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Abstract: The analysis of empirical sorption equilibrium datasets is still vital to gain insights into
material–property relationships as computational methods remain in development, especially for
complex materials such as flexible MOFs. Therefore, the Dubinin-based universal adsorption theory
(D-UAT) was revisited and evaluated as a simple visualization, analysis, and prediction tool for
sorption equilibrium data. Within the theory, gas properties are normalized into corresponding
states using the critical temperatures of the respective sorptives. The study shows theoretically and
experimentally that the D-UAT is able to condense differences of sorption data visualized in reduced
Dubinin plots to just three governing parameters: (a) the accessible pore volume, (b) the reduced
enthalpy of sorption, and (c) the framework’s reduced free energy differences (in case of flexible
behavior). This makes the theory a fast visualization and analysis tool, the use as a prediction tool
depends on rough assumptions, and thus is not recommended.

Keywords: metal–organic frameworks; thermodynamic analysis; flexible materials

1. Introduction

Flexible metal–organic frameworks (MOFs) have the ability to change their structure,
including the molecular conformation of the organic linkers upon external stimuli such as
temperature [1], mechanical pressure [2], electric fields [3,4], but, most importantly, due to
the adsorption of guest molecules [5–7]. This makes flexible MOFs an intriguing subclass
of porous materials for applications like gas separation and storage [8–11], catalysis [12],
or sensor design [13], as well as drug delivery [14]. Despite the already large number
of MOF structures (Cambridge structural database lists above 60,000 MOF structures
currently [15]), the modularity of the building blocks, inorganic linkers, and metal or
cluster nodes makes a complete exploitation of all structural possibilities experimentally
unfeasible. In order to enable a directed research of MOF materials suited for specific
applications within adsorption technology, computational simulations are more and more
deployed for the precise prediction of limiting pore widths, accessible pore volumes or
complete sorption equilibria data. For rigid materials, approaches like grand-canonical
Monte Carlo simulations already showed great prediction accuracy [16,17]. For flexible
MOFs, computationally much more demanding calculations of free energy profiles for
complex adsorptive–adsorbent systems are necessary. These calculations are able to predict
the complex sorption isotherms and thus became a focal topic of research within the last
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years [18–20]. However, these simulations are usually based on ab initio methods and are
computationally extremely expensive as of now [21].

Thus, the prediction of sorption isotherms was approached via the analysis of existing
datasets by several groups. Yamazaki et al. utilized the well-known Dubinin approach
to normalize various isotherms in a wide temperature range into working pair specific
characteristic curves using the flexible MOF (Cu(dhbc)2(4,4′-bpy)) and various fluids such
as Xe, Ar, CO2, and CH4 [22]. It was found that, although the characteristic curves for
different gases deviated in their respective positions within the Dubinin plot, the overall
shapes remained the same. Furthermore, a distinct relationship between the gate-opening
pressures and the enthalpy of adsorption was drawn, however, without deeper analysis.

In reaction to that, Sircar et al. [23] combined Dubinin’s theory with the relatively
new universal adsorption theory (UAT) by Quinn [24] for the same system studied by
Yamazaki et al. Herein, the critical temperatures of the gases were used as scaling factors
of the sorption potential. It was based on the assumption that a complete coincidence
of all isotherms within a Dubinin plot would lead to a universal pattern for one specific
adsorbent, from which every isotherm for any adsorptive could be derived. The complete
coincidence was not observed, but a minor qualitative agreement was shown for gases in
supercritical states within this work [23].

This raises the question to what the Dubinin-based universal adsorption theory, from
hereon called D-UAT, is capable of, since experimental and theoretical proof of its appli-
cability or boundaries thereof is still missing to the best of our knowledge, regardless of
rigid or flexible materials. This may be due to the fact that most studies are predominantly
concerned with chemically very different fluids such as CO2, N2, CH4, or noble gases,
which in turn pose very different adsorbent–adsorptive interactions or even quantum
effects, making a more general investigation rather challenging [25].

