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Abstract: Photothermal therapy (PTT) has become an important therapeutic strategy in the treatment
of cancer. However, exploring novel photothermal nanomaterials with satisfactory biocompatibil-
ity, high photothermal conversion efficiency, and efficient theranostic outcomes, remains a major
challenge for satisfying clinical application. In this study, poly-ethylene glycol modified rhenium
disulfide (PEG-ReS2) nanosheets are constructed by a simple-liquid phase exfoliation method. The
PEG-ReS2 nanosheets were demonstrated to have good solubility, good biocompatibility, low toxicity,
and strong capability of accumulating near-infrared (NIR) photons. Under 808 nm laser irradia-
tion, the PEG-ReS2 nanosheets were found to have an excellent photothermal conversion efficiency
(PTCE) of 42%. Moreover, the PEG-ReS2 nanosheets were demonstrated to be ideal photothermal
transduction agents (PTAs), which promoted rapid cancer cell death in vitro and efficiently ablated
tumors in vivo. Interestingly, the potential utility of up-regulation or down-regulation of miRNAs
was proposed to evaluate the therapeutic outcomes of PEG-ReS2 nanosheets. The expression levels
of a set of miRNAs in tumor-bearing mice were restored to normal levels after PTT therapy with
PEG-ReS2 nanosheets. Both down-regulation miRNAs (miR-125a-5p, miR-34a-5p, miR-132-3p, and
miR-148b-3p) and up-regulation miRNAs (miR-133a-3p, miR-200c-5p, miR-9-3p, and miR-150-3p)
were suggested to be important clinical biomarkers for evaluating therapeutic outcomes of breast
cancer-related PTT. This work highlights the great significance of PEG-ReS2 nanosheets as therapeutic
nanoagents for cancer therapy.

Keywords: PEG-ReS2 nanosheets; photothermal conversion efficiency; in vivo photothermal therapy;
therapeutic outcomes; miRNA expression analysis

1. Introduction

Breast cancer (BC) is the most common malignant tumor in females worldwide. In
2021, global cancer statistics showed that BC had become the highest morbidity of cancer
type. [1] Although BC is the most serious cancer among women, it can be treatable when
diagnosed and treated at an early stage. Early stage diagnosis and the choice of specific
therapy for BC are crucial, because they can significantly increase patient survival rate
and life quality. At present, standard approaches for the treatment of BC include surgery,
chemotherapy, radiotherapy [2], and targeted therapy [3]. However, these conventional
treatments are still unsatisfactory, due to tumor heterogeneity, severe side effects, time-
consuming procedures, and slow treatment outcomes [4]. Occasionally, both chemotherapy
and radiotherapy methods fail to treat BC due to severe side effects.
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To address these limitations in conventional methods, the development of novel,
precise, efficient, and less toxic cancer therapeutic strategies is critical. Breakthroughs in
nanotechnology have led to the real possibility of developing novel cancer treatments. In
particular, cancer nanotechnology facilitated by functional nanomaterials has been shown
to be a useful tool for performing early-stage cancer detection, diagnosis, and treatment.
Due to their intriguing photothermal features, a host of less toxic nanomaterials such
as zero-dimensional materials (e.g., quantum dots [5,6]), one-dimensional materials (e.g.,
nanotubes [7]), and two-dimensional (2D) materials (e.g., nanosheets [8]) have been success-
fully employed in BC diagnosis and therapy. In terms of emerging cancer therapies, the four
main treatment approaches include immunotherapy [9] gene therapy [10] photodynamic
therapy (PDT) [11] and photothermal therapy (PTT) [12]. These therapeutic strategies can
significantly enhance therapeutic outcomes.

Near-infrared (NIR) laser is an ideal light source for performing PTT, because the NIR
region is a transparency window for biological tissues [13] Under the illumination of a NIR
laser, functional nanomaterials are considered to be excellent photothermal transduction
agents (PTAs), which can efficiently harvest NIR photons and produce heat to induce
localized hyperthermia. PTT mainly utilizes the photothermal effect of PTAs to kill cancer
cells and ablate tumors [14–16]. Compared with other therapeutic strategies, PTT has sev-
eral advantages, including non-invasiveness, low side effects, and high efficiency [17–21].
In addition, it is easy to precisely control the laser irradiation dosage on the tumor to
guarantee that any collateral damage to normal tissues can be avoided. Furthermore,
PTT has been widely employed to ablate various types of cancers. Excellent PTAs should
have certain properties, including high photothermal conversion efficiency (PTCE), high
capability of absorbing NIR photons, and good accumulation in tumors. In particular,
nanoscale PTAs are ideal to leverage on the enhanced permeability and retention effect,
which can help PTAs accumulate in tumors [19]. In addition, organic small molecules
have smaller absorbance cross section than that of nanoscale materials. Thus, nanoscale
PTAs usually have higher PTCE than small molecular PTAs [22]. Moreover, the intriguing
optical features indicated that it is possible to build an integrated nanoplatform including
bioimaging modes and therapeutic functions involved by nanoscale PTAs.

