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Abstract: The results of studies on the wettability properties and preparation of porous anodic
alumina (PAA) membranes with a 3.3 ± 0.2 µm thickness and a variety of pore sizes are presented
in this article. The wettability feature results, as well as the fabrication processing characteristics
and morphology, are presented. The microstructure effect of these surfaces on wettability properties
is analyzed in comparison to outer PAA surfaces. The interfacial contact angle was measured for
amorphous PAA membranes as-fabricated and after a modification technique (pore widening), with
pore sizes ranging from 20 to 130 nm. Different surface morphologies of such alumina can be obtained
by adjusting synthesis conditions, which allows the surface properties to change from hydrophilic
(contact angle is approximately 13◦) to hydrophobic (contact angle is 100◦). This research could
propose a new method for designing functional surfaces with tunable wettability. The potential
applications of ordinary alumina as multifunctional films are demonstrated.

Keywords: anodization; porous anodic alumina; membrane; wettability; hydrophilicity; contact angle

1. Introduction

Scientists are continually attracted to porous anodic alumina because of its unique
ordered honeycomb cell structure. Such a structure can be used to make a variety of
new multifunctional films, micro- and nanoelements utilizing the template-assistant ap-
proach. [1–8]. Lately, PAA has been intensely investigated for applications in medical and
biotechnological development, including drug delivery systems and biosensor devices,
bio-filtration for the separation of proteins and organic molecules, and as a template for
biocompatible tissue preparation, etc. [9–11]. It is essential for medical applications that
the PAA pores have controllable sizes ranging from several to hundreds of nanometers,
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which are comparable to the sizes of intracellular biological objects. Aluminum is electro-
chemically anodized to produce a nanoporous multichannel alumina structure with pore
sizes ranging from 10 to 150 nm and a density of almost 1 × 1010 pores per cm2 [12–14].
This method is less difficult than traditional lithographic techniques. In this circumstance,
modifying the PAA surface to achieve pore walls and a well-wetted surface is preferable.

One of the most important tasks from a practical point of view is protein and organic
macromolecule separations [10]. The use of membranes with a regular porous structure
and uniformly sized cylindrical pores was proposed to increase the productivity and
selectivity of the membranes in the separation of biomolecules [10,15]. Further selectivity
in bioseparation systems can be achieved by optimizing such characteristics as pore walls,
modifications of the PAA surface itself, pore diameter, and length [16,17].

Another area of active use of PAA membranes is UV-nanoimprint lithography (NIL).
The fabrication of a large-area, high-resolution stamp (matrix) for nanoimprinting is a key
step in UV-NIL. The use of a PAA membrane as a primary matrix for the manufacture of a
soft mold replica for a large area of UV-NIL has been proposed [18]. In this case, the PAA
membrane must have close to hydrophobic properties in order to separate the press mold
without damage.

The main factor for obtaining a superhydrophobic PAA surface is high surface rough-
ness in the form of hierarchical micro- or nanoscale structures combined with the material’s
low surface energy [19–21]. Such surfaces, which have a high interfacial contact angle with
water and low adhesion, are attracting much more attention because of their variety of
applications in functional microfluidic devices.

Scientific study into the development of non-wettable and/or self-cleaning surfaces
was motivated by some natural materials’ superhydrophobicity and capacity to remove
surface contamination. According to the Cassie–Baxter theory, high surface roughness and
low surface energy of the material are required for the practical application of such a surface
(i.e., high values of the contact angle). In this regard, research into the fabrication of such
coatings is performed in two directions: changing the surface of hydrophobic materials
and coating with a rough surface using a material with low surface energy. The various
surface treatment options include template methods, chemical, plasma-chemical, or ion
etching methods, electrochemical methods (anodizing and deposition), surface nanostruc-
turing (creating arrays of nanopillars or nanowires), etc. The methods for changing the
surface morphology include these options. The latter option is described in the literature
by techniques for producing arrays of nanostructures using different materials, such as
TiO2-based nanostructured surfaces [22–27] or morphological modification of the polymer
surface by replicating the anodic alumina structure [28,29].