Thus, this study intends to achieve the following objectives:

1. Applying the D-UAT on an empirical sorption data set with several adsorbents,
adsorptives, and temperatures, and evaluate the practical abilities of the theory
for visualization, analysis, and prediction of sorption isotherms for both rigid and
flexible materials

2. Revisit the D-UAT from a purely theoretical point of view and find mathematical
proof of its applicability for visualization, analysis, and prediction

As such, this study intends to be a follow-up study to the work of Sircar et al. [23].

2. Materials and Methods
2.1. Materials

As an adsorbent probing system, the MOF series composed of (Cu2(H-trz-Ia)2), (Cu2(H-
Me-trz-Ia)2), (Cu2(H-Et-trz-Ia)2), and (Cu2(H-nPr-trz-Ia)2) was used as published by Kobalz
et al. [26]. For better readability, the adsorbents are designated as Cu-IH-pw, Cu-IHMe-pw,
Cu-IHEt-pw, and Cu-IHnPr-pw within this paper, respectively, depending on their linker
structure (see Figure 1).
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Figure 1. Illustration of organic linkers for the MOFs Cu-IH-pw, Cu-IHMe-pw, Cu-IHEt-pw, and
Cu-IHnPr-pw from left to right. The differences are within the alkyl side-chain in the 2-position of the
triazolyl ring.
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As previously reported for CO2 adsorption [26], Cu-IH-pw shows no flexible behav-
ior while Cu-IHMe-pw demonstrated two, Cu-IHEt-pw and Cu-IHnPr-pw one structural
transition, making it a well-suited MOF series for the investigation of sorptive switching
behavior (see Figure 2). Therefore, at least three concurring structures are existent in the
flexible MOFs, herein called narrow pore, medium pore, and large pore form (np, mp, and
lp form, respectively). For Cu-IHMe-pw, the largest cavities in the respective structure
np and mp are shown in Figure 3. For further details on the structures, please see the
Supplementary Materials, Section S4.
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Figure 2. Classical adsorption isotherm in linear (left) and logarithmic (right) representation for the 
CO2-adsorption at 298 K for Cu-IH-pw, Cu-IHMe-pw, Cu-IHEt-pw, and Cu-IHnPr-pw, showing a 
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[26]. 
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The synthesis of the MOFs was conducted according to [26]. As probing molecules,
the n-alkanes ethane, propane, and n-butane, as well as the olefin iso-butene, were chosen
in order to investigate a wide range of physical and chemical properties.

2.2. Methods
2.2.1. Sorption Isotherms

Isotherms were measured according to a modified protocol by Keller and Staudt [27].
The adsorption and desorption isotherms of ethane, propane, and n-butane on the MOFs
were determined in a temperature range from 283 K to 313 K and at pressures of up to
5 MPa using a magnetic suspension balance (Fa. Rubotherm GmbH, Bochum, Germany).
Three pressure transducers (MKS Instruments Deutschland GmbH, Germany, Newport
Omega Electronics GmbH, Germany) were used to collect data for the pressure range
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up to 5 MPa. Before the sorption experiments, the MOFs (0.2 g) were activated for at
least 12 h at 373 K under a minimum pressure of 0.3 Pa until constant mass was achieved.
Materials were used only for a maximum number of 10 cycles, which prohibits any cycling
stability issues with this series of MOFs. The temperature was kept constant throughout
the measurement with an accuracy of 0.5 K. Ethane, propane, and n-butane were obtained
from Linde (Linde AG, München, Germany) with purities of 99.5%. All isotherms within
this work are presented in absolute gas loading based on a buoyancy correction [27].

2.2.2. Adsorption Enthalpies

To determine the adsorption enthalpy in dependence of sorptive loading, a manometric
setup was coupled to a microcalorimeter. Prior to each adsorption experiment, the samples
were outgassed and heated up to 333 K for 2 h. The adsorption experiments were carried
out at 298 K. The heat evolved during each adsorption step was measured using a C80
microcalorimeter (Setaram, France). The heat flow to/from the sample is detected by means
of 3D heat DSC sensors. The integration of heat peaks was performed by Calisto® Software
(v1.043 AKTS-Setaram).

