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Abstract: This paper investigates the heat transfer of two-phase nanofluid flow between horizontal
plates in a rotating system with a magnetic field and external forces. The basic continuity and
momentum equations are considered to formulate the governing mathematical model of the problem.
Furthermore, certain similarity transformations are used to reduce a governing system of non-linear
partial differential equations (PDEs) into a non-linear system of ordinary differential equations.
Moreover, an efficient stochastic technique based on feed-forward neural networks (FFNNs) with
a back-propagated Levenberg–Marquardt (BLM) algorithm is developed to examine the effect of
variations in various parameters on velocity, gravitational acceleration, temperature, and concen-
tration profiles of the nanofluid. To validate the accuracy, efficiency, and computational complexity
of the FFNN–BLM algorithm, different performance functions are defined based on mean absolute
deviations (MAD), error in Nash–Sutcliffe efficiency (ENSE), and Theil’s inequality coefficient (TIC).
The approximate solutions achieved by the proposed technique are validated by comparing with
the least square method (LSM), machine learning algorithms such as NARX-LM, and numerical
solutions by the Runge–Kutta–Fehlberg method (RKFM). The results demonstrate that the mean
percentage error in our solutions and values of ENSE, TIC, and MAD is almost zero, showing the
design algorithm’s robustness and correctness.

Keywords: two-phase nanofluid flow; heat transfer; magnetic field; horizontal plates; Nusselt
number; skin-friction coefficient; artificial intelligence; soft computing

1. Introduction

Nanofluid is a term, first used by Choi [1] in 1995, which refers to a particular class
of heat transfer fluids with some unique thermal properties. It consists of a base fluid
and nanoparticles, which are nanometer-sized fragments of substances suspended in a
traditional fluid with diameters ranging from 1 to 100 nm. In addition, nanofluids are
made up of nanoparticles with a variety of base fluids, including kerosene, polymeric
solutions, oil, water, biofluids, ethylene-glycol, and lubricants [2]. The suspended ultrafine
particles change the base fluid’s transport properties and heat transfer performance. The
study of heat transfer in nanofluids is of great importance in engineering, applied physics,
and industrial applications, such as the cooling of microchips, geothermal power extrac-
tion, nuclear reactors, distant vehicular nanofluids, nano-drug delivery, smart fluids, and
nanofluid detergents [3]. In light of these significant applications, a number of researchers
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have discussed nanofluids in different geometrical configurations. As part of an exhaustive
study of convective transport in a nanofluid, based on MIT research, Buongiorno [4] looked
at the seven slip processes that cause the base fluid and nanoparticles to have a relative
velocity. Kuznetsov and Nield [5] investigated the effect of nanoparticles on the natural
convection flow of the boundary layer through a vertical plate using Brownian motion
and thermophoresis. Khan et al. [6] explored the natural convection of a non-Newtonian
nanofluid containing gyrotactic microorganisms in a porous medium along with a static
plate. Nanofluids improve the heat transfer and also increase the resistance of the flow.
In this regard, comprehensive performance indices, including thermal efficiency, exergy
efficiency, and entropy generation have been extensively studied by C. Qi [7–10].

The magnetohydrodynamic (MHD) flow of nanofluids has attracted the interest of
various researchers due to its numerous uses in physics, agriculture, medicine, petroleum
industries, and engineering. MHD generators, rotating machines, micro-polar fluid flow,
electronic storage components, viscometry, lubrications, turbomachines, physical oceanog-
raphy processes, pumps, and reactor chemical vapor deposition are some examples of MHD
fluids [11–13]. Nanofluids subjected to a magnetic field essentially modify the heat transfer
by maneuvering the suspended nanoparticles [14,15]. Pal and Mondal [16] investigated the
influence of viscous-Ohmic dissipations and a magnetic field on the convective-radiative
boundary layer flow of nanofluids caused by non-linear stretching/shrinking sheets. They
concluded that skin friction and the volume fraction coefficient increase with decrease
in the magnetic parameter. Ghadikolaei [17] studied the effect of a magnetic field on the
stagnation flow of hybrid TiO2-Cu/water nanofluid spanning an expanding surface. Their
results indicated that a positive increment in the magnetic field decreased the skin friction
coefficient and caused an increase in the Prandtl number. Hosseinzadeh [18] studied the
effect of magnetic field and radiation on the hybrid fluid in an octagonal porous medium.
Chemically reacting MHD 3D Maxwell nanofluid flow subjected to temperature-dependent
transposition was investigated by Ahmad [19]. Rashidi [20] investigated the combined
effects of nanoparticles and an irresistible field on a micropolar fluid running between two
parallel coaxial porous plates under uniform pumping. They discovered that an increase in
these parameters caused an increase in the heat transfer rate at the lower plate.