Among a host of PTAs, nanoscale 2D materials are promising nanoplatforms that can
be used for diagnosing and treating cancer. Notably, 2D nanomaterials usually have high
specific surface areas, which can transport large amounts of drugs into tumors via various
pathways. Functional graphene nanomaterial was the first member of the 2D materials
family, and has been demonstrated to have a practical application in cancer studies [23,24].
With an increasing number of new members joining the 2D materials family [25–28], the
focus has turned to developing cancer therapeutic strategies based on novel 2D materials.
Transition metal dichalcogenides (TMDs) are a family of graphene analogues, comprised
more than 40 members [29], which include MoS2 [8], WS2 [26], and MoSe2 [30]. TMD
nanosheets show great promise in tumor PTT, due to their high PTCEs and strong NIR
absorption. For example, 1T phase MoS2 was demonstrated to have a thermal conversion
of 43.3% [31], while MoSe2 had a photothermal conversion of 57.9% [32].

Unlike other members of the TMD family such as MoS2 and WS2, a new member
rhenium disulfide (ReS2) is unusual, because its crystal structure has significant anisotropy.
Moreover, functional ReS2 nanosheets have great potential for biomedical studies due
to their strong NIR absorption and high PTCE. Generally, functional ReS2 nanosheets
can be prepared by both bottom-up and top-down methods. For example, using the
bottom-up method, Shen et al. [33] prepared uniform ReS2 nanosheets that were employed
for cancer photothermal radiotherapy, while Miao et al. [34] constructed colloidal ReS2
nanosheets to guide cancer photoacoustic/CT imaging and PTT using a liquid-phase
exfoliation approach. Although both cell and animal experimental data have demonstrated
the low toxicity of 2D ReS2 nanosheets, their potential toxicity in humans remains unclear.
Hematoxylin and eosin (H&E) staining of tumor and five major organ slices, including
the heart, liver, spleen, lung, and kidney, can be employed to determine the therapeutic
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outcomes and materials’ toxicity [19,35]. The evaluation of H&E stained tissue sections is
a standard in clinical diagnosis, but limited in quantitative analysis. Thus, it is critical to
develop a novel method to evaluate the cancer therapy efficiency of functional 2D materials.
Circulating microRNAs (miRNAs) are important blood-based cancer biomarkers that could
be used to evaluate cancer therapy efficiency [36,37]. Generally, miRNAs are potential
oncogenes or tumor suppressors, and changes in miRNA expression are highly correlated
with the emergence of cancer. Thus, miRNAs have been considered to be an important
molecular tool for performing non-invasive cancer prognosis. By observing changes in the
expression of blood circulating miRNAs before and after PTT, the therapeutic outcomes can
be determined. To the best of our knowledge, no studies have reported the use of miRNA
expression to characterize the therapeutic outcomes of the nanoagent-based PTT.

Herein, novel 2D ReS2 nanosheets were prepared, and their use in BC therapy was
systematically explored. As shown in Figure 1, colloidal ReS2 nanosheets were synthesized
through a liquid phase exfoliation approach. The addition of a poly-ethylene glycol
(PEG) surface modification resulted in functional ReS2 nanosheets, which proved to be
a promising PTA due to its good solubility and biocompatibility. More importantly, we
demonstrated that these functional ReS2 nanosheets could be used for in vivo breast cancer
therapy, due to their strong NIR light absorption ability at 808 nm and high PTCE of 42%. In
addition to H&E-stained tissue sections, we used miRNA expression analysis to assess the
PTT outcome from functional ReS2 nanosheets. Both up-regulation and down- regulation
miRNAs were found to be important indicators for verifying the satisfactory therapeutic
effects of PEG-ReS2 nanosheets. In summary, our work presents a novel strategy to design
high PTCE nanoagents, treat cancer, and characterize PTT outcomes, which may provide a
link between animal experiments and clinical studies.
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Figure 1. Schematic illustration of PEG−ReS2 nanosheets employed for in vivo breast cancer ther-
apy study.

2. Materials and Methods
2.1. Chemicals and Materials

The chemicals used in this study were not purified. Solutions were prepared using
deionized water with a resistivity of 18.2 MΩ/cm. N-Methyl-2-pyrrolidone (NMP, 99%,
Reagent Plus) was purchased from Sigma-Aldrich (Shanghai, China). Rhenium disulfide
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(ReS2) crystals were obtained from HQ Graphene Company (Groningen, The Netherlands).
PEG-NH2 (MW: 2000 kDa) was purchased from Shanghai Ponsure Biotech, Inc (Shanghai,
China). Cell Counting Kit-8 (CCK8) assay kits, calcein acetoxymethyl ester (AM), and
propidium iodide (PI) were purchased from KeyGen BioTech (Nanjing, China). 4T1 BC
cells were obtained from American Type Culture Collection (ATCC, Manassas, VA, USA).
Cell culture reagents such as Dulbecco’s Modified Eagle Medium (DMEM) were purchased
from Thermo Fisher SCIENTIFIC (Waltham, MA, USA).