2.2.3. Dubinin-Based Universal Adsorption Theory (D-UAT)

The first connection between the well-established Dubinin theory [28] and the uni-
versal adsorption theory (UAT) from Quinn [24] was shown by Sircar et al. [23]. Within
the UAT, it is assumed that two fluids with the same set of reduced parameters (1) are in
corresponding states [29], basically meaning in the same position in a reduced p-V phase
diagram. However, in terms of adsorption, the critical parameters can be used as scaling
variables in order to normalize different fluid properties onto one corresponding state.
In Equation (2), Dubinin’s sorption potential A is scaled via the critical temperature to a
reduced adsorption potential Ared, therefore all fluid–fluid interactions are normalized. A
deeper description and theoretical proof of its applicability are given in the Supplementary
Materials, Section S1-II.

Tred =
T
TC

(1)

Ared =
A
TC

= −R
T
TC

ln
(

p
p0

)
= −RTred ln

(
p
p0

)
(2)

All isotherm fits in this work were performed using a dual Dubinin–Asthakov equation
(dual DA, (3)) [30]. The detailed fitting approach for the accessible pore volume W in
dependence of the sorption potential A or reduced sorption potential Ared, as well as the
derived fitting parameters, are within the Supplementary Materials, Section S2.

W = W0,1 e(
−A
E1

)
m1

+ W0,2 e(
−A
E2

)
m2

(3)

3. Results
3.1. D-UAT on the Rigid MOF Cu-IH-pw

The Dubinin plots for ethane, propane, and n-butane generated from isotherms at
283, 298, and 313 K (except ethane at 313 K) on the rigid adsorbent Cu-IH-pw are shown
in Figure 4 (left), and the classical sorption isotherms can be found in the Supplementary
Materials. All sorption data points, including ad- and desorption for each sorptive, super-
impose to one characteristic, temperature independent sorption pattern, thus showing no
indication of a phase transition of either the fluid or the adsorbent (see also Figure S23).
The overall shapes represent type Ia isotherms for microporous solids according to the
IUPAC classification [31], although a continuous pore filling can be observed within a
relative pressure range of 0.10–0.99 for each adsorptive. The specific accessed pore volume
W reaches 480 cm3 per mole unit cell (with two formular units) adsorbent for all sorptives.
However, as expected, the specific temperature independent characteristic sorption pat-
terns for ethane, propane, and n-butane deviate in their respective positions in the Dubinin
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plot due to their different fluid properties. Herein, half of the sorptive loading is reached
by n-butane at a sorption potential A of 19.5 kJ mol−1 and by ethane at 14.0 kJ mol−1.
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However, when applying the D-UAT by dividing the sorption potential A by the criti-
cal temperature TC of the fluid to a reduced sorption potential Ared, all three characteristic
sorption patterns coincide (Figure 4 right). This is the first time that three different gases
were normalized using the D-UAT and a complete coincidence of the characteristic patterns
is reported based on experimental data. It would furthermore underline the claim made
by Sircar that a complete coincidence can be achieved with this methodology for different
sorptives. The characteristic reduced sorption pattern for all three sorptives fit with a dual
Dubinin–Asthakov fit (DA-fit).

Using a chemically different adsorptive such as iso-butene, the reduced isotherms
do not converge into the same characteristic sorption pattern, as shown in Figure 5 (left).
While iso-butene sorption isotherms display the same overall shape and it reaches a similar
total accessed pore volume W, the pattern is shifted to a higher reduced sorption potential
Ared. As established in the literature, every sorption potential corresponds to a specific
differential heat of adsorption [32] and thus the enthalpic interaction of solid and adsorptive
is scalable with TC as well, if a complete coincidence of all isotherms is observed. This
can be seen in Figure 5 (right), where a value of 100 J K−1mol−1

