by changing the energy gap. The PL
spectra of GO and rGO reduced by ion beam are shown in Figure 11a. Neogi et al. also
studied the effect of ion irradiation on the PL of GO [65]. The PL emission of GO at different
energies from visible to near-infrared regions showed that the existence of sp2-rich clusters
with different sizes in the same sp3 substrate was a key factor to affecting PL.
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Figure 11. (a) Luminous band diagram of GO and ion beam reduction rGO. Reprinted with permis-
sion from [64]. Copyright 2018, IOP Publishing Ltd. (b) The steady-state fluorescence spectra of GO
in mixed solution. Reprinted with permission from [66]. Copyright 2018, Elsevier. (c) GQDs (left) and
GQDs-NHR (right) PL photographs excited by 355 nm laser. Reprinted with permission from [67].
Copyright 2013, American Chemical Society. (d) Effects of different molecular weight passivators on
the luminescent properties of GQDs. Reprinted with permission from [68]. Copyright 2021, Elsevier.

Chen et al. studied the solvent-induced enhancement of optical properties of GO [66],
and found that the PLQY of GO was 2.8% in ethanol, but 1.2% in water. Figure 11b
displayed the steady-state fluorescence spectrum of GO in mixed solutions. The Raman
spectrum signal of GO showed that the average size of polycyclic aromatic hydrocarbons
of GO in ethanol was smaller than that of GO in water. The PLQY was higher as the solvent
polarity was stronger. The interaction between chromophores and solvent molecules was
stronger, and the microscopic scale movements of molecules promoted the non-radiative
relaxation. These results showed that the interaction between GO and solvent molecules
could reduce the PL intensity.

In addition, Jeon et al. found that the PL of GQDs could be regulated by the charge
transfer effect of functional groups [67]. It was observed that the PL of GQDs shifted due
to the charge transfer between functional groups and GQDs. Firstly, GQDs (GQDs-NHR)
with amino functionalization, 1~3 layers in thickness, and less than 5 nm in diameter were
successfully prepared. Figure 11c shows the PL images of GQDs (left) and GQDs-NHR
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(right) under the excitation of a 355 nm laser, which was compared with the unfunction-
alized GQDs. Functionalized GQD exhibits a red shift (about 30 nm) due to the charge
transfer between functional groups and GQD.

GO will appear to have serious aggregation and accumulation due to the size effect
and surface effect, which will weaken the luminescence properties and reduce the PLQY.
However, the fluorescence properties can be greatly improved after passivation treatment.
Surface passivators can significantly improve the above phenomenon, and improve the
luminescence properties of PLQY. Xiang et al. studied the effect of passivators with different
molecular weights on the luminescence properties of GQDs [68]. The results showed that
the surface of quantum dots passivated by large molecular weight polymers has long-chain
functional groups, which makes the luminescence of quantum dots enhanced, and it can be
seen from Figure 11d that with the increasing molecular weight of PEG, the PL intensity
was significantly enhanced.

In addition, the external electric field can also lead to the change of PL properties of
GO, as well as the fluorescence quenching of GO films. The effect of external electric field
on PL and quenching will be discussed in Section 5.1.

4. Luminescence Characterization Methods

Spectral technology plays an irreplaceable role in studying element composition
and energy level of matter. Various spectral technologies are often used to study the PL
properties of GO. The most widely used luminescence characterization instruments include
fluorescence microscope and fluorescence spectrometer. The fluorescence microscope is an
instrument that uses a certain excitation light as the light source on the object, in order to
emit fluorescence and observe its morphology and position under the microscope. With the
development of characterization techniques, there are also high-resolution laser confocal
fluorescence microscopes and full-spectrum laser confocal fluorescence microscopes. A
fluorescence spectrometer is an instrument that can obtain much optical information such
as the excitation spectrum, emission spectrum, quantum yield, and fluorescence intensity
of matter.

Among the many spectral technologies, transient spectroscopy, which can study the
exciton behavior of GO at ultra-fast time scales, is one of the most widely used methods for
studying materials According to different measurement parameters, transient spectroscopy
can be divided into transient absorption spectroscopy, ultra-fast infrared absorption spec-
troscopy, time-resolved Raman spectroscopy, and time-resolved fluorescence spectroscopy.

