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Abstract: In this study, Cu and Cu2O hybrid nanoparticles were synthesized onto the WO3 nanoflake
film using a one-step electrodeposition method. The critical advance is the use of a heterojunction
consisting of WO3 flakes and Cu2O as an innovative stack design, thereby achieving excellent
performance for CO2 photoreduction with water vapor under visible light irradiation. Notably,
with the modified Cu nanoparticles, the selectivity of CH4 increased from nearly 0% to 96.7%,
while that of CO fell down from 94.5% to 0%. The yields of CH4, H2 and O2 reached 2.43, 0.32
and 3.45 mmol/gcat after 24 h of visible light irradiation, respectively. The boosted photocatalytic
performance primarily originated from effective charge-transfer in the heterojunction and acceleration
of electron-proton transfer in the presence of Cu nanoparticles. The S-scheme charge transfer mode
was further proposed by the in situ-XPS measurement. In this regard, the heterojunction construction
showed great significance in the design of efficient catalysts for CO2 photoreduction application.

Keywords: CO2 reduction; selectivity; Cu/Cu2O/WO3; photocatalysis; S-scheme

1. Introduction

The rapid growth of atmospheric carbon dioxide (CO2) concentration has attracted
considerable attention due to its greenhouse effect on the global climate [1,2]. Developing
artificial photosynthesis routes by reducing anthropogenic CO2 emissions using solar
energy instead of carbon-based fuels such as methane, methanol or carbon monoxide is
still an intensive research topic in the environmental and energy field [2–4]. Since a TiO2
photocatalyst was used to reduce CO2 into methanol and formaldehyde by Inoue et al. in
1972 [5], most semiconductor photocatalysts, such as g-C3N4, CeO2, W18O49 and Bi2WO6
have received immense attention for CO2 reduction under visible light irradiation, which
occupies 44% of solar light [6–11]. Among the common photocatalysts, WO3 material has
gradually gained special scientific interest due to its relatively narrow bandgap (Eg~2.8 eV)
and unique crystal structure containing a network of corner-shared octahedral units of
[WO6], which could theoretically utilize 12% of solar light and enhance charge migration
in the catalyst [12]. Although WO3 crystals exhibit various phases, few studies have
focused on hexagonal phase WO3 (h-WO3) for photocatalytic CO2 reduction [8,13,14]. h-
WO3 not only exhibits excellent visible light responsive properties according to its good
photochromic ability [15], but also strong CO2 adsorption at low-pressure due to the
presence of ultramicro-sized tunnels [16]. It is thus considered as a potential visible-light-
driven (VLD) photocatalyst for CO2 reduction. However, the application of photocatalytic
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CO2 reduction for h-WO3 is seriously hindered by poor charge separation and reduction
ability [17,18].

It is well known that two-dimensional (2D) semiconductors exhibit superior solar-
driven photocatalytic activity as a result of improved photoexcited charge separation,
compared with that of bulk photocatalysts [19,20]. The 2D nanostructure also greatly influ-
ences the optical properties and electronic properties of semiconductors [21]. In particular,
the travel distance of photoexcited carriers in the WO3 nanoflake becomes short, and more
photons can be adsorbed by the nanoflake in a remarkably short time under low photon
flux density due to its large surface area [22]. It is thus considered that h-WO3 nanoflakes
could reduce charge recombination and improve the performance of photocatalytic CO2
reduction. In addition, there have been few reports on the hydrothermal fabrication of
nanostructured h-WO3 photocatalysts [16,23,24], and the metastable hexagonal phase has
limited its development and application [17,25]. Therefore, it is still a conceptual chal-
lenge in the field of materials research to fabricate heat-resisting h-WO3 nanoflakes for
CO2 reduction. Apart from nanostructure engineering, heterojunction construction is
also a prospective way of achieving improved redox abilities and efficient separation of
photoexcited electrons and holes for h-WO3 [2,26]. Among the numerous heterojunction
photocatalysts, the heterostructured system with a staggered band alignment has drawn
much attention due to its efficient charge separation [27]. Notably, the charge transfer
(step-scheme mode) in the above junction directly quenches the weaker oxidative holes
and reductive electrons, which is preferable to obtain photoexcited carriers with stronger
redox abilities [28]. Recently, cuprous oxide (Cu2O) with a conduction band of−1.15 eV (vs.
NHE) has been utilized as a VLD semiconductor photocatalyst or co-catalyst for CO2 reduc-
tion [29,30]. Nevertheless, Cu2O exhibits weak oxidation ability and poor photostability.
An effective way to address these issues may be coupling Cu2O and WO3 to construct a het-
erostructured system with a step-scheme (S-scheme) charge transportation mode. S-scheme
systems consisting of monoclinic or orthorhombic WO3 and Cu2O were constructed for
organic degradation, CO2 reduction or photoelectrocatalytic water splitting [31–33]. To our
best knowledge, there are few studies regarding hexagonal phase WO3 nanoflakes and
Cu2O for photocatalytic CO2 reduction under visible light irradiation.