Gas as reduced differential
heat of adsorption dhred for the n-alkanes on Cu-IH-pw at half coverage can be derived via
the dual Dubinin–Asthakov fit and the Clausius–Clapeyron equation [32]. For the case
of a rigid adsorbent, the shift to higher reduced sorption potentials of the characteristic
curve can only be explained with a higher interaction potential between solid and gas or
vice versa. In the case of iso-butene and its double bond, it is possible that it can interact
specifically with the π systems of the triazolyl or the isophtalate ring structures of the rigid
MOF and thus has a higher reduced differential heat of adsorption dhred (108 J K−1mol−1

Gas
at half coverage).

Thus, by applying the D-UAT to rigid adsorbents, differences in the reduced sorption
pattern can be assigned to two governing parameters:

1. The accessible pore volume V (derived from the modelling parameter W in Equation (3))
and

2. The reduced adsorption enthalpy dhred (derived from the modelling parameters E
and m in Equation (3)).



Nanomaterials 2022, 12, 2415 6 of 13

Nanomaterials 2022, 12, x 6 of 13

it can interact specifically with the 𝜋 systems of the triazolyl or the isophtalate ring struc-
tures of the rigid MOF and thus has a higher reduced differential heat of adsorption 𝑑ℎ௥௘ௗ
(108 J K-1molGas

-1
 at half coverage).

0 20 40 60 80 100
0

100

200

300

400

500 Cu-IH-pw
n-butane

 iso-butene

sp
ec

. p
or

e 
vo

lu
m

e 
W

 / 
cm

3  m
ol

−1

red. sorption potential Ared / J K−1 mol−1
 

0 100 200 300 400 500
50

75

100

125

150

175

re
d.

 d
iff

. e
nt

ha
lp

y 
Δh

re
d /

 J
 m

ol
−1

 K
−1

spec. pore volume W / cm3 mol−1

Cu-IH-pw
 n-butane
dhred,1/2=100 J mol−1 K−1

 iso-butene
dhred,1/2=109 J mol−1 K−1

Figure 5. D-UAT plot (left) and reduced differential heat of adsorption 𝑑ℎ௥௘ௗ (right) after applica-
tion of the UAT to the sorption of n-butane and iso-butene on Cu-IH-pw at 283 K, 298 K, and 313 K.

Thus, by applying the D-UAT to rigid adsorbents, differences in the reduced sorption 
pattern can be assigned to two governing parameters: 
1. The accessible pore volume 𝑉 (derived from the modelling parameter 𝑊 in Equa-

tion (3)) and 
2. The reduced adsorption enthalpy 𝑑ℎ௥௘ௗ (derived from the modelling parameters 𝐸 

and 𝑚 in Equation (3)). 
Especially regarding the latter, the D-UAT is a practical improvement compared to 

the classical Dubinin theory and the empirically defined scaling parameter 𝛽 [28], which 
has to be catalogized for every adsorbent–adsorptive system. This shows a significant dif-
ference to the work of Sircar, where it was assumed that, with the scaling of the sorption 
potential with the critical temperature, not only fluid–fluid but also fluid–adsorbent in-
teractions were to be normalized. A closer look into the precise thermodynamics of ad-
sorbed gases on rigid adsorbents under corresponding states and the mathematics regard-
ing the D-UAT are given in the Supplementary Materials, section S1-II. The methodology
could also give insight into kinetic hindrances or pore-blockage effects. With the use of 
the dual Dubinin–Asthakov fit, one could even predict sorption isotherms of other gases 
such as longer n-alkanes on the same adsorbent. However, this requires assumptions like 
a neglection of size exclusion effects and always constant reduced interaction potentials, 
and thus, the applicability as a prediction tool should be neglected. 

Therefore, the D-UAT can be utilized as a quick and deterministic visual and analysis 
tool in order to evaluate large portions of adsorption isotherm data points of chemically 
and physically very different gases on rigid adsorbents. So far, the theory has been used
and investigated predominantly for flexible MOFs in recent years [23,33]. In the following 
section, the hydrocarbon sorption isotherms for the three flexible frameworks, 
Cu-IHMe-pw, Cu-IHEt-pw, and Cu-IHnPr-pw, will be examined, and the applicability of 
the theory for this subclass will be evaluated.