Time-resolved photoluminescence (TRPL) spectroscopy is the preferred tool to study
the rapid electron inactivation process leading to photon emission, by detecting the dynamic
process of the excited state radiation transition spectrum of matter over time under the
irradiation of pulsed monochromatic light (Figure 12a). As early as 1969, Heim studied
the optical properties of some materials through TRPL [69]. This technology has been
often used to study the PL process and carrier lifetime of GO and other materials during
the past decades [70]. As mentioned in Section 2.2, Chien et al. investigated the multi-
exponential decay kinetics of GO in water from 1 ps to 2 ns through TRPL, and the specific
process involves a pump light emitted by the laser that is reflected in the microscope
system through a 2D color mirror. The fluorescence emitted by photogenerated carriers
is collected through the objective and then passed through the microscope system. The
reflected pump light is filtered through a 2D color mirror and focused on the spectrometer.
The spectrometer has two outlets, which are connected to the spectrometer camera and
the single-photon counter, respectively. The spectrometer camera is used to measure the
steady-state fluorescence spectrum, while the single-photon counter is used to measure
the time-resolved fluorescence spectrum [71]. Wang and co-workers found that that the
fluorescence of GO (red band) is mainly due to the contribution of different sizes of sp2

regions via TRPL test [72].
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The structure of ultrafast infrared absorption spectroscopy is similar to that of transient
absorption spectroscopy, but their principles are slightly different (Figure 12b,c). In the
transient absorption spectroscopy, the time-domain response of the probe’s optical signal
is caused by excitons. The time-domain response of the probe’s optical signal of ultrafast
infrared absorption spectroscopy corresponds to the concentration change of the electron–
hole pair in the material. Wang carried out a detailed study on the migration/redistribution
of different electron states in GO through ultrafast transient spectroscopy [72]. The results
showed that a charge transfer state is formed between the sp3 hybrid carbon atoms and
oxygen-containing functional groups in the sp3 region of GO. The energy and charge
transfer process occurs in the time scale from sub-picoseconds to dozens of picoseconds,
and this excitation energy transfer process does not occur in the sp2 region of GO, which
indicates that the sp2 electronic state is very localized. Sun et al. analyzed the relation
between the electronic structure and oxygen content quantitatively, by combining the results
of transient absorption spectroscopy and XPS. In the transient spectrum, the insulator–
semiconductor–semimetal transitions in GO and its reduced derivatives were directly
observed, and it was found that these transitions initially occurred in a relatively narrow
oxygen content range [73].

5. Fluorescence Quenching Mechanism and Regulation

Fluorescence quenching, which is a significant tool for the study of the assembly of
macromolecules and interactions between substances, refers to the phenomenon whereby
some substances reduce the fluorescence intensity of the original substances with fluores-
cence characteristics. GO and GOQDs can be quenched by other substances, and they can
also strongly inhibit the emission of dye molecules. In some optical sensing applications,
GO and rGO can be quenched by energy transfer mechanism and thus effectively used
as the basis of biosensors, disease detection, and so on. In this section, the fluorescence
quenching and regulation of GO will be discussed in detail.
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5.1. PL Quenching of GO and GOQDs