Except for enhanced photocatalytic activity for CO2 reduction, the selectivity of mul-
tiple hydrocarbon products plays a key role in their further application in the chemical
industry. The influence of the specific surface structure of the photocatalyst cannot be
ignored in the process of CO2 reduction [34,35]. Due to the eight-electron reaction of CH4
generation from CO2, loading co-catalysts with fast electron transfer, including Au, Pt, Ag
and Ti, could be conductive to control the reduction of products [35–38]. Non-noble-metal
Cu co-catalyst has become a newly emerging research spot for CO2 reduction. Albo et al.
reported the deposition of Cu nanoparticles on the TiO2 surface, which facilitated the
photocatalytic process from CO2 to CH3OH [39]. Meng et al. proved that Cu co-catalyst
played a pivotal role in increasing methane selectivity in the CO2 photoreduction process
for the S doped g-C3N4 catalyst [40]. In the Cu2O/WO3 system, loading Cu co-catalysts
can originate from Cu2O with unsaturated coordination sites dispersed on the surface of
the catalyst, and offer more catalytic centers and act as the electron sink to increase the
concentration of charge carriers. Therefore, the construction of a Cu/Cu2O/WO3 catalyst
could accelerate charge separation across the Cu2O/WO3 heterojunction interface and
modulate product selectivity for photocatalytic CO2 reduction.

Herein, we report the synthesis of Cu and Cu2O species onto WO3 nanoflakes by a one-
step electrodeposition method. The photocatalytic performances for CO2 reduction with
water vapor over the obtained samples were investigated under visible light irradiation
(λ > 400 nm), and the influence of Cu nanoparticles on product selectivity was studied. The
band structure of the heterojunction was measured and the S-scheme charge-transfer mode
was further verified.



Nanomaterials 2022, 12, 2284 3 of 15

2. Materials and Methods
2.1. Materials Synthesis

WO3 nanoflake film was synthesized by the solvothermal-calcination method. Before
solvothermal growth, a thin seed layer was deposited onto the fluorine-doped tin oxide
(FTO)-coated glass substrate (2.3 cm × 2.0 cm) by spin coating the precursor solution,
which was made by dissolving 1.25 g of H2WO4 in 30 wt% H2O2 (8 mL), followed by
annealing at 500 ◦C for 2 h in air. The H2WO4 solution for solvothermal treatment was
prepared by dissolving 1.25 g of H2WO4 into 30 wt% H2O2 (15 mL) and heating at 95 ◦C
for 2 h. Nanoflake growth was achieved using 3 mL of H2WO4 solution mixed with 0.5 mL
of HCl (6 mol/L) and 12.5 mL of acetonitrile. A vertically oriented FTO-glass substrate was
immersed into the above solution and placed within a Teflon lined stainless steel autoclave,
which was then sealed and maintained at 180 ◦C for 3 h. The substrate was then rinsed with
deionized water and dried in air. The WO3 nanoflake film was obtained after annealing at
500 ◦C for 2 h in air.