3.2. D-UAT on the Flexible MOFs Cu-IHMe-pw, Cu-IHEt-pw, and Cu-IHnPr-pw
The Dubinin plots after application of the D-UAT for ad- and desorption of ethane, 

propane, and n-butane at 283, 298, and 313 K (except ethane at 313 K) on the flexible ad-
sorbents Cu-IHMe-pw and Cu-IHEt-pw are shown in Figure 6 (left and right, respectively). 

Figure 5. D-UAT plot (left) and reduced differential heat of adsorption dhred (right) after application
of the UAT to the sorption of n-butane and iso-butene on Cu-IH-pw at 283 K, 298 K, and 313 K.

Especially regarding the latter, the D-UAT is a practical improvement compared to the
classical Dubinin theory and the empirically defined scaling parameter β [28], which has to
be catalogized for every adsorbent–adsorptive system. This shows a significant difference
to the work of Sircar, where it was assumed that, with the scaling of the sorption potential
with the critical temperature, not only fluid–fluid but also fluid–adsorbent interactions were
to be normalized. A closer look into the precise thermodynamics of adsorbed gases on rigid
adsorbents under corresponding states and the mathematics regarding the D-UAT are given
in the Supplementary Materials, Section S1-II. The methodology could also give insight into
kinetic hindrances or pore-blockage effects. With the use of the dual Dubinin–Asthakov
fit, one could even predict sorption isotherms of other gases such as longer n-alkanes on
the same adsorbent. However, this requires assumptions like a neglection of size exclusion
effects and always constant reduced interaction potentials, and thus, the applicability as a
prediction tool should be neglected.

Therefore, the D-UAT can be utilized as a quick and deterministic visual and analysis
tool in order to evaluate large portions of adsorption isotherm data points of chemically
and physically very different gases on rigid adsorbents. So far, the theory has been used
and investigated predominantly for flexible MOFs in recent years [23,33]. In the following
section, the hydrocarbon sorption isotherms for the three flexible frameworks, Cu-IHMe-pw,
Cu-IHEt-pw, and Cu-IHnPr-pw, will be examined, and the applicability of the theory for
this subclass will be evaluated.

3.2. D-UAT on the Flexible MOFs Cu-IHMe-pw, Cu-IHEt-pw, and Cu-IHnPr-pw

The Dubinin plots after application of the D-UAT for ad- and desorption of ethane,
propane, and n-butane at 283, 298, and 313 K (except ethane at 313 K) on the flexible
adsorbents Cu-IHMe-pw and Cu-IHEt-pw are shown in Figure 6 (left and right, respectively).

All reduced sorption patterns show two different adsorption regimes typical for
flexible MOFs. First, very low uptake at low relative pressure in a narrow pore phase
(np phase) and, due to a structural transition, a larger medium pore phase (mp phase) at
higher relative pressure (Note that Cu-IHMe-pw displays a second structural transition upon
adsorption of CO2, as shown by Kobalz et al. [26], the then present phase is called large
pore phase). Furthermore, a hysteresis is observed between ad- and desorption patterns.
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desorption (empty circles) of C2 to C4 n-alkanes on the flexible Cu-IHMe-pw (left) and Cu-IHEt-pw
(right). Furthermore, the respective fits of the dual Dubinin–Asthakov function are shown for both
processes as well as the boundaries of the structural transition (GOS—gate opening start, GOE—gate-
opening end, GCS—gate closing start, GCE—gate closing end).