The intrinsic quenching of GO and GOQDs under certain conditions has been re-
ported in much of literature. Lee et al. developed a physical way to change optical and
electronic properties of GO through an electric field to promote and control the application
of optoelectronic devices, in order to reversibly fine-tune the photoelectric behavior of
GO without changing its chemical structure [33]. In their work, field-related GO emission
was studied in a film with a 1 mm thickness of GO/PVP (polyvinylpyrrolidone), and the
fluorescence intensity decreased by 6% under an electric field of 1.6 V·µm−1 (Figure 13a).
Interestingly, the fluorescence intensity gradually increased with the removal of the electric
field, which means that it is a reversible process. When a higher electric field intensity
was applied at the scale of a single GO sheet, it was found that most of the sheets had a
fluorescence quenching phenomenon. Lee et al. explained it with a theoretical modeling
of the exciton phenomenon in a GO sheet, and deemed that the separation of electrons,
holes, and the electric field might reduce their recombination probability, thereby leading
to GO quenching.
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with permission from [33]. Copyright 2020, IOP Publishing Ltd. (b) PL spectra of GO solution
with different metal ions. Reprinted with permission from [74]. Copyright 2015, Elsevier. (c,d) The
fluorescence spectrum and Stern–Volmer diagram of GQD with different copper acetate concentra-
tions (0~2.5 mM). Reprinted with permission from [75]. Copyright 2021, Taylor & Francis, Web:
www.tandfonline.com, accessed on 25 June 2022. (e) Effect of saturated hydrocarbon on photolumi-
nescence spectra of GS (excited by 270 nm). Reprinted with permission from [76]. Copyright 2021,
Elsevier. (f) Rhodamine B dye for graphene, GO, rGO fluorescence quenching PL. Reprinted with
permission from [77]. Copyright 2009, American Vacuum Society.

Chen et al. studied the PL quenching of GO with metal ions in an aqueous solution
using the Stern–Volmer equation [74]. The results showed that the overall trend of the
quenching efficiency is Fe2+ > Co2+ > Ni2+ > Cd2+ > Hg2+. The PL spectra of GO solution
with different metal ions at a fixed concentration (10−5 M) are shown in Figure 13b. Further-
more, the steady-state and time-resolved PL spectra of the GO solution showed that the PL
quenching is related to the non-radiative optical transition from the bridging state, which is
caused by the hybridization of the sp3 orbit of GO and the 3d orbit of metal ions, proven by

www.tandfonline.com
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the density functional theory. Wongrerkdee et al. used the fluorescence quenching probe
based on GQDs to detect metal compounds, and studied the effect of metal compounds on
the fluorescence quenching efficiency of quantum dots [75]. The fluorescence quenching of
quantum dots can be explained by non-radiative relaxation. The fluorescence quenching
efficiency is proportional to the amount of copper acetate. Figure 13c,d showed the fluores-
cence spectra and Stern–Volmer diagrams of GQDs with different concentrations of copper
acetate (0~2.5 mM). In order to explore the quenching mechanism, Wongrerkdee et al.
calculated the electrochemical potential gap (∆E). In the case of and without UV irradiation,
the ∆E of GQDs mixed with copper acetate was 0.152 V and 0.104 V, respectively. The ∆E
after UV irradiation is higher than that without UV irradiation, indicating that the electron
transfer rate from GQDs (electron donor) to copper acetate (electron acceptor) is higher.
These results can further explore the new fluorescent probes based on GQDs. In summary,
this method can be more widely used in water resources and the detection of copper ions
in water based on GQDs fluorescent quenching probes.

Volkova et al. studied the quenching of graphene suspension (GS) PL by saturated
hydrocarbons [76]. For instance, the hydrocarbon C8H18 was attached to the edge of the
composite graphene sheet through the presence of functional oxygen−containing groups.
It is speculated that the quenching of PL in the formed structure is related to the Anderson
electron density delocalization effect. The interaction between hydrocarbon molecules
and the donor–acceptor pair of graphene defects can transform the radiation PL into
non-radiation PL. Figure 13e showed PL spectra of GS excited at 270 nm.

Srivastava et al. studied the efficient fluorescence quenching of chemically exfoliated
reduced GO [77]. They compared the fluorescence quenching between different graphite
systems, such as rGO, GO, and graphite for the first time. Compared with graphite and GO
sheets, rGO showed stronger quenching ability, because it had a larger surface area and
more efficient π-π stacking. The spectral results (Figure 13f) showed that the quenching
effect of chemically exfoliated rGO was nearly 16 times better than that of graphite and GO,
by using rhodamine B dye as a quenching agent.