Generally, the mathematical models governing the two-phase and three-phase flow of
nanofluids subjected to magnetic fields are non-linear in nature [21]. Therefore, various
numerical and analytical techniques have been developed to solve such models. The finite
element method (FEM) was used by Bhargava [22,23] to examine the convection of a mixed
micropolar fluid generated by the stretching of a porous sheet. The stagnation point flow
over a permeable surface under the influence of magnetohydrodynamics (MHD) was
calculated by Bhatti et al. [24], applying a successive linearization technique. The analytical
solutions for the boundary layer flow of a nanofluid were examined by Hassani [25], using
a homotopy analysis method (HAM). The convection of nanofluid flow in a horizontal layer
of finite depth was studied by Wakif et al. [26] using a Wakif–Galerkin weighted residuals
method (WGWRM). An Akbari–Ganji method (AGM) [27] was implemented to study a
nanofluid’s heat and mass transfer in the presence of a magnetic field. Mosayebidorcheh
used the differential transformation method (DTM) to analyze the turbulent flow of an
MHD Couette nanofluid [28,29]. S. Gupta [30] investigated the three-dimensional flow of
an Oldroyd-B nanofluid over a bidirectional stretching sheet using hybridization of DTM
and the Padé approximation. Hatami [31,32] studied nanofluid flow and heat transfer when
subjected to a magnetic field and flowing between parallel plates. An MHD nanofluid
squeezing flow analysis under the influence of slip boundary conditions was investigated
by Sobamowo et al. [33] using a variation of parameter method (VPM). S. Haider [34] used
an optimal homotopy analysis method to study the Stefan blowing impact in the presence
of Arrhenius activation energy, heat radiation, and chemical reaction of the unsteady MHD
nanofluid. Based on this brief overview of the literature, it can be seen that the methods
described are purely gradient-based and use a traditional deterministic approach to solve
non-linear models. Instead, we have used neural networks that do not require any prior
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information about the function and its gradient. Neural networks can avoid singularity
and learn by themselves and produce output that is not limited to the input provided to
them. Therefore, ANNs are considered to be a better alternative for the approximation of
differential equations corresponding to real-world phenomena.

Recently, stochastic meta-heuristic and heuristic techniques have been developed
to solve a variety of non-linear system problems, such as imbibition phenomena [35,36],
bath of wire by Oldroyd 8-constant fluid [37], electrohydrodynamic (EHD) fluid flow
analysis with an ion drag configuration in a circular cylindrical conduit [38], the flow of
non-Newtonian Johnson–Segalman fluid [39], chaos-based secure wireless communica-
tions [40,41], and thermal engineering problems [42,43]. These recent studies on stochastic
techniques motivated the authors to incorporate and exploit the strength of artificial neural
networks with optimization techniques to study the heat transfer of two-phase nanofluid
flow subjected to a magnetic field. Some novel features of this study are listed below:

• This study analyzes the mathematical model of heat transfer of nanofluid flow with
a magnetic field by implementing and utilizing the computational strength of feed-
forward artificial neural networks with a back-propagated Levenberg–Marquardt
(BLM) algorithm.

• A proposed FFNN–BLM technique is exploited to examine the heat transfer, ve-
locity, acceleration, and concentration profiles of a nanofluid by varying the mag-
netic parameter, Prandtl number, rotation parameter, thermophoresis, and Brownian
motion parameter.