2.2. Exfoliation and Surface Modification of ReS2 Nanosheets

ReS2 nanosheets were prepared in solvent NMP via a simple liquid-phase exfoliation
approach. Bulk ReS2 crystals (80 mg) were added to 80 mL NMP and continuously son-
icated for 10 h in an ice bath. The ultrasonic exfoliation conditions were as follows: the
operation power of the ultrasonic homogenizer was 1200 W, and the lasting time of each
ultrasound cycle was 2 s, with a 4 s break between each cycle. To remove large-sized ReS2
nanosheets, the mixture containing NMP and ReS2 nanosheets was centrifuged at 3000 rpm
for 20 min. To obtain smaller sized ReS2 nanosheets, the supernatant was centrifuged at
11,000 rpm for 30 min. Finally, the prepared ReS2 nanosheets were washed twice with
ethanol and ultrapure water, respectively.

PEGs are a class of biocompatible polymers, which can help nanoscale PTAs target
tumor. It is well known that the surface charge of cell membrane is confirmed to be
negative [38]. However, the surface charge of nanoscale PTAs functionalized by the –NH2
moiety is usually positive. Thus, the electrostatic adsorption interaction can significantly
develop uptake the behavior of cancer cells. Moreover, it has been reported that, PEG-
NH2-decorated nanoscale PTAs have shown high stability and low cytotoxicity [6,39]. The
solubility and biocompatibility of the ReS2 nanosheets under physiological conditions
were enhanced by modifying the surface of the ReS2 nanosheets with PEG-NH2. Briefly,
50 mg PEG-NH2 was added to 100 mL ReS2 nanosheet solution and continuously stirred
for 12 h. Then, the PEG-ReS2 nanosheets were centrifuged at 11,000 rpm three times to
remove excess PEG molecules. After surface modification, the PEG-ReS2 nanosheets were
re-suspended in deionized water.

2.3. Characterization of PEG-ReS2 Nanosheets

Transmission electron microscopy (TEM) imaging of the PEG-ReS2 nanosheets was
performed using a transmission electron microscope (JEM-1230 CX, JEOL Ltd., Tokyo
Japan). In addition, the Vis-NIR absorption spectra of PEG-ReS2 nanosheets ranging from
400 nm to 900 nm were acquired using a UV-VIS spectrophotometer (UV-1780, SHIMADZU,
Kyoto, Japan). Under the excitation of a 785 nm laser, the Raman spectra of the PEG-ReS2
nanosheets and bulk ReS2 crystals were measured by a confocal Raman spectrometer
(Renishaw, inVia, London, UK).

2.4. Measurement of PTCE

The PTCE of the PEG-ReS2 nanosheets was determined by examining their photother-
mal performances. PEG-ReS2 nanosheets were irradiated using a NIR laser at 808 nm
(power density, 1 W/cm2) and the heating curve of various concentrations (25, 50, 100,
200 and 400 µg/mL) of PEG-ReS2 nanosheets was measured every 30 s for 5 min. Deion-
ized water was employed as the control group. The photothermal stability of the PEG-
ReS2 nanosheets was determined by performing five heating-cooling cycles of PEG-ReS2
nanosheet solutions. The laser was turned on and the heating curve of the PEG-ReS2
nanosheet solution was monitored for 5 min. Then, the laser was turned off, and the cool-
ing curve of the PEG-ReS2 nanosheet solution was recorded every 30 s until the temperature
naturally decreased to room temperature. Using the heating-cooling curves versus time
data, the PTCE (η) of PEG-ReS2 nanosheets was determined by Equation (1) [21,40]

η =
hS∆T − Qs

I(1 − 10−A808)
(1)
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where h denotes the heat transfer coefficient, and S denotes the radiation surface area
of the quartz cell. Thus, the value of hS can be determined (Supplementary Materials,
Supplementary Equations). ∆T is the difference between the saturation temperature and
surrounding temperature. Qs represents the power absorption of the solvent. Finally,
I denotes the power density of the incident laser at 808 nm, and A808 represents the
absorbance of PEG-ReS2 colloids at 808 nm.