The electrodeposition was performed in a standard three-electrode system. The FTO
substrates (2.3 cm × 2.0 cm) were used as the working electrodes. The platinum sheet
(1.0 cm × 1.0 cm × 0.2 cm) and Ag/AgCl electrode were used as the counter and reference
electrodes, respectively. All of the chemicals were used without further purification. Before
electrodeposition, the substrates were rinsed with distilled water and then cleaned by ultra-
sonic treatment in ethanol for 10 min. Cu2O was electrodeposited in 0.02 mol/L Cu(OAc)2
aqueous solution (50 mL) containing 0.02 mol/L acetic acid (5 mL) using chronopoten-
tiometry at −0.4 V with 0.5 s for 150 cycles. The Cu/Cu2O sample was obtained at −0.7 V
under the similar conditions as above.

Cu2O/WO3 and Cu/Cu2O/WO3 films were synthesized by electrodeposition of
Cu2O and Cu/Cu2O on the obtained WO3 nanoflakes, respectively. Typically, the depo-
sition process was conducted in Cu(OAc)2 aqueous solution (0.02 mol/L, 50 mL) using
chronopotentiometry electrodeposition with 0.5 s in 150 cycles, and the Cu2O/WO3 and
Cu/Cu2O/WO3 films samples were obtained at −0.4 and −0.7 V, respectively. All the
samples were then rinsed with deionized water and dried in air. Additionally, Cu2O
and Cu/Cu2O films were prepared by the similar method, and Cu2O and Cu/Cu2O
nanoparticles were broken off from the above samples by the ultrasound method. The
dispersion solutions of Cu2O and Cu/Cu2O nanoparticles were then severally sprayed
onto the WO3 nanoflakes, and the obtained films were finally denoted as Cu2O/WO3 m
and Cu/Cu2O/WO3 m samples.

2.2. Characterization

The crystal phases of the samples were recorded using an X−ray diffractometer (PANa-
lytical X’ pert PRO, Netherlands) with a Cu Kα irradiation source (λ = 0.154 nm) and 0.15◦/s
scanning step. A scanning electron microscope (SEM, Nova NanoSEM 450, FEI) using the
acceleration 300 kV voltage was used to characterize the morphology of the obtained products.
Transmission electron microscopy (TEM) was obtained on a Tecnai G2 F20 S-TWIN elec-
tron microscope. Furthermore, high-resolution transmission electron microscopy (HRTEM)
and Energy Dispersive X-ray spectroscopy (EDX) was employed and the corresponding fast
Fourier transform (FFT) was evaluated by Gatan Digital Micro-graph software (Gatan Inc.,
Pleasanton, CA, USA). X-ray photoelectron spectroscopy (XPS) measurements were carried
out at room temperature on a Thermo escalab 250Xi X-ray Photoelectron Spectrometer with
a monochromatic Al Kα radiation (hv = 1486.6 eV). For XPS analysis, the samples without
exposure to air were dried in N2 flow gas and vacuum packed to avoid any impurity. All
spectra were calibrated to the C1s peak at 284.6 eV. The peak position was estimated using a
fitting procedure based on the summation of Lorentzian and Gaussian functions using the
XPSPEAK 4.1 program. UV-Vis diffuse reflectance spectra (DRS) were performed on a scan
UV-Vis spectrometer (Cary 5000). The composition for the composites was determined by
ICP-AES analysis using Thermo Scientic iCAP 6000 spectrometry. The photoelectrochemical
test was recorded in a conventional three-electrode system by a CHI 660E electrochemical
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workstation (Chenhua, Shanghai, China). The photocurrents of the photocatalysts were mea-
sured at 0.0 V (vs. Ag/AgCl) in Na2SO4 aqueous solution after being purged by N2 under
UV-visible light with an AM 1.5 G filter.

2.3. Photocatalytic Performance Tests

Photocatalytic CO2 reduction activity with gaseous phase H2O was evaluated in a CEL-
HPR100 stainless steel cylindrical vessel (Beijing China Education Au-Light Co., Ltd., China),
and the light source was a PLS-SXE 300 Xenon arc lamp with a UV cutoff filter (λ > 400
nm). The compressed high purity CO2 gas (99.995%) was passed across a deionized water
bubbler, which generated a mixture of CO2 and H2O vapor. After visible-light irradiation, the
product yields and types in the gas phase were analyzed using a GC-7890II gas chromatograph
(Beijing China Education Au-Light Co., Ltd., China), and the hydrocarbon product was further
analyzed by 7890A-5975C GC-MS (Agilent Technologies Inc., Santa Clara, CA, USA). The
experimental process is detailed in Supplementary Material S1.