• To validate the accuracy and efficiency of the proposed technique, the results are com-
pared with numerical solutions by the Runge–Kutta–Fehlberg method, least square
method, and other machine learning algorithms, such as the non-linear autoregressive
exogenous neural network model.

• Performance functions, such as MAD, TIC, and ENSE are formulated to study the
errors and deviations in the solutions to assess the value of the proposed algorithm.

2. Mathematical Formulation

We considered the two-dimensional flow of nanofluids rotating between two hori-
zontal plates subjected to a magnetic field as shown in Figure 1. The magnetic field B is
applied, and the fluid rotates with uniform velocity Ω. The boundary layer equations of
continuity, momentum, mass, energy and heat transfer are used to regulate the subjected
model, which is expressed as

∂u
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here, u and v are the components of velocity along the x and y axes. P is pressure, T shows
the temperature, C is concentration, µ denotes the dynamic viscosity, ρ f is the density of
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the base fluid, k is the thermal conductivity, DB is the coefficient of diffusion, and cp is the
specific heat of the nanofluid. The corresponding boundary conditions of the problem are

u = v = w = 0, T = T0, C = C0 at y = L,

u = ax, v = w = 0, T = TL, C = CL at y = 0.
(7)

Introducingthe following dimensionless parameters [44]

ζ = y
L , u = ax f ′(ζ), v = −aL f (ζ), w = axg(ζ), θ = T−TL

T0−TL
, φ = C−CL

C0−CL
, (8)

substituting the above variables in Equations (1)–(6) will result in the system of ordinary
differential equations, which are given as [45,46],

f iv − R
(

f ′ f ′′ − f f ′′′
)
− 2krg′ −M f ′′ = 0, (9)

g′′ − R
(

f ′g− f g′
)
+ 2kr f ′ −Mg = 0, (10)

θ′′ + Pr ·R · f θ′ + Nbφ′θ′ + Ntθ′2 = 0, (11)

φ′′ + R.Sc. f φ′ +
Nt
Nb

θ′′ = 0, (12)

subjected to boundary conditions

f (0) = 0, f ′(0) = 1, g(0) = 0, θ(0) = φ(0) = 1,
f (1) = 0, f ′(1) = 0, g(1) = 0, θ(1) = φ(1) = 0.

(13)

where, Nt, Nb, Sc, Pr, kr, M, and R, are the thermophoresis parameter, Brownian motion
parameter, Schmidt number, Prandtl number, rotation parameter, magnetic parameter, and
viscosity parameter, which are defined as

Pr =
µ

ρ f α
, R =

aL
v

, M =
σB2L2

ρv
, kr =

ΩL2

v
, Sc =

µ

ρ f D
, (14)

Nb = (ρc)pDB(CL)/
(
(ρc) f α

)
, Nt = (ρc)pDT(TL)/

[
(ρc) f αTc

]
. (15)

The Nusselt number (Nu) and the specific heat over the bottom wall are defined as

Nu =
∣∣θ′(0)∣∣, Cf =

∣∣ f ′′(0)∣∣. (16)
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Figure 1. Two-phase flow of a nanofluid in horizontal plates.
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3. Design Methodology

This section first illustrates the basic structure of a feed-forward neural network and then
discusses an optimization technique for the learning procedure of neurons in FFNN architecture.

3.1. Feedforward Artificial Neural Networks

In 1943, McCulloch [47] introduced a computational model based on the human
brain, which initiated the exploration of artificial neural networks (ANN). ANNs can
learn, recognize, and deal with a broad spectrum of complex problems. Feed-forward
neural networks (FFNNs) are the only ANN models universally utilized in many feasible
applications. An FFNN’s architectural representation makes it appealing because it allows
for the identification of a computational model (a function) in structural/network form.
Moreover, it is the framework of an FFNN that makes it a prevalent function approximator,
which has the effect of approximating and finding solutions to any function or problem [48].