2.5. Cytotoxicity Assay

4T1 cells (10,000 cells/well in a 96-well plate) were cultured in DMEM at 37 ◦C in
an atmosphere of 5% carbon dioxide (CO2). A CCK-8 kit was employed to evaluate the
biocompatibility of PEG-ReS2 nanosheets. After 24-h incubation, PEG-ReS2 nanosheets (25,
50, 100, and 200 µg/mL) were added to the cultured 4T1 cells. For each concentration of
PEG-ReS2 nanosheets, six replicates were performed. After incubating for a further 24 h,
the mixture solutions were removed, and the cells were incubated with 10 µL CCK-8 and
100 µL culture medium for 1 h. The optical density (OD) value at 450 nm wavelength was
obtained using a microplate reader.

2.6. In Vitro Photothermal Therapy

4T1 cells were cultured in 96-well plates at 37 ◦C in an atmosphere of 5% CO2 for 24 h.
Next, the culture medium was replaced with various PEG-ReS2 nanosheet solutions (0,
50, 100, and 200 µg/mL). For each concentration of PEG-ReS2 nanosheets, four replicates
were performed. After 1 h of incubation with the PEG-ReS2 nanosheets, the 4T1 cells were
irradiated for 5 min using an 808 nm laser (1 W/cm2). Then, the 4T1 cells were incubated
with CCK-8 solution for one hour. The cell viability of the 4T1 cells was measured by
microplate reader.

To visually evaluate the PTT outcomes of PEG-ReS2 nanosheets, the live/dead cell
double staining kit was employed. After the 808 nm laser irradiation for 10 min, live/dead
4T1 cells were incubated for 30 min by both calcein acetoxymethyl ester (2 µM) and
propidium iodide (8 µM) solutions. Then, the cells samples were imaged by a Nikon A1R
MP system.

2.7. Animal Experiments

Animal experiments were performed in accordance with the guidelines of the Animal
Ethical and Welfare Committee of Shenzhen University (AEWC-SZU). Healthy BALB/c
mice were purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd.
(Beijing, China). Thirty-six healthy female mice (approximately 20 g) were selected for the
in vivo PTT experiments. Previous studies [27,41] have reported subcutaneous injection
of 4T1 cells into the hind limbs of mice to study in vivo PTT on BC cells. However, this
method does not allow the therapeutic outcomes of BC to be properly evaluated. Thus,
we constructed a reliable breast tumor model, by subcutaneously injecting approximately
5 × 105 of 4T1 cells into the left breast pad of the mice. Afterwards, both the tumor size
and weight of each mouse were recorded during the tumor growth process.

2.8. In Vivo Photothermal Therapy

When the tumor volume of the mice reached 80 mm3, the mice were randomly divided
into four groups (nine mice in each group): (Group 1) PBS; (Group 2) NIR; (Group 3) ReS2;
(Group 4) ReS2 + NIR. The tumors of both Group 1 and Group 2 mice were injected with
100 µL PBS, while the tumors of Group 3 and Group 4 mice were injected with 100 µL
PEG-ReS2 nanosheet solution (2 mg/mL). After 1 h, the mice in Group 2 and Group 4 were
anesthetized, and their tumors were irradiated using a NIR 808 nm laser (0.5 W/cm2) for
10 min. During PTT, an infrared thermography was employed to record the temperature of
the tumor surface. On the second day, one mouse from each group was randomly selected,
sacrificed and tumor slices were prepared. The tumor volume was measured every 2 days
for a total of 30 days in the remaining mice. On day 14, mice in Group 1, Group 2 and
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Group 3 presented with large tumor volumes and had to be sacrificed. Both the tumor and
vital organs including the heart, liver, spleen, lung, and kidney were collected, and tissue
slices were prepared and stained with H&E. On day 30, the same procedure was performed
on Group 4 mice.

2.9. In Vivo Toxicity Analysis

To perform the in vivo toxicity analysis of PEG-ReS2 nanosheets, two healthy BALB/c
mice were injected with 100 µL PEG-ReS2 (6 mg/mL in water) via the tail vein. Two healthy
mice in the Control group were injected with 100 µL PBS solution via the tail vein. Two
months post-injection, the five major organs, including heart, liver, spleen, lung, and kidney
were collected and H&E-stained tissue sections were prepared.

2.10. Optical Imaging of Tissue-Stained Sections

H&E-stained tissue slices including tumors and organs were examined using a Nikon
microscope equipped with a 20× objective lens. In addition, fluorescence lifetime images
were obtained using a fluorescence lifetime imaging microscopy (FLIM) system with a
100× objective lens. The TE-2000U (Nikon, Tokyo, Japan) microscope was equipped with a
time-correlation single photon counting module DCS120 (Becker & Hickl GmbH, Berlin,
Germany).

2.11. miRNA Expression Profiling

To perform miRNA expression analysis, three healthy BALB/c mice were selected
as blank controls. In addition, three mice were selected from Group 1 (PBS) and Group 4
(ReS2 + NIR), and divided into non-therapy and therapy groups, respectively. On day 14
post-treatment, blood samples were collected via submandibular bleeding. Then, serum
was extracted by centrifuging the blood samples at 3000× g for 5 min.