The product selectivity (S) for CO2 reduction was calculated with the following
Equations (1)–(3):

SCO (%) = 2 × NCO/(2 × NCO + 8 × NCH4 + 2 × NH2) × 100 (1)

SH2 (%) = 2 × NH2/(2 × NCO + 8 × NCH4 + 2 × NH2) × 100 (2)

SCH4 (%) = 2 × NCH4/(2 × NCO + 8 × NCH4 + 2 × NH2) × 100 (3)

NCO, NCH4 and NH2 were on behalf of the yield of detected CO, CH4 and H2 molecules
in the photocatalytic process of CO2 reduction with H2O vapor.

3. Results and Discussion
3.1. Structure, Composition and Morphology

The XRD patterns of the as-prepared samples are presented in Figure 1. Several
diffraction peaks at 13.9, 23.2, 27.2, 28.1, 47.4 and 49.8◦(marked with black dotted lines) were
observed corresponding to (1 0 0), (0 0 2), (1 0 2), (2 0 0), (0 0 4) and (2 2 0) planes of hexagonal
WO3 (PDF card No. 01-085-2460). This is because the percentage of exposed facets was
estimated by the respective peak areas of the facets [41]. Hence, the WO3 component in
the bare and composite samples preferentially exposed (0 0 2) facets. Simultaneously, the
diffraction peaks of Cu2O sample (marked with green dotted lines) matched perfectly with
those of cubic phase Cu2O (PDF card No. 01-078-2076). To further explore the existence of
Cu metal in the composite, the XRD pattern of Cu/Cu2O sample was studied, avoiding
interference from the diffraction peak of hexagonal WO3, and the characteristic peaks at
43.4 and 50.6◦ (marked with pink dotted lines) were attributed to metallic Cu (PDF card
No. 03-065-9743). Moreover, Cu metal was proven to be present in the Cu/Cu2O/WO3
composite. As a result, Cu and Cu2O were simultaneously electrodeposited onto hexagonal
WO3, indicating the successful construction of the Cu/Cu2O/WO3 composite.