Almost all isotherms shown in Figure 6 converge into characteristic patterns, although
with slight deviations and generally not as sharp as seen in the case of Cu-IH-pw shown
in Figure 2. Within Cu-IHMe-pw, the total accessible pore volume differences between
the three sorptives are only minor. Within Cu-IHEt-pw (Figure 6, right), however, ethane
has an increased accessible pore volume of 44% and 30%, depending on the temperature,
as compared to propane and n-butane (340 and 300 vs. 230 cm3 mol−1). This might be
due to entropic effects, given the smaller size of ethane and the ability to find a denser
conformation within the pore as compared to the other sorptives. Another possibility is
that ethane opens the structure to an extent that it rather resembles the large pore phase of
Cu-IHMe-pw. The desorption of n-butane on Cu-IHEt-pw does not close the framework as
opposed to ethane and propane. This may be due to a kinetic hindrance of the desorption
process due to the larger molecular size of the adsorptive and a retention of n-butane within
the MOF pores. Furthermore, the fourth MOF in the series, Cu-IHnPr-pw, was also probed
with the n-alkanes but showed only adsorption within the np phase and thus is omitted for
the analysis in this section.

In order to form a basis for a quantitative analysis, the sorption patterns were again
fitted to a universal curve with the dual DA equation, where one part represents the np
phase and the other the larger mp phase. Within the fitting process, the aforementioned
deviations from the characteristic patterns were omitted. Furthermore, with the aid of
the theory of the excess surface work (ESW) by Adolphs et al. [34], three characteristic
points for both ad- and desorption, namely the gate-opening start (GOS), gate-opening end
(GOE), gate-opening center (GOC), gate-closing start (GOS), gate-closing end (GCE), and
gate-closing center (GCC) could be derived. All values are listed in Table 1. For the fitting
approach and the ESW theory, see Supplementary Materials, Section S2.

From the universal fits, the overall accessible pore volumes per mol MOF, W, at a
reduced sorption potential of 0, meaning at the respective saturation pressures, are 359
and 243 cm3 mol−1 for Cu-IHMe-pw and Cu-IHEt-pw, respectively. This marks a reduction
of 25% and 50% compared to Cu-IH-pw, caused by the narrower pores resulting from
alkyl substituents of the linkers. The accessible pore volume in the np phase up to the
GOS, around 10 cm3 mol−1, is similar for all sorptives and both flexible hosts. This can be
interpreted as adsorption only on the outer surface of the particles or within the spatial of
pore entries, but no adsorption within the depths of the pore system.
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Table 1. Reduced sorption potential for gate-opening boundaries and calculated ∆FHost
red and ∆HHost

red
values (underlined grey) of Cu-IHMe-pw and Cu-IHEt-pw taken from the characteristic dual DA fits.

Parameter Unit Cu-IHMe-pw Cu-IHEt-pw
AGOS

red J K−1 mol−1
Fluid 38 19

AGOE
red J K−1 mol−1

Fluid 26 11
AGOC

red J K−1 mol−1
Fluid 30 14

AGCS
red J K−1 mol−1

Fluid 35 30
AGCE

red J K−1 mol−1
Fluid 44 42

AGCC
red J K−1 mol−1

Fluid 41 37
∆FHost

red J X mol−1
MOF 3.8 4.3

∆HHost
red J X mol−1

MOF 3.9 4.2

X herein refers to the adsorptive-specific entity cm3

molFluid Tc
which allows an easy back calculation into the real values.

More background regarding the calculation method can be found in the Supplementary Materials, Section S1.

Despite deviations between the characteristic patterns within the respective MOF
systems, the overall convergence of all isotherms after the application of the D-UAT indicate
similar results as seen for Cu-IH-pw. Published works using ethane and propane as probe
molecules in other flexible MOFs [35,36] were analyzed using the same method and led to
similar results, as presented in Figures S20 and S21.