The serum samples were mixed with Trizol (Thermo Fisher Scientific, Waltham, MA,
USA), and total RNA was extracted using a Direct-zolTM RNA MiniPrep kit (ZYMO Re-
search). Clean sequencing reads were obtained using deep sequencing technology (Huada
Gene, Shenzhen, China). In addition, Bowtie was used to map clean reads to the reference
genome and to other sRNA databases [41]. Next, miRDeep2 was employed to predict
novel miRNAs by exploring the characteristic hairpin structure of the miRNA precur-
sor [42]. Small RNA expression levels were calculated using Transcripts Per Kilobase
Million (TPM) [43]. The TPM method eliminates the influence of sequencing discrepancy
on the calculation of small RNA expression levels. Differentially expressed gene (DEGs) se-
quences were counted based on a Poisson distribution using previously reported strategies
to correct p-values to Q-values [44]. In order to improve the accuracy of DEGs, we defined
genes with fold change > 2 and Q-value ≤ 0.001 as significant DEGs [45].

3. Results and Discussion

As a new member of the TMD family, ReS2 crystals are a van der Waals (vdW) layered
material, with weak vdW interactions between the stacking layers, making it possible to
exfoliate 2D ReS2 nanosheets via external force. Figure 2a shows the liquid-phase exfoliation
strategy used for preparing 2D ReS2 nanosheets. The probe sonication approach and ice-
bath conditions were used to exfoliate 2D ReS2 nanosheets from bulk ReS2 crystals in liquid
NMP. PEG was used to coat the surface of ReS2 nanosheets to improve their solubility
and biocompatibility. With the help of this surface modification, the PEG-ReS2 nanosheets
showed good dispersibility. The PEG-ReS2 nanosheets were further characterized by TEM
and Raman spectroscopy (Figure 2b,c). The average size of the PEG-ReS2 nanosheets was
20–30 nm, which would allow entry into living cells via the endocytosis method [46,47].
In addition, Raman spectroscopy was employed to determine the chemical composition
of the PEG-ReS2 nanosheets. Two Raman peaks located at 153.9 cm−1 and 164.4 cm−1

were attributed to the in-plane vibrational mode, and a Raman band at 214.2 cm−1 was
attributed to the out-of-plane vibrational mode [48,49]. Unlike other TMDs, PEG-ReS2
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nanosheets showed strong absorption in the NIR region (Figure 2d). A typical band located
at 834 nm was observed, indicating that PEG-ReS2 nanosheets had significant capability of
absorbing NIR photons.
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Figure 2. (a) Preparation strategy of PEG-ReS2 nanosheets. (b) TEM image of PEG-ReS2 nanosheets.
(c) Raman spectrum of bulk ReS2 and PEG-ReS2 nanosheets. (d) Absorbance spectra of PEG-ReS2

nanosheets at various concentrations (12.5, 25, 50, 100 µg/mL). (e) Photothermal heating curves
of PEG−ReS2 nanosheets in water at various concentrations (0, 25, 50, 100, 200, 400 µg/mL). The
irradiation laser was 808 nm, with a power density of 1 W/cm2 and an irradiation time of 5 min.
(f) Photothermal heating and cooling curves of 100 µg/mL PEG-ReS2 nanosheets in water were
obtained from five laser on/off cycles. The irradiation laser was 808 nm, with a power density of
1 W/cm2. Within each heating-cooling cycle, the laser was turned on for 5 min. When the laser was
turned off, the temperature of the PEG-ReS2 nanosheets in water cooled down to room temperature
before the laser was turned on again. (g) Plots of linear fitting cooling time versus negative natural
logarithm of driving force temperature based on the heating and cooling curves in Figure 2f. The
time constant (τs) of heat transfer is 359.05, and the PCE of PEG-ReSe2 nanosheets can be calculated
to be 42%.

To further examine the photothermal properties of PEG-ReS2 nanosheets, three impor-
tant factors (PTCE, photothermal stability, and biocompatibility) were systemically studied.
Various concentrations (25, 50, 100, 200, and 400 µg/mL) of PEG-ReS2 nanosheets in water
were exposed to laser irradiation at 808 nm for 5 min, and the photothermal heating curves
were measured. As shown in Figure 2e, the PEG-ReS2 nanosheets produced a significant
photothermal effect. Moreover, the photothermal effect was highly correlated with the
concentration of PEG-ReS2 nanosheets. For example, in 200 µg/mL PEG-ReS2 nanosheets,
a temperature increment of 42.2 ◦C was observed in 5 min, while a temperature increment
of only 0.1 ◦C was observed in deionized water. These findings indicated that PEG-ReS2
nanosheets have the ability to rapidly absorb NIR photons and generate efficient thermal
energy. In addition, the photothermal stability of PEG-ReS2 nanosheets was evaluated by
performing five photothermal heating-natural cooling cycles. As shown in Figure 2f, PEG-
ReS2 nanosheets maintained good photothermal stability after five heating-cooling cycles,
indicating that the PEG-ReS2 nanosheets have the potential to be used as PTAs. Based on
Equation (1), the PTCE of the PEG-ReS2 nanosheets was approximately 42% (Figure 2g),
which was relatively high compared to other commercial Au nanoshells (13%) [13], Au
nanorods (21%) [13], Cu9S5 Nanocrystals (25.7%) [50], and BP QDs (28.4%) [6].

