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Abstract: Singularities of the Poynting vector field subwavelength patterns in resonant light scattering
by nanoparticles are discussed and classified. There are two generic types of the singularities, namely,
(i) the singularities related to the vanishing of the magnetic (and/or electric) field at the singular
points and (ii) the singularities related to the formation of standing waves in proximity to the singular
points. The connection of these types of singularities to the topology of the singular points, space
dimension (3D vs. 2D), and energy conservation law are revealed. In particular, it is shown that in
2D cases in non-dissipative media, the energy conservation reduces the possible types of generic
singular points to saddles and centers only. In 3D cases, a universal expression connecting different
components of the Poynting vector and valid for any generic singularities is derived and numerically
checked for various types of singular points.

Keywords: mie resonances; nanoparticles; near wave zone; Poynting vector field; singularities

1. Introduction

In addition to the purely academic interest, the structure of the electromagnetic field in
the immediate vicinity of a nanoparticle irradiated by a laser beam is of utmost importance
for numerous nanomaterial science problems, see, e.g., [1–7] and references therein. It is
known that the topological structure of the Poynting vector field in resonant light scattering
by nanoparticles may be complicated. Specifically, the near-field wave zone may include
singular points of different types [8–11]. The eigenvalues (roots of the characteristic equa-
tions) of a singular point completely determine the topological structure of the Poynting
vector field in the proximity of this point [12], while the spatial position of given singular
points determines the global topological structure of the field as a whole. For these reasons,
singularities are essential in understanding any vector field’s structure. This is especially
true in the case of the Poynting vector, since the corresponding field describes the energy
flow, while the direct experimental measurement of this flow at the nanoscale resolution is
a very challenging task.

At present, studies of singularities in electromagnetic fields constitute a separate
discipline called singular optics. The results of these studies are presented in a vast collection
of research papers, reviews, book chapters, and monographs; see, e.g., [12–17]. A detailed
Poincaré-type classification of the Poynting vector field’s singular points was made by
Novitsky and Barkovsky [12]. Authors of further publications were basically focused on the
study of singularities in more complicated cases, such as, for example, in a non-diffractive
tractor beam [15].

Meanwhile, some fundamental questions related to peculiarities of singular points
in subwavelength patterns at the resonant scattering of a monochromatic plane linearly
polarized electromagnetic wave by simple objects, such as a spatially uniform nanosphere
or right circular cylinder, remain open. The goal of this paper is to answer several of these
questions. Specifically, we inspect how, in these cases, the singularities of the Poynting
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vector field are related to the topological structure of the E and H fields, dimension of space,
energy circulation, and energy conservation law.

2. Methods

We discuss the scattering of a plane linearly polarized monochromatic electromagnetic
wave with the temporal dependence of the fields∼ exp(−iωt) by a homogeneous sphere of
radius R or a right infinite circular cylinder with the base radius R. The scattering particles
are non-magnetic, so their permeability µ = 1. We employ an analytical study of the vector
Poynting field lines (streamlines) in the vicinity of a generic singularity supplemented by
the energy conservation law. General arguments are illustrated by a detailed discussion of
several specific cases. Their analysis is based on the exact solutions to the related problems;
see, e.g., [18]. The symbolic calculations and visualization of the results are made with the
help of the Wolfram Mathematica software.

3. Results and Discussion
3.1. Sphere

For the time being, we use the term singularity in its geometric meaning only, i.e., apply-
ing it to a point where the Poynting vector streamlines asymptotically merge or intersect. To
begin with, we discuss the scattering by a subwavelength sphere. Following conventional
notations [18], we suppose that the sphere’s center is the origin of the coordinate frame;
the incident wave propagates along the positive direction of the z-axis, and its vector
E oscillates along the x-axis. The symmetry of the problem requires the plane xz to be
invariant for the streamlines. Moreover, the calculations show that, for the problem in
question, all singular points belong to this plane [8–11]. Then, it seems that the analysis
of singularities in the plane is sufficient. In this case, we have only four generic types of
singularities: a saddle, node, focus, and center.