High quality crystalline Al2O3 is extensively used as the promising diagnostics/window
materials for deuterium–tritium fusion reactors due to its high resistance to rapid neutrons and
capacity to preserve mechanical and electrical integrity [30–32]. For instance, highly sensitive
luminescent ionizing radiation detectors are built on specifically treated alumina [33,34]. The
optical characteristics of the alumina, which depend on the oxide quality, namely on point
defects and the PAA surface defects, are significant in this situation [35,36].

By regulating the synthesis conditions, various surface morphologies of these PAA
films can be obtained. Such alumina surfaces without a special (usually organic) coating
of materials with low energy demonstrate notable morphology-dependent wettability. In
this case, the PAA surface consists of only the porous layer modified in the manufacturing
process after a pore widening operation (etching of a barrier layer).

Many research groups study the wettability properties of the PAA, but mainly after
a special pre-treatment of the PAA (after changing the surface chemistry of the PAA
nanostructure) [37–40]. There are also works [41,42] that perform the effect of various
alumina formation conditions on wettability. For example, [41] shows the effect of pore-
widening duration on the wetting properties of nanostructured PAA membranes fabricated
in electrolytes based on sulphuric and oxalic acid. In [40], reports about different surface
morphologies of nanostructured alumina films obtained under high-field anodization in
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oxalic acid electrolytes. In [42], the influence of duration of the second step of anodization,
electrolyte type, and substrate purity on the state of the PAA surface is performed.

In principle, wetting behavior can be changed from the Wenzel’s model (which de-
scribes the homogeneous wetting regime) to the Cassie–Baxter model (which describes
the heterogonous wetting mode, which is more complex) by changing only the surface
morphology [40,43,44]. In particular, an artificially unmodified PAA surface, consisting
of a porous layer and hierarchical nanostructures in the form of, for example, nanowires,
nanopillars, or pyramids, etc., demonstrates both superhydrophobicity and superoleophilic-
ity, which can be used in water-proof or self-cleaning surfaces, functional microfluidics
devices, and water separation, etc. The aim of this work is to propose a new approach for
the design of functional surfaces with tunable wettability properties.

Our group has traditionally been involved in electrochemical anodizing and deposi-
tion processes, so we are conducting research on the creation of nanostructured materials
using these methods. Anodic alumina is used as a template for creating arrays of vari-
ous nanostructures: nanopillars, nanowires, nanotubes. The advantages of alumina are
quite widely described in our previous works. In this case the following can be noted:
sufficiently high mechanical strength and thermal conductivity [45], high electrochemical
resistance [13], resistant to the high temperatures [46]. Moreover, as already mentioned, its
geometric characteristics can be easily adjusted by synthesis conditions’ changing [47,48].
Such templates are considered as the most relevant for integration into microelectronic
technologies [1,49–51].

In a preceding study [29], we represented the results of the fabrication and investiga-
tion of the wetting properties of PAA with a thickness of 25 to 75 m and various pore sizes.
The effect of morphology on the wetting properties is shown through a comparison of the
outer and inner PAA surfaces. The wettability of both alumina surfaces is morphology-
dependent. Our systematic studies of the PAA surface properties have shown that the
contact angle is a very sensitive parameter and its value is determined by a variety of
parameters, including surface pretreatment (modification due to pore widening) during
the manufacturing process of PAA of different thicknesses for different purposes. However,
it is possible to obtain quite reliable and reproducible results with the constancy of the
determining technological factors.

In this work, we would like to demonstrate how the PAA outer surface properties
change in the process of production. The interfacial contact angle was measured to in-
vestigate the wettability properties of the outer PAA surface. We want to illustrate that
the PAA wettability changes during the production process, and this must be put into
consideration in order to get a template with reproducible parameters that can be used for a
variety of membrane applications. Consequently, PAA samples with various morphological
characteristics were obtained, and their properties of wettability were studied.

2. Materials and Methods
2.1. Materials

The as-fabricated PAA membranes were developed in this study by one-step (I type)
and two-step (II type) anodizing processes in a 4% C2H2O4 water-based solution at 15 ◦C.
A high purity aluminum foil (100 µm thick, 99.9994% purity) was used as an initial material.
Figure 1A shows the scheme of the PA fabrication process using two-step anodization.

