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Abstract: It is vital to improve the electrochemical performance of negative materials for energy
storage devices. The synergistic effect between the composites can improve the total performance.
In this work, we prepare α-Fe2O3@MnO2 on carbon cloth through hydrothermal strategies and
subsequent electrochemical deposition. The α-Fe2O3@MnO2 hybrid structure benefits electron
transfer efficiency and avoids the rapid decay of capacitance caused by volume expansion. The
specific capacitance of the as-obtained product is 615 mF cm−2 at 2 mA cm−2. Moreover, a flexible
supercapacitor presents an energy density of 0.102 mWh cm−3 at 4.2 W cm−2. Bending tests of the
device at different angles show excellent mechanical flexibility.
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1. Introduction

Supercapacitors (SCs) have attracted much attention from researchers as an inno-
vative type of energy storage device [1–4]. Compared with traditional capacitors, SCs
shows the advantages of superior cycle stability, outstanding power density and fast charg-
ing/discharging [5–7]. Recently, electronic devices have progressively high requirements
for long-term endurance. However, SCs is severely limited with low energy density [8–10].
According to the present research results, one of the most valid ways to settle this issue is
to increase the specific capacity of electrode [11]. Therefore, designing electrodes with high
specific capacitance is the primary task to broaden the application range of SCs.

Currently, the research on positive and negative materials is unevenly developed and
research on negative electrodes is relatively little, which makes it difficult to increase the
energy density of SCs. Commonly used negative materials are carbon (AC, CNTs and
rGO), transition metal oxides (such as Fe3O4, α-Fe2O3, MoO3 and Mn3O4) and a small
amount of metal nitride [12–17]. Among them, α-Fe2O3 is considered to have the highest
potential and is the most widely used anode material, because of its high redox activity,
large theoretical specific capacitance and environmental protection [18]. Nonetheless, the
weak conductivity of α-Fe2O3 electrodes leads low practical specific capacitance and poor
electrochemical stability [19,20]. Manganese dioxide (MnO2) has gained extensive attention
in the construction of supercapacitors due to its high oxidation activity [21]. At present,
preparing nanocomposite materials utilizing the synergistic effect of two materials not
only promotes redox reactions, but also enhance device energy density [22]. Co3O4@MnO2,
SnO2@MnO2, ZnO@MnO2, CuO@MnO2 and α-Fe2O3@MnO2 nanostructures were com-
pounded to achieve both excellent cyclic stability and high capacitance [23–26].

Seol et al. prepared two types of SCs (EDLC and PC) using activated carbon and
graphene/Mn3O4 nanocomposite. The performance degradation of EDLC was negligible
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after 100,000 cycles, while PC was less than 10% after 25,000 cycles [27]. Both devices
demonstrate excellent cyclic stability and durability. Sarkar et al. fabricated α-Fe2O3/MnO2
nano-heterostructure with a specific capacitance of 750 mFcm−2 at 2 mV s−1 [28]. However,
in practice, these composites, because of loose contact, might impact their electrochemical
performance. Thus, it is necessary to construction α-Fe2O3-based materials with unique
nanostructures and excellent electrochemical performance. By combining two materials
with high oxidative activity, the synthesis of ordered nanostructures will help to construct
electrode materials with excellent specific capacitance. The main objective of our research
is that by compounding nanomaterials, the advantages of both can be fully exploited and
the electrochemical performance can be effectively enhanced.

Herein, we synthesized α-Fe2O3 nanorods structures through a hydrothermal route.
Then, a MnO2 film is coated on α-Fe2O3 surface by subsequent electrochemical deposition.
When utilized as negative material for SCs, α-Fe2O3@MnO2 electrode shows a specific
capacitance of 615 mF cm−2 at 2 mA cm−2. After 10,000 cycles, it maintains 92.3% of
the initial capacitance. Finally, a flexible supercapacitor possesses the maximum energy
density is 0.102 mWh cm−3 at 4.2 W cm−2. The results under different angles bending tests
demonstrated that the device possesses excellent mechanical flexibility.