An FFNN is a computational model of numerous neurons coupled by weights and
stacked layer-by-layer. Thus, FFNNs feature a unique structural architecture in which
nodes in one layer have forward connections to nodes in the next layer, as shown in
Figure 2. A node of an FFNN can deal with information prevailing on the connection
weights. Mathematically, the output yi of a node is computed as:

yi = Θi

(
ni

∑
j=1

wjxj + bj

)
, (17)

where, xi is the input data, ni is the number of sample data, wi are the connection weights,
bi is the bias vector and Θ(.) is an activation function. The activation function Θ(x, w) is
parameterized with ni-dimensional input and weighted vectors as x1, x2, x3 . . . , xni and
w1, w2, w3, . . . , wni , respectively. Here, the S-shaped curved sigmoid function is used as the
activation function, which is given as

Θ(x) =
1

1 + e−(wx+b)
. (18)

The motivation for using a log-sigmoid activation function is that it produces a smooth
gradient, which prevents jumping in output values.
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Figure 2. Architecture of a three-layer feed-forward neural network.

3.2. Learning Procedure

This section discusses the learning procedure adopted to optimize the connection
weights in the FFNN structure for the approximate solutions of the model. Initially, a data
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set/target data (reference solution) of 1001 points is created using the Adams method in
Mathematica. After that, the FNN model is set up with appropriate settings, such as the
number of hidden neurons, iteration, and choice of the activation function. The FFNN is
then supplied with input (η ∈ [0, 1]) and target data for the supervised machine learning
process. The architecture of the FFNN model is shown in Figure 3. In the supervised
learning procedure, an objective function is constructed in terms of the mean square that
poses a least-squares minimization problem which is given as

Minimize MSE =
1
m

m

∑
j=1

(
yj(t)− ŷj(t)

)2, (19)

here, yj(t) is the reference solution and ŷj(t) is the updated/new solution. Furthermore, the
optimization technique, such as a back-propagated Levenberg–Marquardt (BLM) algorithm,
is utilized to optimize the connection weights by minimizing the performance function
given in Equation (19). For perfect modeling of the approximate solutions, the value of MSE
approaches zero. The BLM algorithm is a curve-fitting and iterative strategy for locating
the minimum of a multivariate function defined as the sum of squares of non-linear real-
valued functions. It has become a standard technique for non-linear least-squares problems,
with widespread application across a wide range of disciplines. BLM is a mixture of the
steepest descent and the Gauss–Newton method. When the current solution is far from
optimal, the algorithm behaves like a steepest descent method: sluggish but certain to
converge. The Gauss–Newton method is used when the current solution is near to the
optimal solution. Some recent applications of the LM algorithm include the solution of
an inverse heat conduction problem [49], a system of reaction-diffusion equations in a
micro-disk biosensor [50], heat flux estimation [51], energy-gradient fitting [52], charge
estimation of lithium-ion batteries [53] and piles embedded in sandy soil [54]. A detailed
summary of the working process of a FFNN–BLM algorithm is shown in Figure 4.

 

Figure 3. Structure of FFNN model for the modeling of approximate solutions.

 

Start 

Generate a data set of input 

and targeted values 

Design feedforward neural network. Parameters 
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No 

Figure 4. Work flow of the design algorithm.
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4. Numerical Experimentation and Discussion

In this section, the proposed FFNN–BLM algorithm is employed to study the influence
of variations in the magnetic parameter, Prandtl number, rotation parameter, thermophore-
sis, and Brownian motion parameter on heat transfer, velocity, gravitational acceleration,
and concentration profiles of the nanofluid, governed by Equations (9)–(12). To demon-
strate the accuracy and efficiency of the design algorithm, the results obtained by the
FFNN–BLM algorithm are compared with the Runge–Kutta–Fehlberg method, the least
square method [55], and a machine learning algorithm (NARX-BLM) [56], as detailed in
Tables 1 and 2. The statistics demonstrate the validity of the FFNN–BLM algorithm, and it is
observed that the solutions overlap the numerical results with minimal absolute errors that
lie around 10−5 to 10−9. Figure 5 shows that the average percentage errors for the velocity,
acceleration, temperature, and concentration profiles lie around 10−5 to 10−7, respectively.

