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Abstract: As deformation and defects are inevitable during the manufacture and service of graphene
resonators, comprehensive molecular dynamic (MD) simulations are performed to investigate the
vibrational properties of the defective single-layer graphene sheets (SLGSs) during tension. Perfect
SLGSs, SLGSs with single vacancy, SLGSs with low-concentration vacancies, and SLGSs with high-
concentration vacancies are considered, respectively. The frequencies of the perfect and defective
SLGSs at different stretching stages are investigated in detail. The effects of different external forces
are also taken into account to study the vibration properties of the defective SLGSs. Results show
that the perfect and defective SLGSs both successively perform four stages, i.e., the elastic stage, the
yield stage, the hardening stage, and the fracture stage during stretching, and the elastic properties
of the SLGSs are insensitive to the vacancy defects, while the ultimate strain is noticeably reduced
by the vacancies. The single vacancy has no effect on the vibration properties of SLGS, while the
frequency decreases with the increasing vacancy concentration for SLGS at the elastic stage. The
frequency of yielded SLGS with a certain vacancy concentration is almost constant even with a
varying external force.

Keywords: graphene; tension; vibration; vacancy; molecular dynamic simulations

1. Introduction

The two-dimensional (2D) nanomaterial with a monatomic layer, graphene, has at-
tracted significant attention from the scientific and industrial communities since its first
isolation in 2004. Due to its extremely high mechanical, electrical, optical, and thermal
properties, graphene has been considered an ideal material for use in nanoelectromechan-
ical systems (NEMS) [1–6], which are of great interest both for fundamental studies of
mechanics at the nanoscale and for a variety of applications, including force [7], position [8],
and mass [9] sensing. For practical use in NEMS devices and other applications, vibration
behaviors are critical for the design and reliability of systems. Zhang et al. [10] investigated
the vibrational frequency of rippled single-layered graphene sheets, providing insight for
the next-generation nano-resonant device design. Many theoretical and numerical studies
on the vibrations of the SLGS, double-layered and triple-layered graphene sheets related
structures without any prestressing have been published [11–14]. Previous studies [1,2] sug-
gested that random built-in tension is generated in the single-layer graphene sheets (SLGSs)
resonators during the fabrication process. This paper focuses on the tensile behaviors and
vibration properties of monolayer graphene resonators with pre-tension.

Similar to other known materials, perfect graphene sheets are almost impossible to
manufacture, even when fabricating experimentally. It is quite well known that defects in
materials have a great influence on the properties of crystals and nanostructures [15–18].
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Defects in graphene are usually in the form of vacancies, dislocations, grain boundaries,
etc., [19,20]. The static [21–24] and dynamic [25–28] mechanical properties of graphene
sheets are sensitive to lattice imperfections. Fully understanding the tensile and vibration
properties of defective graphene sheets is necessary for the reliability of graphene resonators.
Due to the difficulties and uncertainties in nanoscale experiments, simulation methods are
widely utilized as an alternative technique. Chu et al. [25] proposed the Monte Carlo-based
finite element method to simulate the vibrations of graphene sheets with vacancies and
reported a dramatic decrease in the foundational frequencies of the graphene sheets along
with increasing vacancy defects. Several studies used classical molecular dynamic (MD)
simulation studies to investigate the effect of varied defects on the tensile response of
graphene and graphene reinforced composites [29,30].

In order to understand the vibrational properties of graphene nanoribbons at different
tensile conditions, this paper treats the graphene nanoribbon as a finite-length pre-strained
SLGS with clamped ends. The originality of the present work includes: (1) The tensile
performances of SLGSs with different vacancy concentrations are studied, (2) the SLGSs
with varying pre-strained degrees are taken into consideration to analyze their vibrational
properties. We, first, perform extensive MD simulations to analyze the tensile characteristics
of the finite-length SLGSs with different vacancy defects, and then study their natural
frequencies with varying pre-strained degrees. The effect of different external loads on
the resonant response of the pre-strained SLGS with clamped ends is also analyzed to
ensure the safety of the graphene nanoribbons. All the calculations related to this work
were done by the large-scale atomic/molecular massively parallel simulator (LAMMPS) an
open-source molecular dynamic software on Windows (version; 6 September 2016).