For a material to be flexible, an energetic offset (∆FHost) between at least two concur-
ring structures is necessary, as introduced by Coudert et al. [7]. The same logic holds true
under reduced states. The calculation of this parameter from the dual DA fits is strongly
dependent on whether the ad- or desorption fit is relied upon. Due to an investigated
kinetic hindrance for the gate-opening process that is also seen in other works, the des-
orption fit is used in this paper [33,37]. A precise derivation of this logic is to be found
within the Supplementary Materials, Section S1. The reduced energetic offsets based on the
method of Coudert [7] resulted in 3.8 and 4.3 J X mol−1

MOF for Cu-IHMe-pw and Cu-IHEt-pw,
respectively. A similar method proposed by Mason et al. resulted in similar values [10], the
results are also summarized in Table 1. At 298 K, the real values of the difference of free
host energy for Cu-IHMe-pw would be 16, 12, and 6 J mol−1

MOF for n-butane, propane, and
ethane, respectively. These values are similar to those of other flexible MOFs [35,38].

Thus, by applying the D-UAT, differences in a reduced sorption patterns in flexible
materials can be summarized by five governing parameters from three parameter clusters:

1. The accessible pore volumes V for (a) open and (b) closed form (derived from the
modelling parameters W0,1 and W0,2 within Equation (3)),

2. The reduced adsorption enthalpies dhred for (a) open and (b) closed form (derived
from the modelling parameters E1/E2 and m1/m2) within Equation (3) and

3. The resulting reduced energetic offset between the opened and closed structures as
indicated by the calculated (∆FHost

red , derived from all fitting parameters)

3.3. D-UAT Simulation and Sensitivity Analysis of Governing Parameters V, dhred, and ∆FHost
red

In order to prove the theoretical validity of the theory, a simple theoretical sorption
model incorporating the van der Waals theory formulations by Johnston et al. was set
up [29]. The model takes into account two concurring structures (closed pore and open pore)
within one MOF with an energetic offset similar to the ∆FHost

red . Furthermore, the volume V
that both structures enable for adsorption as well as the reduced heat of adsorption dhred
are relevant factors. The detailed theoretical derivation can be found in the Supplementary
Materials, Section S1-IV. The three governing parameters, V, dhred, and ∆FHost

red , can thus be
studied independently, enabling a complete sensitivity analysis (see Figure S7).

Within this section, the differences of the three governing parameters of the D-UAT
between the three MOFs, Cu-IH-pw, Cu-IHMe-pw, and Cu-IHEt-pw, are estimated and
interpreted with the aid of the model.
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As shown in Table 1, the differences in reduced free host energies ∆FHost
red between the

np phase as well as the mp phase for both flexible materials, Cu-IHMe-pw and Cu-IHEt-
pw, are 3.8 and 4.3 J X mol−1

MOF, respectively, are rather minor (+10%). Cu-IH-pw, on the
other hand, shows an isotherm typical for a rigid MOF. It may be possible that within this
structure, a np phase is possible as well which, however, is not energetically favorable
compared to the mp phase under vacuum conditions.

Thus, there are two possible explanations. First, with increasing linker size, the
mp phase is destabilized due to a larger repulsion of the linkers. Second, the np form is
destabilized due to stronger interactions of the linkers itself.

The first possibility was accounted for in the adsorption model in order to simulate
the three MOFs and their distinct behavior. Furthermore, the specific pore volumes of
the opened pore phase of Cu-IHMe-pw and Cu-IHEt-pw were reduced by 25% and 50%
compared to Cu-IH-pw, respectively, and the closed pore phase volume was kept constant
for all simulations. No energetic offset was set for Cu-IH-pw, while for both flexible materials
this was done in accordance with the experimental data. Additionally, the reduced heat of
adsorption dhred was set as equal for all materials and pore phases. The precise calculation
of this simulation can be seen in the Supplementary Materials, Section S1-V.