Next, for a saddle, the streamlines corresponding to the stable and unstable manifolds
intersect at the singular point. In the case of a focus or node, all streamlines asymptotically
merge in (for stable) or emerge from (for unstable) the singularity. Since, by definition,
the Poynting vector is tangential to its streamlines, the intersection or merging of the
streamlines means that the direction of the Poynting vector in a saddle, node, or focus is
not uniquely defined. The same conclusion is valid for a center-type singular point: in its
proximity, the streamlines are closed ellipses whose diameters vanish as one approaches
the singularity.

An undefinable vector direction at a certain point is consistent with the nature of a
vector field if, and only if, the vector vanishes at this point. Thus, the Poynting vector must
vanish at the singular points. Then, seemingly, in the most interesting cases of foci (optical
vortices) or nodes, we encounter a violation of the energy conservation law. Indeed, by
definition, streamlines indicate the direction of the energy flow. Therefore, in the case of a
stable focus or node, electromagnetic energy must accumulate at the singular point. This
accumulation either is inconsistent with any fixed pattern of the scattered field, or there
should be a sink for the energy flow directed to the singularity. The flow is inverted for an
unstable singularity. Therefore, instead of a sink, a source is required in this case.

We readily resolve the paradox by recalling that our space is three-dimensional (3D).
The employed problem formulation (a scattering particle embedded in an infinite ambient
medium or vacuum; the incident wave comes from infinity, and the scattered radiation
goes to infinity) is physically meaningful, provided the ambient medium is non-dissipative.
In such a medium, the divergence of the Poynting vector must identically equal zero [19].

Suppose we have a 2D stable singularity in the invariant plane outside the scattering
sphere. Then, the vanishing divergence requires that in 3D, there must be an unstable
manifold in the transversal direction. The unstable focus (node) must have a stable manifold
in a transversal direction.

To prove the above reasoning quantitatively and to show that, in addition to the
discussed geometric meaning, the condition S = 0 determines the Poincaré-type singulari-
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ties in a phase space of equations describing the streamlines, we have to explicitly obtain
these equations. To this end, it is convenient to present the streamlines in the following
parametric form: r = r(t), where t plays the role of effective time [12]. Then, the “velocity”,
dr/dt should be tangential to the “trajectory” (streamline), i.e., parallel to the direction of
S(r(t)) at the same point of the streamline. Thus, the equation governing the “dynamics”
of the streamlines should be as follows:

S0

c
dr
dt

= S(r), (1)

where S0 and c are arbitrary constants with the proper dimensions. In what follows, we
suppose them to be equal to the intensity of the incident wave and the speed of light,
respectively.

Equation (1), written in components, splits into three coupled equations for x, y, and z.
The conditions determining their nullclines are as follows: Sx,y,z = 0. At singular points of
Equation (1) all three conditions Sx,y,z = 0 should simultaneously hold, i.e., the Poynting
vector should vanish. That is to say, the geometric and Poincaré criteria for singular points
give rise to identical results.

In further analysis, it is convenient to introduce dimensionless variables. Convention-
ally, the natural spatial scale for the problem is the wavelength of the incident radiation.
Accordingly, the corresponding coordinate scale transformation would be rnew = kr, where
k = ω/c is the wavenumber of the incident wave. However, here we are interested in
subwavelength patterns. Then, in our case, it is more convenient to normalize the spatial
variables on the radius of the scattering sphere, R, i.e., to perform the scale transformation
rnew = r/R. Similarly, tnew = tc/R and Snew = S/S0. Since below, only the dimensionless
quantities will be employed, the index new will be dropped.