5.2. The Quenching of Other Substances by GO

It is worth noting that although GO itself is fluorescent, GO and the sp2 carbon network
domain also allow the quenching of nearby fluorescent species such as dyes, conjugated
polymers, and quantum dots [78]. Hamzah et al. revealed the quenching photolumines-
cence of silver nanoparticles (AgNPs) by GO sheets [79]. The excited electrons of Ag were
attracted by the charged layer of GO, and this led to a lower radiative recombination
of electrons and holes and eventually quenched fluorescence. Considering the efficient
fluorescence quenching of GO on AgNPs, it is expected that the photoinduced electron
transfer from AgNPs to GO will play an important role in quenching-related applications.

The quenching of dye molecules by GO has been studied extensively. Povedailo
studied the fluorescence quenching of cationic dyes (acridine orange (AO), rhodamine
B (Rd B), rhodamine 110 (Rd 110), and rhodamine 640 (Rd 640)) during the reaction
with GO [80]. These cationic dyes can be used to track biological molecules in medical
application. In addition, the PL of buffer solutions with different GO contents (pH = 6.0)
showed that GO led to different degrees of PL quenching of these dyes according to the PL
spectrogram. Zhao et al. ingeniously designed a novel nanostructure with a rigid adjustable
silica interlayer to study the fluorescence quenching performance of GO in detail [81]. The
distance between GO and fluorophore was controlled by adjustable silica interlayer. The
results showed that even when the distance between the dye TAMRA and GO increases to
more than 30 nm, the quenching efficiency of GO is still about 30% (Figure 14), indicating
that GO has a long−distance quenching ability.
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Unarunotai et al. studied that the fluorescence quenching efficiency of GO on dyes
was affected by pH [82]. Different dyes were attributed to different quenching mechanisms
(such as electrostatic interaction, π-π stacking, and hydrogen bonding). Affected by these
mechanisms, the amount of sp2 clusters in GO sheets was further changed, thereby affecting
the quenching efficiency. Lu et al. found that the PL of GOQDs was easily quenched by
metal ions, and it was found that this quenching effect enhanced with the increase in pH
values, which would introduce −OH to GOQDs, because −OH content increased under
high pH conditions [83]. Therefore, the pH−dependent fluorescence quenching of GOQDs
can be obtained, which can further guide the metal ion detection of GOQDs.

6. Applications of GO, GQDs, and GOQDs Luminescence

GO has been applied in many fields [84], such as fluorescence imaging [16], lumines-
cence carriers [85], sensing matrices [20], biosensing [86,87], disease detection [88], drug
carriers [89], ion detection [90], fluorescent probing [91], etc., due to its excellent PL proper-
ties. In this section, the PL of GO, GQDs, and GOQDs in electronic devices and biomedical
fields will be emphatically introduced.

6.1. Electron Device

Although GO shows low electrical conductivity and structural stability, it has an
energy band gap that can emit fluorescence in the visible–near-infrared region, which
promotes a large number of photoelectric applications. Park et al. prepared GQDs by
extracting microcrystals from an amorphic matrix of GO sheets, and this method has
excellent characteristics such as large-scale production and long-term optical stability
(Figure 15). Therefore, it has potential applications for PL fibers or films [92]. GOQDs with
narrow size distribution were synthesized under different temperature conditions, but they
have different PL properties, which also illustrates that there are other factors affecting the
luminescence of quantum dots together with the effect of size.
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Figure 15. (a) Photographs of GQDs dispersions prepared at 150, 200, and 300 ◦C (excited at 365
nm). (b) Photos of freeze-dried GQD powder; the images of long GQD fibers were taken at (c) low
magnification and (d) high magnification. (e) GQDs fibers emit strong yellow light excited at
365 nm. (f,g) Optical microscopic images of blue GQD/PAA composite fibers and PAA fibers under
(f) bright-field conditions and (g) ultraviolet irradiation. (h) Photographs of three GQD yarns
woven from commercial cotton fabrics under white and (i) ultraviolet light. (j) Photos of yellow
GQD/PAA composite membrane excited at 365 nm and under white light (illustration). Reprinted
with permission from [92]. Copyright 2015, Springer Nature.