X-ray photoelectron spectroscopy (XPS) measurements were carried out to elucidate
the surface composition and chemical states of the elements. The survey XPS spectrum
of the typical Cu/Cu2O/WO3 sample indicated that the composite mainly consisted of
W, Cu and O electrons. To gain further insight into the chemical bonding between W and
other atoms in the composite, the high resolution XPS spectrum of W 4f (Figure 2a) was
deconvoluted by Gaussian-Lorenzian analysis. The peaks at binding energies of 37.7 and
35.7 eV were ascribed to W (VI) state in tungsten oxide materials, while two distinct peaks
at 34.5 and 36.4 eV were consistent with the values of W (V) oxidation state for all the
samples [42,43]. The existence of W (V) was necessary to maintain the opening structure of
hexagonal WO3 [14]. However, the area ratios of W (V) and W (VI) in the composite were
higher than those of the bare WO3 sample (Table S1) due to the electroreduction process for
Cu2O deposition. In the high-resolution Cu 2p XPS spectrum (Figure 2b), two conspicuous
peaks were observed at binding energies of 952.3 eV for Cu (I) 2p1/2 and 932.5 eV for Cu(I)
2p3/2 [44]. Furthermore, the Cu and W diffraction peaks of the composite shifted slightly
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compared with those of pure samples, which was the reason that the intense interaction
existed between WO3 and Cu2O component in the composites, implying the formation
of heterojunction. Cu LMM Auger spectra (Figure 2c) were further performed to explore
the chemical state of the Cu element, The Auger parameter can be calculated from the
equation of α′ = Ek (Auger electron) + Eb (photoelectron). Here, Ek is the kinetic energy,
and Eb is the binding energy. The Auger parameter values of the Cu (I) and Cu (0) in the
Cu/Cu2O/WO3 composite were determined to be 1848.7 and 1851.2 eV, respectively, which
indicated the existence of Cu (I) and Cu (0) in the Cu/Cu2O/WO3 sample [45,46].
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The morphologies of the as-obtained WO3, Cu2O/WO3 and Cu/Cu2O/WO3 powders
were visualized using SEM images. As shown in Figure 3, all the samples exhibited the
typical sheet morphology with various sizes. Furthermore, the SEM image in Figure 3a
showed that the nanoflake surface was rough and porous. As shown in Figure 3b,c, both
of the composites kept uniform sheet morphology, and the sheet thicknesses after electro-
deposition of Cu2O and Cu/Cu2O had no obvious changes compared with that of bare
WO3. Although there was no obvious difference in Cu content between Cu2O/WO3 and
Cu/Cu2O/WO3 according to the ICP-AES analysis (Table S2), the nanoflake surface of
Cu/Cu2O/WO3 exhibited distinct embossment (Figure 3c).
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Micro-structures of the obtained samples were investigated by TEM observation.
Figure 4 revealed that the typical nanoflake-like morphology was observed with a sharp
edge and clean boundary. In Figure 4a, the WO3 nanoflake had a porous surface morphol-
ogy. The fringe spacings of 0.634 and 0.366 nm were discovered (inset of Figure 4a), which
were consistent with the (1 0 0) and (0 0 2) lattice planes of hexagonal WO3, respectively. In
Figure 4b, Cu2O/WO3 still kept a nanoflake-like morphology with smaller porous sizes
compared with that of WO3. The lattice fringes with spacings of 0.246 and 0.213 nm were
distinctly found (inset of Figure 4b) corresponding to the (1 1 1) and (2 0 0) planes of cubic
Cu2O. Similar nanoflake-like morphology was observed for the Cu/Cu2O/WO3 sample in
Figure 4c, and the (2 0 0) crystal facet of metallic Cu with lattice spacing of 0.180 nm was
observed, except for the crystal facet of Cu2O (top-right inset of Figure 4c). Furthermore, the
scattered Cu nanoparticles around the Cu/Cu2O/WO3 nanoflake by ultrasonic exfoliation
were observed with clear lattice fringes of 0.180 and 0.208 nm were observed around the
nanoflake (bottom-left inset of Figure 4c), and the size distribution of Cu nanoparticles
in the selected area (framed in red, corresponding enlarged view in Figure S1) obeyed a
logical normal distribution with an average diameter of 5.6± 1.1 nm (Figure S2). According
to the elemental mapping images in Figure 4d, W, Cu and O elements were uniformly
distributed in the Cu/Cu2O/WO3 sample, and the Cu element appeared on the surface, as
well as around the nanoflakes. The above results demonstrate that Cu2O was uniformly
electrodeposited on the surface of the WO3 nanoflake, and metallic Cu also existed in the
Cu/Cu2O/WO3 sample.

The light absorption property is crucial for the utilization efficiency of solar energy
for the catalyst. According to the UV-Vis diffuse reflectance spectra (Figure 5), all the
composites showed strong absorption in the visible light region, indicating the feasibility
of utilizing visible light for CO2 photoreduction. The band gaps (Eg) of the samples were
estimated by the plots of (αhν)2 versus photo energy (hν) (Figure S3 and Table S2), and the
calculated Eg values of WO3 and Cu2O were 2.86 and 2.05 eV, respectively.
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3.2. Photocatalytic Performance of CO2 Reduction