Bearing in mind that the plane y = 0 is invariant, i.e., in this entire plane Sy = 0;
shifting the origin of the coordinate frame to the singularity, and expanding S(r) in powers
of small r; we obtain that, in the vicinity of the singularity, the streamlines are defined by
the following equations:

dx
dt

= Sx(x, y, z) ≈ sxxx + sxyy + sxzz, (2)

dy
dt

= Sy(x, y, z) ≈ syyy, (3)

dz
dt

= Sz(x, y, z) ≈ szxx + szyy + szzz, (4)

where snm =
(

∂Sn
∂xm

)
sin

, and subscript sin means that the derivatives are taken at the sin-
gular point. Here, Sn and xm stand for any of the three components of vectors S and r,
respectively. Note that the condition div S = 0 imposes the following connections between
coefficients snm:

sxx + syy + szz = 0. (5)

Looking for a solution to Equations (2)–(4) in the form xm = constmeκt (where, as
before, xm stands for any coordinate x, y, z), and equalizing the determinant of the resulting
linear algebraic equation to zero, we obtain a cubic characteristic equation. The latter
splits into a detached equation κ = syy, following from Equation (3), and a quadratic one,
following from Equations (2) and (4). Finally, this procedure gives rise to

κ1 = −2γ; κ2,3 = γ± α, (6)

where we have introduced the following notations:

α =

√
(sxx − szz)2 + 4sxzszx

2
; γ =

(sxx + szz)

2
≡ −

syy

2
, (7)
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see also Equation (5).
Equations (2)–(4) are exactly integrable, but the corresponding expressions are cumber-

some. For this reason, below, only the solution describing the streamlines in the invariant
plane y = 0 is presented. It has the following form:

x(t) = eγt
[

2c2sxz + c1(sxx − szz)

2α
sinh αt + c1 cosh αt

]
, (8)

z(t) = eγt
[

2c1szx + c2(szz − sxx)

2α
sinh αt + c2 cosh αt

]
, (9)

where c1,2 are arbitrary constants of integration. According to the implemented normaliza-
tion procedure, all quantities in Equations (8) and (9) are dimensionless.

At (sxx − szz)2 + 4sxzszx > 0 all κ1,2,3 are real. In the invariant plane, this case corre-
sponds either to a saddle (|γ| < |α|) or a node (|γ| > |α|). For the latter, the signs of κ1 and
κ2,3 are always opposite; see Equation (6). This means that a stable 2D node (κ2,3 < 0) is un-
stable in y-direction and vice versa, in full agreement with the above qualitative reasoning.

At (sxx − szz)2 + 4sxzszx < 0 eigenvalues κ2,3 are complex, i.e., in the invariant plane,
the singularity is a focus. It is stable at γ < 0 and unstable at the opposite sign of γ.

Note that y(t) = const · exp(−2γt); see Equations (3), (6) and (7). Thus, as pointed
out above, the singularity, which, in the invariant plane, is a focus, in 3D is a focus-saddle.
Moreover, a stable 2D focus has an unstable manifold in the y-direction, while an unstable
focus has a stable y-directed manifold. In both cases, the index in y-direction (−2γ) has the
opposite sign and twice as much modulus as that for the expansion (contraction) index for
the streamlines in the invariant plane (γ).

To illustrate the above results, the streamlines of the Poynting vector superimposed
with the density plots of ln |S|2, ln |E|2, and ln |H|2 are presented in Figure 1. The plots
correspond to the following values of the problem parameters: q = 0.3; ε = −2.17. Here,
the size parameter q = kR = 2πR/λ; and λ stands for the wavelength of the incident wave.
The selected value of ε lies close to the dipole resonance point (at q = 0.3, the maximum
of the dipole resonance line is situated at ε ≈ −2.22) and approximately corresponds to
aluminum at λ ≈ 142 nm [20]. The color bars in Figure 1 designate the values of ln |S|2,
ln |E|2, and ln |H|2, where the fields are normalized on the corresponding quantities in the
incident wave. The surface of the scattering sphere is shown as a green circle. Considerable
enhancement of |S|2, |E|2, and |H|2 in the vicinity of the particle is explained by the
accumulation of radiation from large downstream area and its transport to the particle
(funnel effect [21,22]).