Yin prepared green and red GQDs with optical properties; measured and analyzed
their morphology, structure, and PL; and applied them to the preparation of white light-
emitting diodes (WLEDs) [93]. In the driving current range of 20 mA to 350 mA, WLEDs
showed excellent luminescent properties, indicating that WLEDs had great potential in the
development of high-power devices. Shi et al. demonstrated the application of solution-
processed GO as a hole injection layer in organic light-emitting diodes (OLEDs) [94]. By
boosting the electron injection tactics and proper device packaging, brighter OLEDs with
GO interlayer can be obtained. The research results represent that a cheap and flexible
indium-free tin oxide electrode system can be developed by using GO materials in flexible
OLEDs and other plastic electronic products.

6.2. Biomedicine

Graphene-based materials have been applied in the biomedical field for a long time and
have achieved fruitful results. For instance, Potsi et al. developed a new strategy to obtain
intrinsic PL graphene derivatives based on amine-functionalized fluorescent graphene [95].
The toxicity test using this strategy shows that hexamethylene diamine functionalized
fluorographene (CHDMA) has excellent biocompatibility. Its clear green fluorescence
can prove that these sheets are located in lysosomes of healthy cells (Figure 16a), which
indicates that amine-functionalized graphene has real application potential in the fields
of biological imaging, biosensing, and biomedicine. The application of GO in the fields
of optical imaging and medical treatment has attracted great attention in recent years. In
2013, Li et al. reviewed the application of GO in this field in detail [96]. Therefore, only the
biomedical application of GO after 2013 is introduced in this review.

In the field of fluorescence imaging, the PL characteristics of GO are applied to
fluorescent probes for the purpose of fluorescence imaging. The following two basic
criterions should be satisfied for fluorescent probes: first, they have to be easy to excite and
have a high PLQY. To achieve biological imaging, PL characteristics are essential, and non-
toxicity and certain targeting are also indispensable necessary conditions. The preparation
method mainly determines whether it is non-toxic and green [16]. Sahoo et al. synthesized
a green, low-cost, and environmentally friendly potassium-doped GO, and the potassium-
doped content was as high as 6.81% [97]. Figure 16b displayed the confocal microscopic
image of cells with potassium-doped GO as the fluorescent probe, which shows that the
doped GO showed bright blue PL under the UV excitation of 365 nm, and its excellent
optical properties help it to become an excellent biological imaging agent. When the non-
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neoplastic epithelial ovarian IOSE-364 cells were cultured with potassium-doped GO for
4 h, the water-soluble potassium-doped GO exhibits stable blue fluorescence properties.
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Figure 16. (a) Highly obvious co-localization of CHDMA (green pixels in the left image) and lysosome
(red pixels in the middle image) in fibroblasts, showing the 3D reconstruction and merging of green
and red channels in a plane layer of cells; the central blue circle is the position of the nucleus.
Reprinted with permission from [95]. Copyright 2019, Elsevier. (b) Confocal microscopic images
of cells with potassium-doped GO as fluorescence probe. Reprinted with permission from [97].
Copyright 2019, Elsevier. (c) Confocal microscopy images of human vascular smooth muscle cells
cultured with 1% NGOs for 6 h. Reprinted with permission from [98]. Copyright 2020, Elsevier.

Sastikumar et al. successfully synthesized non-toxic fluorescent NGOs by laser ab-
lation of graphene solution and applied them to the field of biological imaging [98]. GO
synthesized at varied concentrations (1, 5 and 10% v/v) had no direct cytotoxicity on
smooth muscle cells at different moments. In addition, they did not affect the proliferation
rate of smooth muscle cells. Figure 16c shows the confocal microscopy images of human
vascular smooth muscle cells cultured for 6 h under the excitation of two different laser
wavelengths (405 nm and 488 nm), and uniformly distributed bright blue fluorescence can
be observed in the nucleus.

Carbon nanotubes (CNT) are derivatives of graphene materials, which have a high
specific surface area, high mechanical strength, and high drug loading capacity. In recent
years, CNT has been a popular material for drug delivery. However, CNT lacks biodegrad-
ability and has a certain toxicity, even though it has many excellent properties [99]. In
contrast, GO does not only have the advantage of negligible toxicity, but also provides
feedback on drug loading and release due to its optical properties [100,101].