Table 1. Validation of the presented results by FFNN–BLM algorithm with LSM and RKF methods
for kr = 10, R = 1, M = 2, Nb = 0.1, Pr = 0.5, Nt = 0.5, Sc = 1.

f (η) g(η) θ(η) φ(η)

η LSM [55] RKF FFNN-BLM RKF FFNN-BLM LSM [55] RKF FFNN-BLM RKF FFNN-BLM

0.00 0 0.00000 0.00000 0.00000 0.00000 1.00000 1.00000 0.99969 1.00000 0.99992
0.05 0.04388 0.04387 0.04387 0.05051 0.05051 0.96205 0.96211 0.96211 0.88623 0.88623
0.10 0.07614 0.07655 0.07655 0.06315 0.06315 0.92299 0.92309 0.92309 0.77832 0.77832
0.15 0.09916 0.09960 0.09960 0.04846 0.04846 0.88280 0.88295 0.88295 0.67642 0.67642
0.20 0.11438 0.11453 0.11453 0.01530 0.01530 0.84148 0.84168 0.84168 0.58066 0.58066
0.25 0.12318 0.12271 0.12271 −0.02900 −0.02900 0.79901 0.79927 0.79927 0.49114 0.49114
0.30 0.12675 0.12540 0.12540 −0.07849 −0.07849 0.75537 0.75569 0.75569 0.40797 0.40797
0.35 0.12607 0.12369 0.12369 −0.12847 −0.12847 0.71054 0.71093 0.71093 0.33126 0.33126
0.40 0.12199 0.11850 0.11850 −0.17525 −0.17525 0.66448 0.66494 0.66494 0.26111 0.26111
0.45 0.11518 0.11064 0.11064 −0.21599 −0.21599 0.61717 0.61769 0.61769 0.19766 0.19766
0.50 0.10622 0.10077 0.10077 −0.24860 −0.24860 0.56856 0.56913 0.56913 0.14105 0.14105
0.55 0.09557 0.08945 0.08945 −0.27153 −0.27153 0.51862 0.51923 0.51923 0.09145 0.09145
0.60 0.08365 0.07718 0.07718 −0.28374 −0.28374 0.46730 0.46793 0.46793 0.04906 0.04906
0.65 0.07084 0.06438 0.06438 −0.28459 −0.28459 0.41454 0.41518 0.41518 0.01410 0.01410
0.70 0.05753 0.05146 0.05146 −0.27380 −0.27380 0.36030 0.36091 0.36091 −0.01321 −0.01321
0.75 0.04417 0.03886 0.03886 −0.25145 −0.25145 0.30451 0.30507 0.30507 −0.03259 −0.03259
0.80 0.03126 0.02704 0.02704 −0.21799 −0.21799 0.24711 0.24759 0.24759 −0.04375 −0.04375
0.85 0.01945 0.01654 0.01654 −0.17434 −0.17434 0.18804 0.18841 0.18841 −0.04640 −0.04640
0.90 0.00957 0.00799 0.00799 −0.12193 −0.12193 0.12721 0.12746 0.12746 −0.04021 −0.04021
0.95 0.00265 0.00217 0.00217 −0.06285 −0.06285 0.06456 0.06468 0.06468 −0.02485 −0.02485
1.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000

Figures 6 and 7 illustrate the viscosity parameter’s effect on various nanofluid profiles.
Viscosity is the quantitative measure of the fluid’s resistance to flow. It determines the
fluid strain generated by applied shear stress caused by the forces between molecules
of the liquid. A fluid’s velocity through porous media is inversely proportional to the
viscosity. It is observed, therefore, that an increase in viscosity decreases the horizontal
velocity boundary layer thickness of a nanofluid rotating between two horizontal plates.
In addition, larger values of R imply a higher temperature difference between the surface
and the ambient fluid, which decreases the temperature of the fluid. Moreover, the inverse
treatment is observed for the concentration of nanoparticles in the fluid. Figure 8 displays
the effect of the rotation parameter on the nanofluid; it is evident that if the rotation
parameter increases, the fluid’s velocity will decrease gradually and will slightly increase
as it follows the boundary.
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Table 2. Comparison of absolute errors in the solutions of the proposed algorithm with LSM and
NARX–BLM algorithm for kr = 10, R = 1, M = 2, Nb = 0.1, Pr = 0.5, Nt = 0.5, Sc = 1.