Nanomaterials that are employed for PTT must have good biocompatibility. Thus,
the cytotoxicity of PEG-ReS2 nanosheets was evaluated using CCK-8 assays to determine
the effects of PEG-ReS2 nanosheets on cell viability. No significant cytotoxic effects were
observed when various concentrations of PEG-ReS2 nanosheets were incubated with 4T1
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cells for 24 h in the absence of 808 nm laser irradiation (Figure 3a). Even after incubation
with the highest concentration (200 µg/mL) of PEG-ReS2 nanosheets, normal 4T1 cell
growth was observed, indicating that PEG-ReS2 nanosheets have good biocompatibility,
which is necessary for biomedical applications. We also examined the in vitro PTT of
4T1 cells by incubating 4T1 cells with various concentrations of PEG-ReS2 nanosheets (0,
25, 50, 100, and 200 µg/mL) for 1 h, then irradiating cells with an 808 nm laser (powder
density, 1 W/cm2) for 5 min. As shown in Figure 3b, significant 4T1 cell death was
observed at concentrations of PEG-ReS2 nanosheets higher than 100 µg/mL, while exposure
to 200 µg/mL PEG-ReS2 nanosheets alone was not toxic to 4T1 cells. To visualize the
PTT effects from PEG-ReS2 nanosheets, treated 4T1 cells were co-stained by both calcein
acetoxymethyl ester and propidium iodide solutions. Calcein acetoxymethyl ester can emit
green fluorescence in live cells, while propidium iodide is a red fluorescent nucleic acid
stain permeating only the damaged cells. Under various treatments (Control, NIR, ReS2,
and ReS2 + NIR), the 4T1 cells were imaged, as shown in Figure 3c. It can be found that
there are no dead cells in the three groups (Control, NIR, and ReS2), and the 4T1 cells still
show high cell viability. However, almost all the 4T1 cells were killed by the PTT effects
from PEG-ReS2 nanosheets. Thus, our findings suggest that the significant cell death was
due to the excellent photothermal effects of the PEG-ReS2 nanosheets.
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Figure 3. (a) Relative 4T1 cell viabilities after incubation with various concentrations of PEG-ReS2

nanosheets (0, 25, 50, 100, 200 µg/mL) for 24 h. (b) Relative 4T1 cell viabilities after incubation with
various concentrations of PEG-ReS2 nanosheets (0, 25, 50, 100, 200 µg/mL) and irradiation with an
808 nm laser (1 W/cm2) for 5 min. (c) Confocal images of treated 4T1 cells (Control, NIR, ReS2, and
ReS2 + NIR) co-stained by calcein AM (green fluorescence) and PI (red fluorescence) solutions.

Next, we examined the effects of the PEG-ReS2 nanosheets in our in vivo PTT model.
We constructed an orthotopic breast tumor model by subcutaneously injecting 4T1 cells
into the breast pad of BALB/c mice. When the tumors reached a size of approximately
80 mm3, the tumor-bearing mice were divided into four groups: (Group 1) Control; (Group
2) NIR; (Group 3) ReS2; and (Group 4) ReS2 + NIR. Group 1 and Group 2 mice were
intratumorally injected with 100 µL PBS solution, while Group 3 and Group 4 mice were
intratumorally injected with 100 µL PEG-ReS2 (2 mg/mL) nanosheet solution. Group 2 and
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Group 4 mice were anesthetized and their tumor sites were treated with an 808 nm laser
(0.5 W/cm2) for 10 min. During the PTT process, the real time temperature at the tumor
sites was instantaneously recorded by infrared thermography (Figure 4a). During the
10-min laser treatment, the temperature at the Group 2 tumor sites increased from 32.6 ◦C
to 41.7 ◦C, an increment of 9.1 ◦C. However, in Group 4 mice, the real time temperature at
the tumor sites increased significantly from 35.5 ◦C to 64.6 ◦C, a temperature increment of
29.1 ◦C (Figure 4b). Previous studies have reported that [51] tumor cells can be ablated at
temperatures higher than 48 ◦C in 5 min, due to the high temperature producing irreversible
cell death of the tumor tissue. In the present study, our findings indicated that the high
temperature generated by PEG-ReS2 nanosheets efficiently ablated the breast tumor after
10 min of PTT. The phototherapy outcome was preliminarily evaluated by investigating
the H&E stained tumor slice images one day after treatment. As shown in Figure S1, the
tumor tissue in Group 4 mice was seriously damaged and burned after exposure to the
high temperature. Moreover, H&E staining of the Group 4 tumor slices revealed that the
cell nuclei were broken and smaller than the normal morphology observed in the tumor
slices from the other three groups (Figure 4c).
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Figure 4. In vivo photothermal therapy. (a) Infrared thermal images of tumor-bearing mice injected
with PBS and PEG-ReS2, respectively. The power density of the 808 nm laser was 0.5 W/cm2, and
the irradiation time was 10 min. (b) The temperature curves at the tumor site according to Figure 4a.
(c) Representative images of the H&E-stained tumor slices from four experimental groups one day
after PTT treatment. (d) After PTT, the relative tumor volume of tumor-bearing mice was measured
in the four experimental groups (8 mice in each group) every two days. (e) At day 14, tumors were
obtained from three randomly selected mice from each group for comparison. Tumors in the ReS2