Tang et al. have developed a GO-based DNA nanomaterial for cancer diagnosis and
treatment in vitro and in vivo [102]. This material can be used for organ imaging in vivo,
especially for liver tumors (Figure 17a). It has good biocompatibility, high detection
specificity, and effective anti-tumor efficiency for target liver tumor cells. Liu et al. reported
a new method to synthesize nanoscale water-soluble fluorinated graphene oxide (FGO)
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sheets, which has bright fluorescence (strong in acidic and alkaline conditions), high
near-infrared absorption, and pH-responsive drug delivery capacity [103]. Through the
interaction between FGO and drug fluorescence resonance energy transfer (FRET), it can
be switched to luminescence for monitoring drug loading and release (Figure 17b).
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7. Application of GO Fluorescence Quenching
7.1. Biomedicine

GO has been recognized as an effective fluorescent quenching material, which can
reduce the brightness of the fluorophore [104]. This seemingly contradictory phenomenon
is the performance of the atomic and electronic structure of GO. Because of the large
conjugated structure of GO, it becomes an excellent electron acceptor in the process of
energy transfer and then quenches the fluorescence [105]. The dual role of GO and GOQDs
as fluorophores and quenchers makes them convert fluorescence signals dependent on the
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excitation wavelength and quench the fluorescence from external fluorophores, which shows
great significance for the detection of various substances on a single biosensor [106,107].

Teniou et al. proposed a fluorescent aptamer sensor based on GO as a quenching
agent and FRET principle for the rapid determination of dopamine (DA) [108]. This
sensor showed excellent selectivity and sensitivity. In addition, the applicability of the
sensor was confirmed by detecting DA in complex biological matrix, and the sensor had
obvious accuracy.

Morales-Narváez et al. realized a real-time PL biosensor based on graphene oxide-
coated microporous plates (GOMs) and PL biological probes (PLBs), which can be used as
a rapid detection platform for pathogens [109]. Figure 18a,b show the preparation process
diagram of GOMs and the principle of bacterial detection. GOMs deactivated the PL
of PLBs without immune response through non-radiative energy transfer (A). PLBs that
undergo immune responses (via antibody-bacterial membrane affinity) maintain their PL
(B). PLBs that react with target bacteria in the liquid phase are not inactivated by GOMs
for two reasons: (1) the distance between complexes (PLBs–bacteria) and GOMs, and (2)
low affinity between the same complex and GO. The technology they proposed was high
universality because GO could quench different fluorophores and detect other pathogens
by simply changing the antibodies involved.
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Zhao et al. developed a convenient, low-cost, and high-sensitivity fluorescent aptamer
sensor based on GO (GO-apt) for leukemia detection [110]. GO and aptamer was used as
fluorescence quenching agents and targeting agents, respectively. In the absence of leukemia
cells (CCRF-CEM), GO can interact with carboxy fluorescein-labeled Sgc8 aptamer (FAM-
apt) to quench almost all fluorescence, and the detection signal is closed. Nevertheless,
when the target cells exist, the aptamer actively targets the cells and falls off from GO.
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Therefore, the concentration of target cells can be measured according to the change of
fluorescence intensity. Figure 18c is the GO-apt fluorescent aptamer sensor diagram for
CCRF-CEM detection.

7.2. Materials Imaging

As mentioned in Section 5.2, GO and quantum dots are strong quenchers of dye
molecules. Huang et al. made full use of the reverse strategy of this feature to apply it to
fluorescence quenching microscopes (FQM) [111]. Traditional microscopes, such as optical
microscopes (OM), scanning electron microscopes (SEM), and atomic force microscopes
(AFM), need a certain substrate or variety of strict conditions when imaging thin sheet
materials. The FQM can quickly image nanosheets on any substrate with high imaging
quality. In other words, FQM can rely on the quenching properties of GO to observe
the imaging of GO itself [112]. Generally, GO is deposited on the imaging substrate in
advance, then the fluorescent dye is placed on the substrate and excited at an appropriate
wavelength. Many details of the GO sheet can be observed by FQM, such as wrinkles, curls,
and overlaps. The mechanism of FQM is shown in Figure 19a,b. Furthermore, it can be
extended to other 2D materials with excellent quenching properties (such as MoS2, MoSe2,
WS2, etc. [113]) to observe their structural characteristics via the reverse strategy of GO.
Figure 19c compares the imaging of MoS2 under OM, AFM, and FQM.
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Elsevier. (c) Comparison of images of OM (I), AFM (II), and FQM (III) using MoS2 as an example.
Reprinted with permission from [113]. Copyright 2013, John Wiley and Sons.