f (η) g(η) θ(η) φ(η)

η LSM [55] NARX-BLM FFNN-BLM NARX-BLM FFNN-BLM LSM [55] NARX-BLM FFNN-BLM NARX-BLM FFNN-BLM

0.00 0 1.58× 10−04 1.84× 10−06 3.69× 10−06 6.58× 10−07 0 3.66× 10−04 3.13× 10−04 7.55× 10−04 8.25× 10−05

0.05 1.00× 10−04 6.61× 10−07 3.05× 10−08 2.81× 10−06 2.72× 10−07 5.44× 10−05 3.31× 10−06 6.79× 10−08 1.27× 10−06 4.66× 10−07

0.10 4.00× 10−04 1.38× 10−06 2.33× 10−08 1.11× 10−05 9.27× 10−07 1.00× 10−04 1.12× 10−05 4.79× 10−08 1.64× 10−06 1.82× 10−07

0.15 4.00× 10−04 4.25× 10−07 3.15× 10−08 3.39× 10−07 7.40× 10−09 1.00× 10−04 1.71× 10−06 1.77× 10−08 9.83× 10−07 1.33× 10−07

0.20 1.00× 10−04 1.47× 10−06 2.52× 10−08 2.62× 10−07 9.46× 10−09 2.00× 10−04 1.18× 10−05 5.10× 10−08 4.06× 10−07 2.09× 10−08

0.25 4.00× 10−04 8.64× 10−07 3.94× 10−08 1.43× 10−07 2.26× 10−08 2.00× 10−04 1.18× 10−05 8.46× 10−09 6.73× 10−07 5.66× 10−08

0.30 1.30× 10−03 1.91× 10−06 1.03× 10−06 9.96× 10−07 9.45× 10−08 3.00× 10−04 6.83× 10−06 2.70× 10−08 5.28× 10−07 1.01× 10−07
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Figure 5. (a–d) Absolute errors obtained by the FFNN–BLM technique for different profiles of
nanofluid. Black, green and red lines correspond to the mean, median and minimum values of
absolute errors. (a) f (η), (b) g(η), (c) φ(η), (d) φ(η).
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Figure 6. (a–d) Effect of the viscosity parameter on different profiles of nanofluid when Nb = 0.1,
kr = 1, M = 2, Pr = 0.5, Nt = 0.5 and, Sc = 1.
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Figure 7. Combined effect of the viscosity parameter on the velocity and temperature profile of the
nanofluid with kr = 10, M = 2, Nb = 0.1, Pr = 0.5, Nt = 0.5, Sc = 1.