The photocatalytic CO2 reduction experiments were carried out under visible-light
irradiation (>400 nm) for the as-prepared catalysts. The photocatalytic performances of
CO2 reduction with water vapor in Figure 6a showed that no products were generated over
the WO3, Cu2O and Cu/Cu2O samples. Conversely, CO, CH4, O2 and H2 products were
obtained for the Cu/Cu2O/WO3 and Cu2O/WO3 composites, and no other products such
as HCHO or CH3OH were detected by either GC or GC-MS analyses. Furthermore, the
product yields decreased for the mechanically dispersed Cu2O/WO3 m sample compared
with those of the Cu2O/WO3, indicating that the loosely contacted interface was insufficient
for photocatalytic CO2 reduction. Additionally, the product selectivity for CO2 reduction
was analyzed for the Cu/Cu2O/WO3 and Cu2O/WO3 catalyst. Typically, the SCH4 and SCO
values of Cu2O/WO3 were calculated to be about 0.1% and 94.5%, which demonstrated that
CO2 reactant was thermodynamically favorable to form CO by the two-electron reduction
pathway. However, the ScH4 and SCO values of Cu/Cu2O/WO3 were calculated to be 96.7%
and 0.0%, indicating that the metallic Cu promoted the formation and utilization of proton-
assisted multi-electrons pathway in the photocatalytic CO2 reduction process [47]. The
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CH4, CO and O2 yields for CO2 photoreduction reached 1.87, 0.0065 and 2.63 mmol/gcat,
respectively. Compared with the photocatalytic activity of the reported catalysts (Table S3),
the maximum rate of CH4 product over Cu/Cu2O/WO3 was obviously higher and high
product selectivity was also obtained. To explore the influence of loading Cu on the
photocatalytic performance, the controlled experiments in different atmospheres were
further investigated (Figure 6b). In the CO/H2O atmosphere, more CH4 molecules were
produced over Cu/Cu2O/WO3 compared with that of Cu2O/WO3. Meanwhile, in the
N2/H2O atmosphere, the H2 yield from water splitting was improved with the existence
of Cu in the composite, which indicated that Cu nanoparticles promoted the electron
transfer and proton aggregation on the catalyst surface, improving the hydrogenated
process for CO2 reduction over the Cu/Cu2O/WO3 catalyst. The yields of products for
the Cu/Cu2O/WO3 composite were further investigated in the CO2/H2O atmosphere
within 24 h of irradiation. As shown in Figure 6c, the total yields of CH4, H2 and O2 were
enhanced with prolonging the irradiation time. The maximal yield rate of H2 reached
0.013 mmol/gcat/h at 24 h, and those of CH4 and O2 at 18 h were found to be 0.104
and 0.147 mmol/gcat/h, respectively. The decreased yields of the photocatalytic CO2
reduction were possibly due to oxidation of the formed carbonous compounds on the
photocatalyst surface or the coverage of active sites by intermediates. Reproducibility and
durability are critical for the long-term use of a catalyst in practical application. The results
in Figure 6d show that the yields of CH4 and H2 for the typical Cu/Cu2O/WO3 catalyst
slightly decreased, and the O2 yield obviously fell down after 5 cycles. Notably, after the
5th cycling experiment, the photocatalyst was regenerated by the electro-reduction method
at 0.05 V in 0.5 M Na2SO4 solution. In the 6th cycling experiment, all the yields were
obviously promoted, which were similar to those of the fresh catalyst. To illustrate the
stability of the Cu/Cu2O/WO3 catalyst, XPS measurements were conducted to investigate
the change in chemical composition after the 5th cycle. As shown in the Cu 2p and W 4f
XPS spectra (Figure S4), Cu (II) and W (V) were identified, which were probably derived
from the oxidation of Cu (I) and reduction in W (VI), and W (V) possibly became the high
recombination center of the photogenerated electrons and holes, leading to a slight decrease
in the photocatalytic activity for CO2 reduction.
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irradiation (>400 nm) over different samples (a), photocatalytic activities under different atmospheres
(b), the yields of products for the Cu/Cu2O/WO3 composite in the CO2/H2O atmosphere within
24 h of irradiation (c) and product yields for the Cu/Cu2O/WO3 catalyst in cycling experiment under
visible light irradiation for 18 h (d).