7.3. Anti-Counterfeiting

Aggregation-induced luminescence (AIE) is a phenomenon discovered and reported
by Tang and co-workers in 2001, which refers to luminescence promotion by using molecu-
lar aggregation [114]. Fruitful work on AIE in the field of luminescence has been achieved
during the past two decades. For example, the ingenious combination of molecules
with AIE effect and GO with quenching effect has been widely used in the field of anti-
counterfeiting. Chen et al. used tetraphenylethylene (TPE) with AIE effect and GO with
quenching property to make TPE@GO composites (Figure 20a), and applied them to anti-
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counterfeiting security and other fields [115]. Tetrahydrofuran (THF) is a good solvent
for dissolving TPE, while TPS shows clustering in water. At an appropriate proportion
(VTHF = 60%), the THF/H2O mixture can promote the formation of TPE nanoparticles,
resulting in fluorescence emission. In the mixed solvent, the TPE is first dissolved in THF,
and then TPE molecules aggregate into nanoparticles in H2O with the volatilization of
THF. In this process, the formation of particles increases the distance between GO and TPE
nanoparticles beyond the quenching region of GO and emit fluorescence. In addition, they
found that the fluorescence was quenched again after pure THF was sprayed again, due to
the uniform dispersion of TPE nanoparticles dissolved in THF. Finally, they used GO and
TPE dispersions as invisible ink to draw patterns and decrypted or encrypted information
by spraying THF/H2O mixture or pure THF, respectively (Figure 20b–e).
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mixture and pure THF spraying film in turn. Reprinted with permission from [115]. Copyright 2019,
American Chemical Society.

8. Summary and Prospects

Through the research and development of graphene materials in the past decades,
the latest achievements of GO in various fields have emerged in an endless stream. The
disordered state of internal functional groups of GO makes it also known as a disordered
material. It obtains tunable optical properties because of the internal disorder, which makes
it applicable potentially in electronic devices, biomedicine, sensors, and other fields. This
review mainly introduces the mechanism and control factors of PL and quenching of GO,
the commonly used characterization methods of GO optical properties, as well as the
applications of GO in many areas.

The optical properties of GO and corresponding mechanisms are also constantly clear
through the effort made by many researchers. However, there are still many problems in
the study of optical properties of GO, which still need further exploration.

(1) Although the current reduction methods (such as chemical reduction, thermal
reduction, etc.) are relatively mature, there are also shortcomings, as it is hard to control
the degree of reduction, complex reduction process, high requirements, and possibly
irreversible changes in the original excellent properties of GO. Such shortcomings are
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bound to limit the application of GO. Therefore, it is still necessary to develop efficient,
controllable, and friendly reduction methods for GO.

(2) The luminescence mechanism of GO and quantum dots still needs to be further
clarified. Although several current PL mechanisms are discussed in this paper, there is no
clear conclusion in the mechanism research section. For instance, the π-π* transition of the
sp2 cluster is one of the highest acceptable mechanisms; although Chhowalla et al. deemed
that the PL of GO is closely related to the size of sp2, this theory cannot be applied to GOQDs
because PL quantum dots with size-dependent and size-independent can be synthesized.

(3) GO has been applied in many fields, but there are few fields where the optical
properties of GO are applied, at present mainly concentrated in biomedical fields (such as
biosensors, drug delivery, disease detection, etc.). Therefore, the applications of GO optical
properties in others field should be explored in the future.
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