2. Experimental Section
Material Preparation

The α-Fe2O3 sample was synthesized via a hydrothermal method. In total, 0.808 g
Fe(NO3)3·9H2O, 0.2841 g Na2SO4 and 0.5 g PVP were dissolved into 45 mL deionized water.
Then, a clean carbon cloth (2.5 × 2.5 cm2) and the above mixed solution was transferred
into an 80 mL autoclave and kept 110 ◦C for 9 h. Finally, the as-synthesized samples were
annealed at 350 ◦C for 2 h (2 ◦C min−1). An α-Fe2O3@MnO2 sample was prepared by
subsequent electrochemical deposition. In total, 2.4509 g C4H6MnO4·4H2O and 1.4204 g
Na2SO4 was used as electrolyte. The α-Fe2O3 product was used as the working electrode,
Ag/AgCl as the reference electrode and Pt foil as the counter one, with deposition at
1 V constant potential for 30 s. The NiCo2S4 sample was prepared from a homogeneous
solution of 0.4 g Ni(NO3)2·6H2O, 1 g Co(NO3)2·6H2O, 0.5 g urea, 0.1 g NH4F and 60 mL
deionized water, heated with nickel foam at 140 ◦C for 12 h. It was then combined with
0.5 g Na2S·9H2O and 60 mL deionized water at 140 ◦C for 6 h. α-Fe2O3, α-Fe2O3@MnO2
and NiCo2S4 mass loading is 2, 2.3 and 1.2 mg cm−2, respectively.

A supercapacitor was assembled with PVA-KOH gel as the electrolyte, NiCo2S4 as the
positive electrode and α-Fe2O3@MnO2 as the negative electrode. The preparation process
of PVA-KOH gel electrolyte is as follows: stir 2 g KOH with 2 mL distilled water, mix well
and set aside for later use. In a 20 mL beaker, add 2 g polyvinyl alcohol (PVA) and 20 mL
deionized water, and stir at 80 ◦C until transparent. Finally, drop the KOH solution into the
PVA solution at a constant speed, and stir at a constant temperature until it becomes a clear
and transparent gel.

The crystal structure and the elemental compositions of the products were investi-
gated by an X-ray diffractometer (XRD, Shimadzu-7000, Kyoto, Japan, CuKα, 40 kV) and
X-ray photoelectron spectrometer (XPS, Amsterdam, Holland,). The morphology and mi-
crostructure of the sample is characterized by scanning electron microscope (SEM, Gemini
300-71-31, Berlin, Germany).

In a three-electrode system, the as-prepared electrode was measured through an
electrochemical workstation (Shanghai Chenhua). Electrochemical performance methods
include cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemi-
cal impedance spectroscopy (EIS). The as-synthesized materials were used as the working
electrode, Pt foil as the counter electrode and Ag/AgCl as the reference electrode.

3. Results and Discussion

Figure 1 presents the growth process of α-Fe2O3@MnO2 products on carbon cloth.
Firstly, α-Fe2O3 nanorods are obtained via a facile hydrothermal approach. Afterwards, a
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layer of MnO2 film is deposited by subsequent electrochemical deposition on the nanorod-
shaped α-Fe2O3 surface.
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Figure 1. Synthesis schematic of the products.

First, the crystal structure of the obtained product is studied by XRD. Figure 2a shows
the XRD patterns of α-Fe2O3 and α-Fe2O3@MnO2 composites. A typical peak of the carbon
cloth can be clearly observed. The peaks at 2θ values of 33.4◦, 35.8◦, 49.7◦, 54.4◦, 64.3◦

and 72.4◦ can be indexed to (104), (110), (024), (116), (300) and (1010) planes of α-Fe2O3
phases, respectively (PDF No. 84-0308). Those at 28.7◦, 37.6◦, 41.1◦, 47.2◦ and 72.6◦ match
well with (310), (121), (420), (510) and (631) planes of MnO2 (PDF No. 72-1982). The
shape and sharpness of the diffraction peaks in figure reveal that the products possess
high crystallinity.
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Then, XPS is used to investigate the α-Fe2O3@MnO2 materials surface element com-
position. In Fe 2p spectra, the characteristic peaks of Fe 2p3/2 and Fe 2p1/2 at 711.2 eV and
724.8 eV, respectively (Figure 2b). Additionally, two shake-up satellite peaks (Sat.) at 716 eV
and 732.9 eV are determined. This indicates that Fe3+ exists in composite product [29].
Figure 2c depicts the two main peaks of O 1s spectra located at 529.9 eV and 532 eV [30].
Binding energies at 529.9 eV, labeled as O1, denote metal oxygen [31]. Another O2 peak
located at 532 eV is due to some degree of hydrolysis on the product surface [32]. For Mn
2p spectra (Figure 2d), four peaks at 642.2 eV, 645.8 eV, 653.9 eV and 658.1 eV are from Mn
2p3/2, Sat., Mn 2p1/2 and Sat., respectively [33].