Figure 9 shows the effect of a magnetic field (M) on the velocity and acceleration of
the two-phase flow of a nanofluid. The velocity profiles of the fluid deteriorate when the
magnetic field parameter increases. This is because increasing the magnetic field causes
the opposite force to increase, which is known as the Lorentz force. It is worth noting that
the magnetic field’s impact is much stronger on nanofluids than on basic fluids. Figure 10
highlights the effect of the thermophoresis parameter on the temperature and concentration
profiles. It is apparent that the escalated values of Nt cause an enrichment in thermophore-
sis forces which results in the diffusion of nanoparticles which raises the temperature of the
nanofluid. In addition, the increase in Nt decreases the concentration of nanoparticles. The
influence of the Prandtl number Pr on the temperature distribution is shown in Figure 11.
The temperature decreases dramatically as the Prandtl number rises. This corresponds
to the physical reality that the thickness of the thermal boundary layer decreases as Pr
increases. The most important reason for the increase in nanoparticle concentration is
the temperature decrease of the flow field. Figure 12a illustrates the Brownian motion
effect on the temperature of the fluid; an increase in Brownian motion leads to a growth in
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the temperature profile. When the temperature increases (internal energy increases), the
particles start moving rapidly. The Schmidt number is a dimensionless number defined as
the ratio of momentum diffusivity (viscosity) and mass diffusivity. So, the concentration
profile increases with increase in the Schmidt number, as shown in Figure 12b.
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Figure 8. (a,b) Effect of variations in the rotation parameter on f (η) and g(η) of nanofluid when
Nb = 0.1, R = 1, Sc = 1M = 2, Nt = 0.5 and, Pr = 0.5.
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Figure 9. (a,b) Influence on different profiles of nanofluid by varying magnetic field when R = 1,
kr = 1, Pr = 0.5, Nb = 0.1, Nt = 0.1, Sc = 1.
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Figure 10. (a,b) Effect of variation in the thermophoresis parameter on different profiles of nanofluid
when Sc = 1, kr = 1, M = 2, Nb = 0.1, Pr = 0.5, R = 1.
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Figure 11. (a,b) Influence on temperature and concentration profiles of nanofluid by varying the
Prandtl number when R = 50, kr = 1, M = 2, Nb = 0.1, Nt = 0.1, Sc = 1.
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Figure 12. (a,b) Effects of variations in the Brownian motion parameter and Schmidt number on
temperature and concentration profiles of the nanofluid when Pr = 0.5, R = 1, Nt = 0.1, kr = 1,
Nb = 0.1, M = 2.

The graphical analysis is conducted as shown in Figure 13 for the influence of varia-
tions in various parameters on the Nusselt number (Nu) and the skin-friction coefficient C f .
The value of the skin-friction coefficient, and of the Nusselt number (Nu) increases with
increase in the viscosity parameter, Prandtl number, and the magnetic field.
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Figure 13. (a,b) 3-D plots to study the skin-friction coefficient, and Nusselt number (Nu) due to
variations in the viscosity parameter, Prandtl number, and magnetic field.

To check and validate the efficiency, accuracy, and stability of the proposed algorithm, the
FFNN–BLM is implemented multiple times to solve Equations (9)–(12) with R = 1, Pr = 0.5,
Sc = 1M = 2, Nt = 0.5, Nb = 0.1, and kr = 10. Different performance measures are defined
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to study the convergence and errors in the solutions. The formulation of these indices is
given as
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here, f̄ , ḡ, θ̄, φ̄ and f , g, θ, φ are the analytical and approximate solutions, respectively.
MSE, MAD, TIC and ENSE are the mean square error, mean absolute deviations, Theil’s
inequality coefficient (TIC) and the error in Nash–Sutcliffe efficiency (ENSE). The values of
these indices should be equal to or approaching zero for perfect modeling.

Table 3 shows the minimum and mean values of the performance indicators, along
with the standard deviations, when the proposed algorithm is executed for thirty inde-
pendent runs. It is observed that the minimum values of these indices lie around 10−13

to 10−14, 10−6 to 10−8, 10−7 to 10−8 and 10−12 to 10−13, respectively. The standard devia-
tions of the solutions for different profiles of nanofluid are 2.7805× 10−09, 1.6772× 10−10,
7.0157× 10−10 and 4.1393× 10−11, respectively, showing the stability of the solutions. The
convergence of the objective value in terms of the mean square error for different fluid
profiles is shown in Figure 14. The results demonstrate the smoothness of the designed
algorithm for solving non-linear problems. The regression models are measured in terms of
the correlation coefficients and other related statistical parameters, as shown in Figure 15,
to study the strength of fitness of approximate solutions with the reference solutions. The
global values of the performance measures for each profile lie between 10−6 to 10−10, as
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demonstrated in Figure 16a. Finally, the computational complexity of the given technique
about the minimum time (seconds) taken by the CPU to calculate the solution for each
profile is given in Figure 16b. The results demonstrate the robustness of the FFNN–BLM
algorithm.
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Figure 14. (a–d) Convergence curves for different profiles of nanofluid with kr = 10, R = 1, M = 2,
Nb = 0.1, Pr = 0.5, Nt = 0.5, Sc = 1.
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Figure 15. Cont.
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Figure 15. (a–d) Regression analysis for testing, training and validation data for different profiles
of the fluid with kr = 10, R = 1, M = 2, Nb = 0.1, Pr = 0.5, Nt = 0.5, Sc = 1. (a) f (η). (b) g(η).
(c) θ(η). (d) φ(η).
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Figure 16. (a) Global values of the performance indices, and (b) the time taken by the design algorithm
in calculating the approximate solutions.
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Table 3. Statistics of the performance indicators in terms of minimum, mean and standard deviation obtained during the 30 independent executions of the design
algorithm for the solutions of f (η), g(η), θ(η) and φ(η).