The process of an ordered porous PAA matrix formation is two-step anodization
and includes the following technological steps: (i.) fabrication of the substrates with the
required geometrical dimensions (Figure 1B) from Al foil; (ii.) substrates’ washing in
a H2SO4 + CrO3 solution for 10 min; (iii.) chemical etching of the substrate surface in
10% NaOH solution at 40 ◦C for 3 min; (iv.) chemical polishing of the Al substrates in
H3PO4 + HNO3 solution at 80 ◦C for 1.5 min; (v.) first-stage anodizing in 4% C2H2O4 at
40, 50, 60 V for 60 min at a temperature of 15 ◦C); (vi.) etching of the PAA formed during
the first-stage anodization in a solution of H2O + CrO3 + H3PO4 at 80 ◦C for 1–5 min; (vii.)
formation of PAA thin adhesive oxide for the chemical resistant varnishing (CRV), inset in
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Figure 1B: 4% C2H2O4 at voltages: 40, 50, and 60 V for 30 s; (viii.) CRV of the samples with
an air drying for at least 12 h; (ix.) second-stage anodizing in 4% C2H2O4 at 40, 50, and
60 V for 30 min at a temperature of 15 ◦C; (x.) mechanical removal of the CRV and cutting
of substrates into individual modules for further studies of the microstructure and surface
wettability. All chemicals were of analytical grade. One-stage anodizing was carried out at
voltages of 40, 50, and 60 V for 30 min at 15 ◦C.

Figure 1. Scheme of the PAA fabrication process using two-step anodization for an ordered PAA
formation (A); schematic view and Al substrate image for the PAA membranes obtaining (B).

PAA’s outer surface was chemically altered for 5, 10, 15, and 20 min at (35 ± 2) ◦C
using a water-based solution of 5% H3PO4. For the obtaining of PAA membranes, chemical
etching of a barrier layer at the pore bottom is usually carried out, that is, PAA with
through pores. This process is isotropic. Therefore, the pore walls of the oxide cells
are simultaneously etched (chemical pore widening), that is, the pore diameter changes
(increases). The PAA membrane production is described in more detail in [52].

As a consequence, PAA membranes with a well-ordered structure and 3 µm (40 V),
3.3 µm (50 V), and 3.6 µm (60 V) thicknesses with different pore diameters have been
obtained (Figure 2). It was shown in [41,53] that when the thickness of as-fabricated PAA is
less than 1.7 µm, the surface morphology is the only significant factor determining the value
of the contact angle, which was also verified by our experimental results for as-fabricated
PAA with a small thickness of 3–3.6 µm.

Figure 2. SEM images of the top view (outer surface) of as-fabricated PAA membranes with a size
of 15 mm × 15 mm: (A)—40 V, (B)—50 V, (C)—60 V, (D)—PAA cross-section. The insets show
enlarged images of the surface (A) and the bottom part of the PAA cross-section (B); and a schematic
cross-section view of the PAA (D).
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2.2. Methods

The PAA sample morphology (cell diameter D or interpore distance, thickness H,
and pore diameter d) was investigated via Carl Ziess EVO10 (Carl Ziess, Oberkochen,
Germany) scanning electron microscopy (SEM). The experimental data was processed
using the software package “SmartSEM” (Carl Ziess, Oberkochen, Germany). The graphic
editor “Image J” (Wayne Rasband (NIH), Kensington, MD, USA) was also used to examine
the SEM pictures. The conventional technique described in detail in [54,55] was used
to perform the pore size statistical analysis. For at least three SEM pictures, pore sizes
were measured using the software “SmartSEM.” The porosity was estimated using custom
software that analyzed the SEM images and then provided porosity contrast images.