2. Materials and Methods

Figure 1 shows the atomic structures of defective graphene nanoribbons with length
L = 10.365 nm, thickness h = 0.335 nm, and width W = 3.24 nm, including (a) perfect sheet,
(b) single vacancy, (c) low-concentration vacancies, and (d) high-concentration vacancies
SLGSs. Three layers at both ends, colored in red, of all the SLGSs are fixed, while the rest
are free parts that are colored in blue. A periodic boundary is used in the X and Y directions,
and a shrink-wrapped boundary is used in the Z direction.
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In the MD simulations, the adaptive intermolecular reactive empirical bond order
potential (AIREBO) is adopted. As given in detail in Stuart et al. [31], the AIREBO potential
can be represented by a sum over pairwise interaction:

E =
1
2∑

i
∑
j 6=i

[
EREBO

ij + ELJ
ij + ∑

k 6=i,j
∑

l 6=i,j,k
ETORS

ijkl

]
(1)

where EREBO
ij , ELJ

ij , and ETORS
ijkl are respectively the covalent bonding REBO interactions, LJ

terms, and torsion interactions [31].
Each model is initially relaxed using canonical ensemble (NVT) simulation until

the energy of the system is fully minimized for a specified temperature of 100 K, then
axial strain applied. The deformation-control method with a strain rate of 0.0005 ps−1

is implemented along the positive X-axial until the graphene nanoribbons collapse. The
strain increment is applied after every 1000-time steps. The Velocity–Verlet algorithm and
Nosé–Hoover thermostat are used.

3. Results and Discussion

After computing and exporting the stress and geometrical characteristics of the defec-
tive SLGSs during tension through the LAMMPS codes, the tensile stress-strain curves of
the SLGSs with different vacancy concentrations are obtained, as shown in Figure 2. In this
work, the SLGSs with the same vacancy concentrations but different vacancy locations are
also calculated. It should be pointed out that they have the same performance. Results show
that the tensile processes of the SLGSs go through four stages, namely, the elastic stage,
the yield stage, the hardening stage, and fracture [32]. Obviously, linear and nonlinear
elastic processes are both observed. Interestingly, the linear elastic behaviors and the yield
strains of these defective SLGSs are similar, but their nonlinear elastic performances are
different. Besides, the perfect sheet and the SLGS with a single vacancy almost have the
same elastic phenomena, while a notable gap is observed between their hardening stages.
It implies that vacancies make a significant difference in the ultimate strain of SLGSs, even
a single vacancy.
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Figure 2. Tensile stress-strain curves of SLGSs with different vacancy concentrations.

To explain the vacancy sensibility, Figure 3 shows the atomic configurations of the
SLGSs with different vacancy concentrations during (a) elastic (ε = 20%) and (b) fracture
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processes. During the elastic stage, overall stretches are observed for all the SLGSs. Local
irregularities appear around the vacancies for the defective SLGSs. As the proportion of the
local irregularities for the single vacancy SLGS can be negligible, the SLGS with a single
vacancy has the same elastic properties as the perfect one, as shown in Figure 2. However,
their failure mechanisms are totally different in our calculations. Specifically, the defective
SLGSs collapse with perfect clear-cut configurations while the perfect SLGS fracture with a
relatively rough fracture surface [33].
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In order to investigate the vibrational features of the defective SLGSs at different
stretching stages, different pre-strains are first subjected to the system as part of the process
in our tensile experiments. Three SLGSs pre-strained at 10%, 20%, and 25% are studied,
which respectively stand for the linear elastic stage, nonlinear elastic stage, and fracture.
Seven different external forces f (17.04 nN, 25.26 nN, 34.08 nN, 42.6 nN, 51.12 nN, 59.64 nN,
and 68.16 nN) per atom (blue in Figure 2) are respectively applied to the pre-strained SLGS
perpendicularly to study the resonant responses of the pre-strained SLGSs in simulations.
The external load is removed after 10,000-time steps of loading. When the energy of the
system is minimized again, the NVT simulation turns to the micro-canonical ensemble
(NVE) simultaneously in each simulation to ensure the conservation of energy during
vibration. Because of the C-C bonds and the energy contributed by an external force, the
systems begin to oscillate, which is accompanied by the conversion between kinetic energy
and the potential energy of the systems.