MSE MAD TIC ENSE

Minimum Mean Std. Div. Minimum Mean Std. Div. Minimum Mean Std. Div. Minimum Mean Std. Div.

f (η) 4.7218× 10−14 9.0696× 10−12 5.3115× 10−11 5.2016× 10−07 2.4227× 10−06 3.7123× 10−07 5.0905× 10−08 1.8569× 10−07 1.8004× 10−07 5.0734× 10−13 7.6602× 10−11 2.7805× 10−09

g(η) 8.0125× 10−13 8.7132× 10−11 7.5473× 10−11 3.0559× 10−06 5.2492× 10−06 6.8320× 10−06 7.6598× 10−08 7.7671× 10−07 7.0637× 10−06 5.7247× 10−13 3.8761× 10−12 1.6772× 10−10

θ(η) 2.9421× 10−13 1.5795× 10−12 7.7181× 10−12 1.4253× 10−07 2.7932× 10−06 4.1007× 10−07 5.2329× 10−08 6.1883× 10−07 6.7797× 10−07 7.1346× 10−12 7.1948× 10−11 7.0157× 10−10

φ(η) 2.3382× 10−13 3.4396× 10−11 4.4500× 10−10 5.1796× 10−08 5.7441× 10−07 6.1645× 10−07 1.2678× 10−08 6.2865× 10−08 5.9583× 10−08 5.5259× 10−13 4.9361× 10−11 4.1393× 10−11
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5. Conclusions

This study involved an analysis of the two-phase flow of nanofluids between horizon-
tal plates in a rotating system with a magnetic field and external forces. The governing
system of non-linear differential equations was solved by utilizing an intelligent strength of
artificial neural networks with an optimization algorithm. The velocity f (η), gravitational
acceleration (g(η)), temperature (θ(η)) and concentration (φ(η)) profiles were investi-
gated under the influence of variations in the magnetic field parameter, Prandtl number,
rotation parameter, thermophoresis, and Brownian motion parameter. It was concluded
that the increase in viscosity, and rotation parameter, caused an increase in the nanofluid’s
velocity profile. Moreover, the fluid’s velocity profile decreased with the magnetic field
as it produced the Lorentz force, which opposed the motion and decreased it. In addition,
the temperature profile increased with viscosity while a reverse relation was observed
with increase in the thermophoresis parameter. It was noted that the velocity boundary
layer thickness decreased with increase in the Prandtl number. The concentration profile
increased with increase in the Prandtl and Schmidt numbers. Furthermore, the solutions for
different profiles of the nanofluid obtained by the FFNN–BLM algorithm were compared
with the least square method (LSM), a machine learning algorithm, NARX-LM, and the
numerical solutions Runge–Kutta–Fehlberg method (RKFM). The solutions dictated the
accuracy of the results by the proposed algorithm in terms of minimum absolute errors.
Moreover, to check the validity, stability, and efficiency, the proposed technique was exe-
cuted for thirty independent runs, and the minimum (Min.), mean and standard deviations
(Std. Dev.) of the solutions were calculated for different profiles of the nanofluid in terms
of MSE, MAD, TIC, and ENSE. The values of these indices lay around 10−8 to 10−14, which
demonstrated the perfect modeling of the solutions.
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