The following formula was used for the porosity value estimation [56]:

α =
Sppa

Sgpa
·100% (1)

where Sppa—the pores projection area and Sgpa—is the grains projection area.
The following equations for Sppa and Sgpa can be further advanced by assuming that

each single pore is a perfect circle [56]:

Sppa = π × (d/2)2 (2)

Sgpa =

√3× D2

2
(3)

When Equations (2) and (3) are substituted into Equation (1), the following equation
for the porosity of a hexagonally organized cell nanostructure is obtained:

α=
π

2
√

3
(

d
D
)

2
= 0.907 (

d
D
)

2
(4)

Both Equations (1) and (4) were used in the research.
The “recumbent drop” method was used to determine the wettability properties of

PAA by measuring the interfacial contact angle (ICA—θ) [57]. From the Thermo Scientific
Finnpipette microdoser (ThermoFisher Scientific, Waltham, MA, USA), a drop of distilled
water of the order of 15 µL was applied to the PAA surface. The ICA was defined using the
drop’s basic dimensions and the condition that θ < 90◦ according to the following formula:

tgΘ =
2hr

r2 − h2 (5)

where:

θ—the ICA,
r—the radius of the drop contact area with the PAA surface,
h—the height of the drop.

The contact angle was measured after 1, 2, and 5 min when the drop was applied.
Three measurements were made for each of the three drops, and the average was used.

3. Results and Discussion
3.1. Topological features of the PAA

The obtained samples were analyzed using the SEM technique after each main stage
of the PAA production process. Chemical etching technology [58] was used to remove the
barrier layer at the bottom of the pores, and several types of samples with different pore
sizes were produced (Table 1).
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Table 1. The experimental samples’ primary morphological features (before etching, as-fabricated
amorphous PAA).

Sample
Type

Sample
No.

Anodizing
Voltage

U, V

Pore
Diameter

d, nm

Cell
Diameter

D, nm
Porosity α, %

Barrier
Layer

Thickness
B, nm

Wall
Thickness

W, nm
d/D

I 1 40 (22 ± 5) (100 ± 7) (6) 44 39 0.18
I 2 50 (40 ± 5) (120 ± 7) (7) 34 30 0.33
I 3 60 (48 ± 5) (140 ± 5) (9) 52 46 0.34

II 4 40 51.6*
(50 ± 5)

100 *
(105 ± 5)

24.6 *
(18)

27.1 *
(30)

24.2 *
(27)

0.52 *
(0.49)

II 5 50 64.5 *
(67 ± 5)

125 *
(130 ± 5)

24.6 *
(20)

33.9 *
(35)

30.3 *
(32)

0.52 *
(0.52)

II 6 60 77.4 *
(81 ± 5)

150 *
(160 ± 5)

24.6 *
(25)

40.7 *
(44)

36.3 *
(39)

0.52 *
(0.51)

* The calculated and mean values were received using SEM images (in brackets).

With a proportionality constant λp of approximately 1.29 nm× V−1, the pore diameter
of the PAA d is linearly proportional to the anodizing voltage U [59]:

d = λp × U (6)

where:

d—a diameter of pore (nm),
U—an anodizing voltage (V).

The diameter–voltage correlation is not susceptible to the electrolyte type and does not
alter considerably with anodizing time [60]. At steady-state growth of PAA, the interpore
distance (cell diameter) of PAA D is directly proportional to the anodizing voltage, with a
proportionality constant λc of almost 2.5 nm × V−1 [61]:

D = λc × U (7)

The other significant microstructure parameters of the PAA, such as the cell wall
thickness (W) and the barrier layer thicknesses (B) are presented in Table 1. The cell wall
thickness W of densely packed, highly ordered hexagonal cells of PAA membranes with a
diameter D can be defined using the Formula (8) and is equal to 32.5 nm [56]:

W =
D− d

2
(8)

Additionally, the wall thickness is correlated with the barrier layer thickness as the
following ratio and is equal to 36.4 nm [62]:

B = 1.12·W (9)

Moreover, the pore density, Pp, was calculated by equation Pp =
2√
3D2 [31] to be ap-

proximately 1010 per cm2: 1.16 × 1010 (40 V); 0.7 × 1010 (50 V); 0.45 × 1010 (60 V).
It should be noted that the calculated values of all the presented morphological

parameters for the I type samples (for PAA formed by one-stage anodizing) (Table 1) differ
from the experimental data and almost correspond to the data for PAA formed by two-stage
anodizing. This is also seen from the dependencies presented in Figures 3–5 and explains
the difference in experimental data from various literature sources [1–3,48,63].
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Figure 3. The anodizing voltage influence on the PAA pore diameter: (A)—one-stage anodizing and
(B)—two-stage anodizing. The calculated values are shown as shaded circles.