Considering the period of the conversion between kinetic energy and potential energy
as T, the vibrational period should be 2T. Frequency response curves can be obtained
through Fast Fournier Transform (FFT) by selecting the kinetic energy of the systems as
time-domain signals. Figure 4 gives the frequency response curves of the SLGSs with
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different vacancy concentrations under (a) ε = 10%, (b) ε = 20%, and (c) ε = 25% pre-
strained conditions. For all these different kinds of defective SLGSs, the external force
influences the frequency responses of SLGSs with 10% pre-strained the most and affects
the frequency responses of SLGSs with 25% pre-strained the least. In other words, the
vibration properties of SLGSs during the elastic stage are the most sensitive to the external
load. It is noted that the frequencies shown in Figure 4 are twice the resonance frequencies
of corresponding systems.
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stage (ε = 20%), and (c) yield stage (ε = 25%). As seen, the resonance frequencies of the
SLGSs with a single vacancy are almost the same as that of the perfect sheets, and more
vacancies lead to a lower resonance frequency for a certain external force because of the
reducing stiffness. In Figure 5a, the defective SLGSs with 10% pre-strain, i.e., at the linear
elastic stage, the resonance frequencies almost linearly increase with the increasing external
force. There is a notable platform with varying external force for the defective SLGSs
at nonlinear elastic stage (ε = 20%), Figure 5b. In Figure 5c, the resonance frequencies
of the SLGSs with a certain vacancy concentration, nearly stabilize at a constant value,
which is independent of the external force. Such different phenomena for the SLGSs at
different stretching states are caused by the elastic potential energies transformed from the
work done by the external forces. For the SLGSs stretching closer to the yield strain, less
elastic deformation can be afforded, which leads to less sensitive vibration properties to the
varying external load.

Nanomaterials 2022, 12, x 6 of 8 
 

 

Figure 4. Frequency response curves of the SLGSs with different vacancy concentrations under (a)ε 
= 10%, (b) ε = 20%, and (c) ε = 25% pre-strained (the trend arrows represent the increasing external 
forces f). 

Figure 5 illustrates the relationship between the external force and the resonance fre-
quencies of the defective SLGSs at (a) linear elastic stage (ε = 10%), (b) nonlinear elastic 
stage (ε = 20%), and (c) yield stage (ε = 25%). As seen, the resonance frequencies of the 
SLGSs with a single vacancy are almost the same as that of the perfect sheets, and more 
vacancies lead to a lower resonance frequency for a certain external force because of the 
reducing stiffness. In Figure 5a, the defective SLGSs with 10% pre-strain, i.e., at the linear 
elastic stage, the resonance frequencies almost linearly increase with the increasing exter-
nal force. There is a notable platform with varying external force for the defective SLGSs 
at nonlinear elastic stage (ε = 20%), Figure 5b. In Figure 5c, the resonance frequencies of 
the SLGSs with a certain vacancy concentration, nearly stabilize at a constant value, which 
is independent of the external force. Such different phenomena for the SLGSs at different 
stretching states are caused by the elastic potential energies transformed from the work 
done by the external forces. For the SLGSs stretching closer to the yield strain, less elastic 
deformation can be afforded, which leads to less sensitive vibration properties to the var-
ying external load. 

 
Figure 5. Relationship between the external forces and resonance frequencies of the defective SLGSs 
at (a) linear elastic stage (ε = 10%), (b) nonlinear elastic stage (ε = 20%), and (c) yield stage (ε = 25%). 

4. Conclusions 
In summary, extensive MD simulations are performed to understand the tensile 

strength of finite-length graphene nanoribbons with varying vacancy concentrations and 
their vibration properties at different stretching states. The graphene nanoribbon is simu-
lated by SLGS. Perfect SLGSs, SLGSs with a single vacancy, SLSGs with low-concentration 
vacancies, and SLSGs with high-concentration vacancies were considered. Through the 
tensile stress-strain curves, all the SLGSs with different vacancy concentrations went 
through the four stages, i.e., elastic stage, yield stage, hardening stage, and fracture during 
the tensile process. The vacancies have a greater influence on the ultimate strain of the 

Figure 5. Relationship between the external forces and resonance frequencies of the defective SLGSs
at (a) linear elastic stage (ε = 10%), (b) nonlinear elastic stage (ε = 20%), and (c) yield stage (ε = 25%).

4. Conclusions

In summary, extensive MD simulations are performed to understand the tensile
strength of finite-length graphene nanoribbons with varying vacancy concentrations and
their vibration properties at different stretching states. The graphene nanoribbon is simu-
lated by SLGS. Perfect SLGSs, SLGSs with a single vacancy, SLSGs with low-concentration
vacancies, and SLSGs with high-concentration vacancies were considered. Through the ten-
sile stress-strain curves, all the SLGSs with different vacancy concentrations went through
the four stages, i.e., elastic stage, yield stage, hardening stage, and fracture during the
tensile process. The vacancies have a greater influence on the ultimate strain of the SLGSs,
than the elastic limit and yield limit. As for the vibrations of the defective SLGSs, different
external forces are respectively applied to investigate their resonance frequencies at differ-
ent stretching stages. Even the single vacancy had no effect on the vibrational properties
of the SLGSs, the increasing vacancy concentration decreases the resonance frequencies
of the SLGSs at the elastic stage. The frequency of yielded SLGS with a certain vacancy
concentration is almost constant even with a varying external force.
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