+ NIR group were ablated, while tumors in the other groups were still large in size. (f) The body
weight of the tumor-bearing mice from four experimental groups was measured.
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The tumor volume of tumor-bearing mice was measured every 2 days for 14 days
following PTT treatment. As shown in Figure 4d, after PTT treatment the tumors in Group
4 mice rapidly shrank, and had disappeared by day 14. Compared with the other three
groups, the Group 4 tumor size was significantly smaller (Figure 4e). H&E staining of
the five major organs (hearts, liver, spleen, lungs, and kidney) indicated that there was
no obvious organ damage, tumor metastasis, and visible inflammation (Figure S2). These
observations also confirmed that PEG-ReS2 nanosheets had low in vivo toxicity and a
satisfactory therapeutic outcome. It is worth noting that all the mice in the other three
groups were euthanized on the 14th day, due to the large sizes of their tumors (Figure S3).
The rapid growth of the tumors in the other three groups indicated both laser irradiation
treatment alone or PEG-ReS2 nanosheet treatment alone did not efficiently inhibit tumor
growth. Finally, we found that the PTT treatment involving the PEG-ReS2 nanosheets had
no significant effect on the body weight of tumor-bearing mice (Figure 4f). Taken together,
our findings confirm that PEG-ReS2 nanosheets have the potential to act as promising PTAs,
which can be used to ablate tumors in vivo.

Next, we confirmed low in vivo toxicity of PEG-ReS2 nanosheets through the intra-
venous injection method. Two healthy BALB/c mice were injected with 100 µL PEG-
ReS2 nanosheets (6 mg/mL in water) via the tail vein. Two months later, the PEG-ReS2
nanosheets were found to accumulate in the major organs via blood circulation. However,
H&E staining revealed no significant organ damage or visible inflammation due to the
accumulation of PEG-ReS2 nanosheets (Figure 5a). Moreover, changes in the tissue and
cells’ microenvironment were examined by extracting fluorescence lifetime changes by
FLIM [52] (Figure 5b). No obvious differences in the lifetime distributions of the control
group and toxicity group were observed, further highlighting the low In vivo toxicity of
PEG-ReS2 nanosheets.
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injection. Note that the pseudo-color scale bar in Figure 5b represents the lifetime distribution interval
from 100 to 900 ps.
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miRNA expression analysis was performed to further evaluate the therapeutic out-
come of PEG-ReS2 nanosheets. Changes in miRNA expression levels usually correspond to
tumor generation or shrinkage. Thus, miRNA expression levels are important indicators for
screening cancer treatments. As shown in Figure 6a, significant changes in the expression
levels of a total of 278 miRNAs were observed when comparing the non-therapy (PBS
treatment alone), therapy (ReS2 + NIR), and healthy groups. Significant changes in miRNA
expression levels were observed during BC tumor development including up-regulation of
131 miRNAs and down-regulation of 21 miRNAs in mice suffering from BC (non-therapy
group) compared to healthy mice. In addition, 131 up-regulated miRNAs and 24 down-
regulated miRNAs were found in the therapy group compared to healthy mice. Finally, 72
miRNAs were up-regulated and 76 miRNAs were down-regulated in the PEG-ReS2-based
PTT therapy group compared to the non-therapy group. As shown in Figure 6b, almost
half of the DEGs can be found in at least two groups. Furthermore, approximately 16 DEGs
were simultaneously found in all three study groups, indicating that these 16 DEGs may be
involved in the PTT process. The DEGs cluster heatmaps shown in Figure 6c indicate that
each BALB/c mouse in the healthy group could not be clustered with the BALB/c mice in
the non-therapy group. In addition, there was no obvious correlation between the BALB/c
mice in the therapy group and the BALB/c mice in the non-therapy group. These heatmaps
revealed that the miRNA expression levels in the non-therapy group were distinct from
both the healthy and therapy groups. Interestingly, the right heatmap indicated that the
miRNA expression in the therapy group was similar to that observed in the healthy group,
especially for sample therapy-1. Thus, our data suggest that some miRNA expression
patterns in tumor-bearing mice return to normal levels after PEG-ReS2-based PTT.