Figure 4. The influence of the main parameters of PAA obtaining (anodizing voltage and etching
duration of the barrier layer) on the pore diameter of PAA during one-stage (A) and two-stage
(B) anodizing and on the PAA porosity during one-stage (C) and two-stage (D) anodizing. The insets
schematically show the cross-section of one-stage (A,C) and two-stage (B,D) anodized PAA fragments.
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Figure 5. Dependence of the PAA porosity during one-stage (A) and two-stage (B) anodizing on the
pore diameter and voltage.

This is due to the fact that Formulas (6)–(9) were determined for an ideal PAA with a
hexagonally ordered structure. Such PA can be produced using an imprinting method [64,65]
or two-stage anodization [66,67]. Therefore, for samples of the I type formed by one-stage
anodizing, the experimental values of the parameters differ significantly from the calculated
ones. It is practically impossible to obtain a good-ordered PAA during the 30 min of one-stage
anodizing. For samples of the II type, obtained by two-stage anodization, the porosity values
are slightly different, which is obviously due to the method of measuring porosity by the
pore diameter on the PAA outer surface. Similar differences have been observed in other
works [41,68].

Figure 3 depicts the PAA pore diameter (on the outer surface of the PAA) versus
anodizing voltage for an unetched PAA surface (dashed lines) and an etched PAA surface
(solid lines).

The calculated values (shaded circles, Figure 3B) almost correspond to the experimen-
tal values for an unetched PAA surface (as-fabricated sample, before etching) for the II type
of samples. Only the experimentally obtained pore diameter of the I type samples (Samples
No. 1, 2, 3) and the experimental porosity of the II type samples (Samples No. 4 and 6)
differ from the calculated values. This is due to the fact that the calculation equations are
obtained for densely packed, highly arranged, hexagonal PAA cells, and each solitary pore
is assumed to be a perfect circle. Figure 4 presents the influence of the main parameters of
PAA on the pore diameter and porosity of the PAA during one- and two-stage anodizing.

Figure 5 shows the dependence of PAA porosity versus pore diameter for both types
of samples.

The pore size, diameter, length, and porosity were determined using SmartSEM soft-
ware. Figures 6 and 7 represent the results of statistical analysis of the main morphological
parameters of the samples for both types of samples: SEM images, porosity, bar graph, and
contrast images. Inserts (red with white) in Figures 6 and 7 show the contrast SEM images
of porosity (in %).

For both types of samples obtained at one-stage and two-stage anodizing, the pore
diameter is proportional to the anodizing voltage. Moreover, the pore diameter is depen-
dent on the duration of the barrier layer etching and is almost 1.5–1.7 times greater in the
case of the two-stage anodization. Porosity also depends on the anodizing voltage for both
types of samples and is proportional to the pore diameter at a given voltage. The porosity
of PAA (I type) is also less than that of PAA (II type) since the pore diameter of these PAAs
is different.
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Figure 6. SEM images (contrast SEM images of porosity—red and white) and pore size histograms
of the I type samples after chemical modification: (A)—Sample No. 1 after chemical etching during
5 min; (B)—Sample No. 1 after chemical etching during 15 min; (C)—Sample No. 2 after chemical
etching during 5 min; (D)—Sample No. 2 after chemical etching during 15 min; (E)—Sample No. 3
after chemical etching during 5 min; (F)—Sample No. 3 after chemical etching during 15 min.