Figure 1. Light scattering by a sphere in a vacuum. Streamlines for the Poynting vector field and the
logarithm of the square of the modulus of the Poynting vector (a), electric (b), and magnetic (c) fields
in the invariant plane passing through the sphere’s center and coinciding with the plane of vector
E oscillations. q = 0.3, ε = −2.17. The pattern is symmetric with respect to the line x = 0. Crosses
marked with numbers are the positions of singular points. Points 4 and 5 are foci; the rest are saddles.
|S|2 = 0 at all singular points. The foci and saddles are the H-field-induced and polarization-induced
singularities, respectively. See text for details.
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We recall that the spatial scale in the figures is normalized on R. Therefore, since
λ = 2πR/q ≈ 20.9R, at the given value of the size parameter, the patterns presented in the
figure are essentially subwavelength. These patterns indicate that:

(i) |S| does vanish at all singular points;
(ii) S vanishes at the foci owing to vector H vanishing;
(iii) in contrast, at the saddle-type singular points neither E nor H turn to zero.

Case (iii) is explained by forming a standing wave in the vicinity of the saddle-type
singularities. Indeed, a saddle has a stable manifold. This manifold attracts the Poynting
vector streamlines so that, in proximity to the singular point, they are directed toward the
singularity, i.e., in strictly opposite directions at the opposite sides of the latter. In other words,
two counter-propagating traveling waves are formed. The problem’s symmetry requires the
equality of the amplitudes of these waves at the singularity. The same arguments are valid
for the unstable manifold. Then, though the amplitudes of each of the counter-propagating
waves at the singularity remain finite, the Poynting vector vanishes, which agrees with
Figure 1a. Importantly, the scale of the region with the counter-propagating energy flows,
in this case, is much smaller than the wavelength of the incident radiation. Following the
notations of Ref. [12] we will call the (ii)- and (iii)-type singularities as field-induce and
polarization-induced, respectively.

The above arguments make it possible to estimate the in-plane and transversal com-
ponents of the Poynting vector in the vicinity of a singular point. To this end, we shift the
origin of the coordinate frame to the singular point in question and embed it in a right
circular cylinder whose base is parallel to the invariant plane so that the singularity lies in
the middle of the height of the cylinder. Let small 2|y| and r be the height of the cylinder
and its base radius, respectively. The total flux of the Poynting vector through the surface
of the cylinder must be zero. This gives rise to the following equality:

2πr2|〈Sy〉| = 4πr|y〈Sr〉|, (10)

where 〈Sy,r〉 designate the mean values of the corresponding components of S at its bases
(〈Sy〉) and side wall (〈Sr〉).

Bearing in mind that, according to Equation (3), 〈Sy〉 ≈ syyy, Equation (10) results in
the following estimate connecting the mean radial components of the Poynting vector with
the y-derivative of its y-component: ∣∣∣∣ 〈Sr〉

syy

∣∣∣∣ ≈ r
2

. (11)

Note that the r.h.s of Equation (11) is universal and does not depend on the type of singularity.
We numerically checked the validity of expression (11) for all singularities presented

in Figure 1, supposing y = 0.1 and r varying from 0.001 to 0.2. The calculations show that,
at the same values of r, the numerical values of 〈Sr〉 and syy for the foci and saddles are
quite different; however, for all these singularities, condition (11) holds with high precision.

3.2. Cylinder

In the case of light scattering by an infinite cylinder, the field pattern is two-dimensional
(2D). Let us discuss how the dimension of the pattern affects singular points. Following
the conventional problem formulation [18] we chose the coordinate frame with the z-axis
coinciding with the cylinder’s axis and wave vector of the incident wave antiparallel to the
x-axis; see Figure 2.

Then, under the assumptions mentioned above, instead of Equations (2)–(4) we obtain
the following set of equations, describing 2D streamlines:

dx
dt

= Sx(x, y, z) ≈ sxxx + sxyy, (12)

dy
dt

= Sy(x, y, z) ≈ syxx + syyy. (13)
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Figure 2. Mutual orientations of the cylinder and k, E, H vectors of the incident wave. TE polarization
(a), TM polarization (b).