Figure 3a indicates that α-Fe2O3 shows a short rod-like structure. In addition, it can be
found that many nanorods homogeneously grown on carbon cloth with uniform size and
shape, and the cross-section of nanorods is rough. The high magnification image (Figure 3b)
shows the as-synthesized products average length is 100 nm. Figure 3c presents a thin
MnO2 film covers α-Fe2O3, and still maintains the shape of nanorods. From Figure 3d, the
cross-section of α-Fe2O3@MnO2 nanorods becomes smooth.

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 10 
 

 

 
Figure 3. SEM images of the samples. (a,c) single materials (b,d) conposite materials. 

Next, we analyzed several as-obtained electrode electrochemical performances by 
CV, GCD and EIS. Figure 4a shows CV curves of α-Fe2O3, MnO2 and α-Fe2O3@MnO2 ma-
terials. Evidently, α-Fe2O3@MnO2 delivers a large CV area in −1–0 V, reflecting its good 
energy storage effect in this range. At 8 mA cm−2 (Figure 4b), the GCD curves obvious that 
α-Fe2O3@MnO2 product with long discharge times, which can be correlative to the syner-
gistic effect between α-Fe2O3 and MnO2 materials. Figure 4c presents CV curves of α-
Fe2O3@MnO2 from 5 to 40 mV s−1. The shape of CV curves almost the same as the scan rate 
increased, indicating excellent reversibility of electrode. In Figure 4d, the GCD curves of 
α-Fe2O3@MnO2 materials are measured from 2 to 10 mA cm−2. Areal capacitance (Ca) is 
obtained by GCD, and the equation is shown below: 

Ca = I∫Vdt/V (1)

Figure 3. SEM images of the samples. (a,c) single materials (b,d) conposite materials.

Next, we analyzed several as-obtained electrode electrochemical performances by
CV, GCD and EIS. Figure 4a shows CV curves of α-Fe2O3, MnO2 and α-Fe2O3@MnO2
materials. Evidently, α-Fe2O3@MnO2 delivers a large CV area in −1–0 V, reflecting its good
energy storage effect in this range. At 8 mA cm−2 (Figure 4b), the GCD curves obvious
that α-Fe2O3@MnO2 product with long discharge times, which can be correlative to the
synergistic effect between α-Fe2O3 and MnO2 materials. Figure 4c presents CV curves of
α-Fe2O3@MnO2 from 5 to 40 mV s−1. The shape of CV curves almost the same as the scan
rate increased, indicating excellent reversibility of electrode. In Figure 4d, the GCD curves
of α-Fe2O3@MnO2 materials are measured from 2 to 10 mA cm−2. Areal capacitance (Ca)
is obtained by GCD, and the equation is shown below:

Ca = I
∫

Vdt/V (1)
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In Equation (1), I is current density,
∫

Vdt stands for the integral area of discharge
curve and V is the constant discharge voltage range (V). The α-Fe2O3@MnO2 electrode
delivers 615 mF cm−2 specific capacitance at 2 mA cm−2

EIS is a significant factor in assessing the electrochemical kinetics of products. The
sample is tested over a frequency range of 0.01 Hz to 100 kHz (Figure 4e). In the low
frequency region, the slope of the straight line shows the ion diffusion resistance. Among
the three samples, α-Fe2O3@MnO2 sample presents the largest slope, which expresses
fast diffusion of ions in electrolyte [34]. The intersection with the real axis represents the
equivalent resistance (Rs) [35]. α-Fe2O3, MnO2 and α-Fe2O3@MnO2 electrodes Rs value is
5.1 Ω, 4.1 Ω and 3.3 Ω, respectively. According to above analysis, α-Fe2O3@MnO2 shows
the largest slope and smallest Rs, so the conductivity of composite material is better than
α-Fe2O3 and MnO2.

At the end, the cyclic stability is investigated at 4 mA cm−2. Figure 4f indicates
that the capacitance of α-Fe2O3@MnO2 is only reduced by 7.7% after 10,000 cycles, while
α-Fe2O3 and MnO2 products present only 71.4% and 75% of the initial capacitance. This
phenomenon is due to the MnO2 film covering the α-Fe2O3 nanorods, which can help
alleviate the volume expansion during long cycle measurements. Similarly, the positive
NiCo2S4 is also studied by the same methods. Figure 4g presents the CV curves of NiCo2S4
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sample. Redox peaks and shapes, confirming its pseudocapacitive material. Five symmet-
rical GCD curves shows an obvious platform (Figure 4h), which indicates their Faradaic
redox behavior [36]. At 2 mA cm−2, the specific capacitance is 720.8 mF cm−2. Nyquist
plots of NiCo2S4 products are shown in Figure 4i; the value of Rs is 0.9 Ω.