Figure 7. SEM images (contrast SEM images of porosity—red and white) and pore size histograms of the
II type samples after chemical modification: (A)—Sample No. 4 as-fabricated; (B)—Sample No. 4 after
chemical etching during 5 min; (C)—Sample No. 4 after chemical etching during 15 min; (D)—Sample
No. 5 as-fabricated; (E)—Sample No. 5 after chemical etching during 5 min; (F)—Sample No. 5 after
chemical etching during 15 min; (G)—Sample No. 6 as-fabricated; (H)—Sample No. 6 after chemical
etching during 5 min; (I)—Sample No. 6 after chemical etching during 15 min.
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It can be concluded that such an important parameter of the PAA as porosity depends
on the channel structure and pore diameter (and, therefore, penetrating ability) [69].

The barrier layer was etched in all samples of both types by immersing the entire
PAA in a 5% H3PO4 water-based solution for 5, 10, 15, and 20 min at a temperature of
(35 ± 2) ◦C.

In general, SEM pictures and size histograms (Figures 6 and 7) of PAA samples
produced in the optimal etching mode indicate that the PAA surface morphological charac-
teristics are relatively uniform.

3.2. The Wetting Properties of PAA

The topological properties of the PAA surface can vary significantly depending on the
through-pores obtaining mechanism, as shown by these results and previously provided
data [14]. As a result, the contact angle on the outer side of various types of PAA was
evaluated before and after chemical modification. Figure 8 demonstrates the contact angle
and SEM images of the outer surface of as-fabricated samples No. 1, 2, and 3 of the II
type. Figure 9 depicts the contact angle and SEM images of the outer surfaces of a PAA
sample No. 5 of the II type after pores opened due to different durations of the barrier layer
chemical etching.

Figure 8. Contact angle as a surface topology function for as-fabricated samples No. 4 (A), 5 (B), and
6 (C) of the II type and corresponding SEM images of outer surfaces.

Figure 9. Contact angle as a surface topology function of the PAA sample No.5 of the II type
after chemical modification in 5% H3PO4 for 5 min (A), 10 min (B), 15 min (C), 20 min (D), and
corresponding outer surface SEM images.
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All PAA samples after etching obtained similar results. The results as contact angle
versus etch time and pore diameter are presented in Figure 10 and Table 2.

All samples have a contact angle of less than 90◦, which indicates the hydrophilicity
of the PAA surface. It can be seen from the presented results that the contact angle values
depend on both the anodizing voltage (i.e., the distance between the pores) and the etching
time (i.e., the pore diameter). The nature of the dependences is similar for samples of
both types and is ultimately determined by the pore diameter, which is especially clearly
seen from a comparison of the contact angle values for two types of samples: they are
approximately the same and lie in the range approximately from 20 to 40◦ after 1 min of
water drop application. This dependence is more pronounced for PAA obtained at lower
anodizing voltages.

This is due to the fact that during the barrier layer chemical etching, not only the pore
bottoms, but also the pore walls (oxide cells) are etched. For example, for sample No. 1 of
the II type (40 V), after 20 min of etching, the pore walls become so thin that the oxide cells
begin to gather into bundles or nanowire pyramids (Figure 11).

Figure 10. The dependence of the contact angle on the PAA pore diameter and etching duration
of the barrier layer obtained during one-stage (A,C) and two-stage (B,D) anodizing after chemical
modification (after 1 min the water drop applying).
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Table 2. The main conditions for PAA preparation of the experimental samples (as-fabricated and
after chemical modification) and the main parameters of both types of samples.

Sample
Type

Sample
No.

Anodizing
Voltage U, V

Etching
Duration, Min

Pore
Diameter

d, nm

Porosity
α, %

Contact
Angle, Deg.