The resulting reduced sorption curves are presented in Figure 7 (bottom right), show-
ing a close resemblance of the actual system under study as in Figure 7 (bottom left). For
the real-world system, there is likely a combination of the three parameters which would
fully explain the differences in a D-UAT plot.
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small temperature range was investigated, albeit such dependency is often reported in the 
literature [39–41]. The validity of the theory for supercritical fluids is unknown and should 
be further investigated. Additionally, the D-UAT was used under the assumption that for 
all adsorptives, the same structural phases within one material are present with the same 
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Figure 7. Bottom-left—D-UAT plot for the n-alkane desorption from experimental data at 283, 298,
and 313 K. Right side: Output of the theoretical sorption model for one closed pore structure and
three open pore structures in regard to the reduced grand canonical potential Ωred (top) as well
as accessed volume V (bottom, leading to a D-UAT plot) in dependence of the reduced sorption
potential Ared. The specific inputs were chosen to reach a high resemblance between the D-UAT plot
from experimental data and thus gain more insights into the material–property relationships.

The theory thus aided in finding potential focus points for further research on the
MOF series (Cu2(L-trz-Ia)2) in order to better understand the relationships between the np,
mp, and lp phases and the switching behavior between them:
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- Investigate a potential np phase for the “rigid” Cu-IH-pw under vacuum conditions
with in situ PXRD

- Investigate whether ethane is able to open Cu-IHEt-pw to the lp phase rather than the
mp phase utilizing in situ PXRD

- Further investigate the kinetic hindrance during the gate-opening and gate-closing
processes in dependence of MOF, adsorptive, temperature, and pressure jumps

- Investigate whether the affinity of the MOF series towards olefins can be utilized for
alkane–alkene separation processes.

4. Conclusions

In this work, it is shown that the Dubinin-based universal adsorption theory (D-UAT)
is a quick deterministic analysis tool for the visual comparison of sorption isotherms of
physically and chemically different adsorptives while being a strong quantitative tool
with the aid of the Dubinin–Asthakov equation due to the reduction of differences within
reduced characteristic sorption patterns to three basic features: the accessible pore volume
V, the reduced enthalpy of adsorption dhred between host and gas and, in case of flexible
materials, the reduced free host energy ∆FHost

red .
Furthermore, large datasets can be screened for anomalies or specific properties

regarding these parameters or kinetic hindrances. This could accelerate the synthesis–
analysis–feedback loop and enable a faster MOF research for applications like gas storage
and separation without the use of computationally expensive calculations. However, the
theory has limitations as the precise interplay of the accessible pore volume, reduced
adsorption potential, and differences of reduced host energies can only be estimated based
on at least some assumptions. The temperature dependence of ∆FHost

red was neglected as
only a small temperature range was investigated, albeit such dependency is often reported
in the literature [39–41]. The validity of the theory for supercritical fluids is unknown and
should be further investigated. Additionally, the D-UAT was used under the assumption
that for all adsorptives, the same structural phases within one material are present with
the same host energies. However, it is worth investigating whether in the case of, e.g.,
iso-butene, a structure would adjust to the different spatial demand of the adsorptive and
thus different host energies would be present.

Due to the theory’s herein proven capabilities, it was possible to study three iso-
reticular MOFs, two of which show flexible behavior. It could be shown that the reduced
sorption patterns of the n-alkanes ethane, propane, and n-butane lead to the same results
under corresponding states for all three MOFs, indicating the three governing, reduced
parameters under the D-UAT are likely equal. The slight differences in the linkers within
the MOF series have, besides the accessible pore volume, a large effect on the individual
stability of the respective mp phases, leading to shifts of the structural transition. Further
focal points for future investigations could be derived with the aid of this theory. Currently,
follow-up studies focus on the mechanisms that influence the diffusion as well as the rate
of structural transition for one particular MOF–gas pair, and on the complex interplay of
thermodynamics and kinetics within flexible materials in more detail in order to estimate
the potential of this material class for future applications.

Supplementary Materials: It can be downloaded at: https://www.mdpi.com/article/10.3390/nano1
2142415/s1. The supporting material details in depth the theoretical background of the model among
other additional information. The material is structured as follows: Section S1—Derivation of the
Potential Theory under Corresponding States, Section S2—General fitting approach, Section S3—
Derivation of equilibrium states for calculation of ∆FHost

red , Section S4—Additional Structural Data for
the MOF series, Section S5—Further experimental data. experimental data. References [42–49] are
cited in the supplementary materials.
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