3.3. Possible Photocatalytic Mechanism

Transient photocurrent response and photoluminescence spectra were measured to
investigate the charge separation. Based on the photo-electric properties during several on–
off illumination cycles (Figure 7a), the photocurrent density of Cu2O/WO3 was higher than
those of the bare WO3 and Cu2O samples, and the Cu/Cu2O/WO3 sample exhibited the
highest photo-induced density among them. Moreover, the photoluminescence spectra of
the photocatalysts at the excitation wavelength of 405 nm are present in Figure 7b, and the
emission intensity of the Cu/Cu2O/WO3 composite distinctly decreased compared with
those of the WO3, Cu2O and Cu2O/WO3 samples. The above results indicate the promoted
separation of photogenerated electron-hole pairs in the Cu/Cu2O/WO3 composite.
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The band edge position and charge transport mode in the composite directly in-
fluenced the separation and redox ability of photoexcited charge carriers. Ultraviolet
photoelectron spectra combined with Eg analysis were used to determine the electronic
band structure of the catalyst. Figure 8a shows the UPS spectra of Cu2O and WO3. On the
basis of the linear intersection method [48], the valence band (VB) of WO3 was estimated
to be −7.33 eV (vs. vacuum), and the conduction band (CB) was −4.47 eV (vs. vacuum)
based on the Eg value of WO3. According to the connection between vacuum energy
and normal electrode potential (NHE) [29], the corresponding VB and CB positions of
WO3 were 2.89 and 0.03 eV (vs. NHE), respectively. Similarly, the VB and CB values of
Cu2O were separately calculated to be 0.91 and −1.14 eV (vs. NHE), which agreed well
with previously reported results [31,49]. Hence, the heterostructure with staggered band
alignment was successfully formed in this Cu2O/WO3 system, assuming that the possible
band bending of the semiconductor was neglected. Based on the band energy structure
of WO3 and Cu2O, two possible mechanisms for photo-induced carriers were proposed
and described in Figure 8b,c. If the photo-excited charge carriers transferred according to
the traditional model (Figure 8b), the photo-excited holes in the VB of WO3 would transfer
to the VB of Cu2O, and the photo-excited electrons in the CB of Cu2O would migrate to
the CB of WO3, where the accumulated electrons would not reduce CO2 to CO/CH4 or
produce H2 from H2O on account of the more positive CB edge potential (0.21 eV vs. NHE)
than the standard CO2 reduction potential [4]. Similarly, the accumulated holes in Cu2O
would not accomplish H2O oxidation due to the more negative VB of Cu2O. Hence, the
hypothesis of the traditional double-transfer model was invalid. The S-scheme charge
transfer mode (Figure 8c) was proposed according to the enhanced photocatalytic activity
of Cu/Cu2O/WO3. To verify the S-scheme charge transfer mode in this heterojunction,
the XPS spectra of Cu2O/WO3 were measured in light and the results were shown in
Figure 8d,e. The CB of Cu2O and WO3 were composed of Cu and W orbitals, respectively.
Four peaks of W 4f in light shifted to a higher binding energy compared with these in
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the dark. Simultaneously, two peaks of Cu 2p in light reversely shifted. It was implied
that the photo-induced electrons transferred from WO3 component to Cu2O component in
this heterojunction [50,51]. Specifically, the photoexcited holes in the VB of Cu2O would
transfer to WO3 and recombine with the photoexcited electrons in the CB of WO3. The CB
potential of Cu2O and VB potential of WO3 thermodynamically realized photocatalytic
CO2 reduction and H2O oxidation, respectively, and the metallic Cu co-catalyst facilitated
the reduction process dynamically.
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double transfer mode (b) and the S-scheme charge transfer mode (c), and XPS spectra of W 4f (d) and
Cu 2p (e) for Cu2O/WO3 heterojunction in dark/light.

4. Conclusions

In summary, Cu and Cu/Cu2O species were synthesized on the hexagonal WO3
nanoflake films by the one-step electrodeposition method for photocatalytic CO2 reduction
with water vapor. The obtained Cu/Cu2O/WO3 catalyst exhibited excellent photocatalytic
performance under visible light irradiation (λ > 400 nm) due to the construction of hetero-
junction, and the CH4, H2 and O2 yields reached 2.43, 0.32 and 3.45 mmol/gcat after 24 h of
illumination, respectively. Notably, CH4 molecules were generated as the major product
over the Cu/Cu2O/WO3 catalyst, whereas Cu2O/WO3 facilitated CO generation. Efficient
CH4 formation for the Cu/Cu2O/WO3 catalyst was attributed to the modification of Cu
nanoparticles favoring electron–proton transfer from CO to CH4. The decreased photo-
catalytic activity in the cycling experiment was recovered by the regenerated treatment
via electro reduction, removing the superfluous W(V) in the composite. Additionally, the
S-scheme charge transfer mode and potential mechanism of CO2 reduction were proposed
by the results of XPS measurement and photocatalytic performance under light illumination
with a specific wavelength. The present research may provide a promising strategy to
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design ternary nanocomposite VLD photocatalysts and inspire further interest in tuning
product selectivity for photocatalytic CO2 conversion.
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