To further explore the α-Fe2O3@MnO2 electrodes for practical applications, a flexible
supercapacitor is assembled. From Figure 5a, the voltage windows of α-Fe2O3@MnO2 and
NiCo2S4 are −1–0 V and 0–0.6 V, respectively. Figure 5b shows CV curves from 1.1 V to
1.5 V with a sweep rate of 100 mV s−1, demonstrating the device can maintain operate
stably within 1.5 V. It can be seen that with the decrease of voltage, the area becomes
small. Figure 5c depicts all CV curves at different scan rates keep similar shapes, revealing
outstanding rate performance of device. GCD curves from 1 to 8 mA cm−2 possess the
same charging and discharging time (Figure 5d). The specific capacitance of the device
at 1 mA cm−2 is 37.8 mF cm−2 and it still delivers 15.6 mF cm−2 at 8 mA cm−2. The
equivalent resistance value of the device is 1.9 Ω, as shown in Figure 5e.
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At present, electronic devices are developing towards wearable, which puts forward
higher requirements for the mechanical flexibility of supercapacitors [37]. We twisted the
device and then examined it by cyclic voltammetry (Figure 5f). While device is folded at
15◦, 45◦, 90◦ and 135◦, the shape sustains virtually unchanged, demonstrating its superior



Nanomaterials 2022, 12, 2202 7 of 9

mechanical stability. Figure 5g illustrates that the device maintains 88.9% capacitance
retention after 6000 cycles. Figure 5h is the Ragone diagram of α-Fe2O3@MnO2//NiCo2S4.
The capacitor values of energy density (E) and power density (P) can be derived based on
the Equations (2) and (3):

E = 1/2 × Ca × V2 (2)

P = 3600 × E/∆t (3)

where Ca stands for the areal capacitance of the capacitor, V represent the discharge voltage
and ∆t is the discharge time. At 1 mA cm−2, the energy density of device is 0.102 mWh cm−3

at 4.2 W cm−2. This is better than some previously reported materials [38–41] (Table 1).

Table 1. Electrochemical performance of various devices.

Supercapacitor Capacitance Energy Density
(mWh cm−3)

Power Density
(W cm−2)

Capacitance
Retention Ref.

PEDOT: PSS/δ-MnO2 2.4 F cm−3 0.018 0.018 88% [38]
Fe2O3NTs@PPy//MnO2 - 0.0594 1 92% [39]

ZnO@MnO2 26 mF cm−2 0.04 2.44 87.5% [40]
Fe2O3//Ni/Yarns 0.67 F cm−3 0.086 3.87 87.1% [41]

α-Fe2O3@MnO2//NiCo2S4 37.8 mF cm−2 0.102 4.2 88.9% this work

α-Fe2O3@MnO2 delivers excellent performance, which can be explained by the fol-
lowing reasons: (a) Nanostructure uniformly covered on the carbon cloth, which provides
outstanding electrical conductivity and flexibility; (b) With α-Fe2O3 as a strong mechanical
support and MnO2 as an outer layer, this structure not only protects the morphological
structure, but also provides many active sites; (c) The composite utilizes the synergistic ef-
fect of α-Fe2O3 and MnO2, so that electrode processes high capacitance and low resistance.

4. Conclusions

In this manuscript, α-Fe2O3@MnO2 nanorods are synthesized through a hydrothermal
route and subsequent electrochemical deposition. By combining two oxides of α-Fe2O3
and MnO2, it is favorable to accelerate the electron transport and the oxidation reaction.
The synergistic effect between two materials improves electrochemical performance for
negative electrode. MnO2 film, after electrodeposition, affects the performance of the
electrode material, and the full use of the active area of the film increases, which increases
the capacitance of the electrode material. XPS results show that the material processes abun-
dant redox valence states. α-Fe2O3@MnO2 sample presents high specific capacitance and
excellent cycling stability. Furthermore, the as-assembled capacitors still show outstanding
electrochemical performance and mechanical stability. Therefore, it provides an alternative
method for constructing supercapacitor negative materials with higher specific capacitance.
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