I 1 40 0 18 ± 5 6 ± 2 40.4 ± 2
I 1 40 5 25 ± 5 7 ± 2 25.7 ± 2
I 1 40 10 32 ± 5 14 ± 2 23.1 ± 2
I 1 40 15 40 ± 5 18 ± 2 25.0 ± 2
I 1 40 20 59 ± 5 25 ± 2 69.9 ± 2
I 2 50 0 40 ± 5 7 ± 2 23.0 ± 2
I 2 50 5 46 ± 5 8 ± 2 19.2 ± 2
I 2 50 10 54 ± 5 10 ± 2 21.8 ± 2
I 2 50 15 68 ± 5 17 ± 2 26.7 ± 2
I 2 50 20 75 ± 5 23 ± 2 29.8 ± 2
I 3 60 0 48 ± 5 9 ± 2 20.4 ± 2
I 3 60 5 53 ± 5 10 ± 2 25.0 ± 2
I 3 60 10 61 ± 5 12 ± 2 29.6 ± 2
I 3 60 15 74 ± 5 15 ± 2 31.7 ± 2
I 3 60 20 80 ± 5 21 ± 2 36.4 ± 2
II 4 40 0 51 ± 5 18 ± 2 55.7 ± 2
II 4 40 5 62 ± 5 28 ± 2 20.6 ± 2
II 4 40 10 72 ± 5 36 ± 2 27.6 ± 2
II 4 40 15 74 ± 5 40 ± 2 30.9 ± 2
II 4 40 20 80 ± 5 45 ± 2 32.5 ± 2
II 5 50 0 67 ± 5 20 ± 2 51.2 ± 2
II 5 50 5 71 ± 5 28 ± 2 21.3 ± 2
II 5 50 10 84 ± 5 40 ± 2 24.5 ± 2
II 5 50 15 89 ± 5 45 ± 2 24.9 ± 2
II 5 50 20 96 ± 5 48 ± 2 33.3 ± 2
II 6 60 0 81 ± 5 25 ± 2 33.6 ± 2
II 6 60 5 101 ± 5 38 ± 2 35.8 ± 2
II 6 60 10 111 ± 5 46 ± 2 36.8 ± 2
II 6 60 15 114 ± 5 52 ± 2 38.6 ± 2
II 6 60 20 129 ± 5 56 ± 2 42.8 ± 2

Figure 11. The SEM images of the outer surfaces (surface topology) for the PAA sample No. 4 of the
II type: (A)—sample No. 4 (40 V, type II) after 15 min of chemical etching in 5% H3PO4; (B)—sample
No. 1 (40 V, type I) after 15 min of chemical etching in 5% H3PO4 during; (C,D)—sample No. 4 after
20 min of chemical etching in 5% H3PO4.
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The drops do not spread well on such a surface. By the way, such a variant of the
PAA surface is described in [40,42,61] for obtaining a superhydrophobic surface. Because
of the wide range of applications, notably in medicine, the fabrication of such PAA (smart
nanomaterials) is a popular research area. [70,71].

Figure 11 shows that nanowires (NWs) from the walls of PAA cells within one ordered
region (shown by red arrows in Figure 11C) are joined (electrostatically attracted to each
other) and pyramidal structures of the PAA NWs are formed at the sites of PAA cells within
one ordered area. That is, within each ordered region of PA (15 min etching), the hexagonal
oxide cells form an ordered structure, a magnified image of which is shown in the inset
in Figure 11A. After 20 min of etching, these cells close within each area and form a new
hierarchical structure with an architecture depending on the initial PA morphology (pore
diameter, distance between them, pore height). If the pore height (oxide thickness) is small,
the barrier layer etching rate at the pore bottoms and on the pore walls is approximately
the same. The concentration and temperature of the etching solution along the nanopore
channels are almost homogeneous. However, at the boundaries of ordered regions, PAA
cells dissolve faster than within the same ordered regions because of defect emergence
or distortion of the side walls of pores (internal mechanical stresses), which causes the
formation of PAA NWs. At the cell boundaries, the PAA NWs do not close and are located
vertically (Figure 11C,D). The insets show how the contact angle changes on different types
of surfaces of one sample during its fabrication. On the initial surface of the ordered PAA,
sample No. 4 (40 V, type II), the contact angle corresponds to a superhydrophilic surface
and is equal to 13.3 ± 2◦. On the pyramidal surface and on the NWs surface, the contact
angle increases and approaches the values for the superhydrophobic surface (90 and 100◦).
If a drop of water is placed on such a surface, it retains a spherical shape for a long time
and does not spread over the surface of the sample. That is, we obtain a hydrophobic
surface without pretreatment of the PAA surface with organic reagents, which exhibits a
stable character in air, and the contact angle does not show visible changes in shape. On
other samples, we measured the contact angle depending on the time of application to the
surface of the PAA (Figure 12).