In order to evaluate the similarity of the whole miRNA expression levels among non-
therapy, therapy, and healthy groups, Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis were performed, providing data as shown in Figure 6d,e. Compared
to the non-therapy group, 76 miRNAs were down-regulated in the therapy group, while
131 miRNAs were down-regulated in the healthy group as shown in Figure 6a. Among
the union of these miRNAs, 79 miRNAs were further subtracted by using KEGG analysis,
which were shown as in Figure 6d. Similarly, compared to the non-therapy group, 72 genes
up-regulated miRNAs in the therapy group and 21 genes up-regulated miRNAs in healthy
group were also analyzed, generating Figure 6e. The whole miRNA expression levels
of Figure 6d revealed a high similarity between the non-therapy group and the healthy
group, which indicates a recovery of the tumor-induced expression after PEG-ReS2-based
PTT in mouse models. Typical miRNAs, which are highly correlated with cancer based
on the KEGG pathway analysis, were identified based on the human miRNA database
(Figure S4). KEGG enrichment analysis revealed that many of these down-regulation
miRNAs including miR-125a-5p [53,54], miR-34a-5p [55], miR-132-3p [56], and miR-148b-
3p, were BC biomarkers highly correlated with PEG-ReS2-based PTT. In addition, we
found 37 up-regulation miRNAs (Figure 6e and Figure S5), including miR-133a-3p [57,58],
miR-200c-5p, miR-9-3p, and miR-150-3p, which were also highly correlated with PEG-ReS2-
based PTT. These findings indicated that both up-regulation and down-regulation miRNAs
involved in BC were important biomarkers for assessing the therapeutic outcomes of a
PTT treatment based on PEG-ReS2 nanosheets. Thus, miRNA expression level analysis
can provide a new insight into evaluating the therapeutic outcomes of low dimensional
nanomaterials-based cancer therapy.
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Figure 6. miRNA expression analysis. (a) Statistical analysis of differentially expressed genes (DEGs)
from non-therapy vs. healthy group, therapy vs. healthy group, and therapy vs. non-therapy group,
respectively. (b) Plot showing the differentially expressed genes from two different groups in the
non-therapy group, therapy group, and healthy group. (c) DEGs cluster heatmaps showing healthy
group vs. non-therapy group, therapy group vs. non-therapy group, and healthy group vs. therapy
group, respectively. (d) The down-regulated miRNAs caused by PEG-ReS2-based PTT in non-therapy
group, therapy group, and healthy group, respectively. (e) The up-regulated miRNAs caused by
PEG-ReS2-based PTT in non-therapy group, therapy group, and healthy group, respectively.
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4. Conclusions

In this study, we successfully constructed promising colloidal PEG-ReS2 nanosheets,
which can be used for In vivo BC therapy. The PEG-ReS2 nanosheets had a strong ab-
sorbance band at 834 nm, indicating that they possessed strong NIR light absorption
capability. In addition, the PEG-ReS2 nanosheets had good solubility and low toxicity.
Moreover, the PEG-ReS2 nanosheets possessed a high PTCE of 42% after irradiation with an
808 nm laser. More importantly, the PEG-ReS2 nanosheets were found to promote cell death
in vitro in 4T1 BC cell lines and ablate in vivo tumors through remarkable photothermal
effects. In addition to the examination of H&E stained tissue slices, the miRNA expres-
sion analysis method was employed to evaluate the therapeutic outcomes of PEG-ReS2
nanosheets. It can be expected that the PEG-ReS2 nanosheets may be a promising PTA for
future BC therapy. The miRNA expression level analysis provided a novel insight into
evaluating the therapeutic outcomes of PEG-ReS2 nanosheets through molecular biology
mechanisms. Both down-regulated miRNAs (miR-125a-5p, miR-34a-5p, miR-132-3p, and
miR-148b-3p) and up-regulated miRNAs (miR-133a-3p, miR-200c-5p, miR-9-3p, and miR-
150-3p) were important biomarkers for confirming good therapeutic outcomes of PEG-ReS2
nanosheets. The proposed PEG-ReS2 nanosheets showed great promise in cancer ther-
apy, and miRNA expression level analysis could potentially provide a whole assessment
for the therapeutic effect of low-dimensional nanomaterials-based cancer therapy in the
mouse model as well as a comparison with the miRNA profiling data from clinical breast
cancer cases.
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mice in non-treated group the 14-th day after PTT. Figure S4: The KEGG pathway enrichment
analysis on the down-regulated miRNAs. Figure S5: The KEGG pathway enrichment analysis on the
up-regulated miRNAs.
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