Figure 12. Demonstration of a PAA film’s surface wetting ability (contact angle): the graph for contact
angles during the applying of a water drop on the PAA surfaces of the one-stage (A) and two-stage
(B) anodized samples.

It is clear from the provided results that the contact angle values depend not only on
the morphology of the PAA surface but also on the time the drop applies to the sample
surface, i.e., on the measurement technique. Therefore, the ability of PAA film to absorb
humidity was investigated by measuring the contact angles depending on the time of
applying a water drop to the surface. It can be seen from these dependences that the contact
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angle also depends on the time after which it was measured, that is, on the time the drop
was on the surface (Figure 12). The same dependence was observed in the work [41].

These measurements of the contact angles of the time-dependent deposition of water
drops on the PAA film made it possible to: i. illustrate the possibility of obtaining a suffi-
ciently effective anti-drop coating on samples of two types; ii. determine that the wetting
process is stabilized after two minutes of applying; iii. the nature of these dependences is
almost identical for both types of samples.

The infiltration of water into the PAA pores causes the contact angle in both cases to
decrease after a few minutes. The mechanism PAA wetting has been clarified as follows [72]:
if the water can diffuse along the walls of the PAA pores, then the liquid is first brought
into contact with the PAA surface and then the low-energy liquid rapidly distributes to the
surfaces of high-energy. The short-range and long-range polar interactions between the
wetting liquid and the pore walls are the driving forces in this mechanism [72].

According to the results obtained, the contact angle is dependent on a PAA character-
istic such as pore diameter (porosity). The porosity is determined by such technological
parameters as the etching duration of the barrier layer and the anodizing voltage. Further-
more, the dependence on the pore diameter is extreme for 40 and 50 V anodizing voltage.
As expected, the contact angle increases in proportion to the PAA pore diameter (porosity).

Moreover, the contact angle values and the physicochemical properties of the PAA
surface, also known as “surface chemistry”, have a significant impact. We do not modify
this factor within this article to specify that the contact angle is influenced by the intrinsic
features of the as-fabricated amorphous membrane. This question has no data in the
research literature. Such studies are planned for the next article.

Next, we are going to produce and examine a simple technology for designing such
a surface (architecture) of alumina nanowires array, based on which it will be possible
to obtain surfaces with improved properties. In order to accomplish this, we intend to
apply surface modification to the obtained samples to increase the contact angle and obtain
surfaces with a high specific surface area and capacity for self-cleaning, with a focus on the
bioinspired design of surfaces with micro-droplet self-assembly.

4. Conclusions

It has been reported that PAA membranes can be fabricated by two-step anodization of
aluminum foil in an oxalic acid electrolyte. PAA membranes with pore diameters ranging
from 25 to 130 nm and a thickness of 3.3 ± 0.2 µm were developed. At 40, 50, and 60 V,
anodization in 4% oxalic acid was performed. In order to investigate solely the effect of the
PAA surface morphology on the wettability properties, the surface chemistry of the PAA
samples was not changed. The contact angle was demonstrated to be dependent not only
on the pore diameter and anodization voltage but also on the duration of the barrier layer
etching, indicating that it changes throughout the production process. The pore diameter
and contact angle almost linearly increase with the rise in etching duration, but the nature
of this process depends on the type of anodizing. The contact angle values depend not
only on the morphology of the PAA surface but also on the time the drop applies to the
sample surface, i.e., on the measurement technique. Different surface morphologies of such
PAA membranes can be obtained by adjusting synthesis conditions. This allows the surface
properties from hydrophilic to hydrophobic to change without the surface chemistry of
the PAA samples (without pretreatment of the PAA surface with organic reagents) being
changed. The self-assembled hierarchical surfaces of the PAA exhibit an anti-adhesion
to water and exhibit water-repellent properties. This water-repellent behavior could find
practical applications such as drag-reduction and self-cleaning coatings. The obtained
results demonstrate that, depending on the future application of PAA membranes, the
appropriate PAA production conditions (substrate purity, anodizing voltage, duration of
the second anodizing step, especially etching duration) can be selected.
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