To begin with, we discuss the singularities outside the cylinder. In this case, the
condition div S = 0 requires that

sxx + syy = 0. (14)

We note that all quantities in Equations (12)–(14) are dimensionless.
Bearing in mind Equation (14), we obtain the set of the eigenvalues of Equations (12)

and (13)

κ1,2 = ±
√

s2
xx + sxysyx . (15)

Thus, the only possible types of non-degenerate singular points in this case are saddles
at s2

xx > sxysyx, or centers at s2
xx < sxysyx. The equations describing the corresponding

streamlines are as follows:

x(t) = c1 cosh(κt) +
c1sxx + c2sxy

κ
sinh(κt), (16)

y(t) = c2 cosh(κt) +
c1syx − c2sxx

κ
sinh(κt), (17)

where c1,2 are constants of integration. Since the r.h.s.’ of Equations (16) and (17) are
even functions of κ, these equations are invariant to the specific choice of the sign of κ in
Equation (15).

Regarding singularities inside the cylinder, if the latter is made of a non-dissipative
material, the case is the same as that discussed above. However, closed loops of the
streamlines are forbidden if the imaginary part of the cylinder permittivity is not equal
to zero, and hence the scattering is accompanied by dissipation. Then, the center-type
singularities in the cylinder must transform into foci. This transformation was observed in
numerical simulations [10].

Next, it is instructive to consider how the field-induced and polarization-induced 2D
singularities look. To this end, we study the resonant light scattering using a cylinder with
the size parameter q = 0.1 and ε = −1 for the normal incidence of the TE-polarized light
(the vector E of the incident wave is perpendicular to the axis of the cylinder), as well
as with q = 0.3, ε = 16 for the TM-polarized light (the vector H of the incident wave is
perpendicular to the axis of the cylinder); see Figure 2. The selected values of permittivity
approximately correspond to aluminum at λ ≈ 113 nm (ε = −1) and silicon at λ ≈ 565 nm
(ε = 16) [20].

The results of the study are presented in Figures 3 and 4. We observe that, in agreement
with the 3D case, the saddles are polarization-induced singularities, while the centers are
field-induced. Note that, if a field-induced singularity belongs to a pattern lying in the plane
of vector E oscillations, it appears to be H-field-induced. In contrast, if the pattern lies in the
plane of vector H oscillations, the singularity is E-field-induced.
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Figure 3. Light scattering by a cylinder in a vacuum. Streamlines for the Poynting vector field and the
logarithm of the square of the modulus of the Poynting vector (a), electric (b), and magnetic (c) fields
in the xy-plane. The TE polarization (vector E of the incident wave lies in the plane of the figure).
q = 0.1, ε = −1. The pattern is symmetric with respect to the line y = 0. A green circle designates the
surface of the cylinder. Crosses marked with numbers are the positions of singular points. Points
1,2,7,8 are centers; the rest are saddles. |S|2 = 0 at all singular points. The centers and saddles are the
H-field-induced and polarization-induced singularities, respectively. See text for details.

Figure 4. Light scattering by a cylinder in a vacuum. Streamlines for the Poynting vector field and the
logarithm of the square of the modulus of the Poynting vector (a), electric (b), and magnetic (c) fields
in the xy-plane. The TM polarization (vector H of the incident wave lies in the plane of the figure)
and q = 0.3, ε = 16. Points 1 and 4 are centers; the rest are saddles. |S|2 = 0 at all singular points.
The centers and saddles are the E-field-induced and polarization-induced singularities, respectively. See
text for details.

4. Conclusions

Summarizing the results obtained, we can say the following:

• The geometric and Poincaré criteria for singularities give rise to the same condition:
S(r) = 0 at singular points.

• In 3D problems optical vortices are field-induced singularities, while saddles are
polarization-induced.

• In the vicinity of any 3D generic singularity, regardless of its specific type, the universal
condition (11) must hold.

• If a field-induced singularity lies in an invariant plane, which is parallel to the plane
of oscillations of vector E, the singularity is H-field-induced. If the invariant plane is
parallel to the plane of vector H oscillations, the singularity is E-field-induced.

• In 2D problems, the condition div S = 0 reduces the types of possible non-degenerate
singularities only to saddles and centers.

• In 3D problems, optical vortices in non-dissipative media have a focus-saddle structure.
Importantly, for a stable focus, the saddle is unstable and vice versa. Moreover, the
modulus of the contraction (expansion) index in the direction transversal to the plane
of the focus is twice as much as that for the in-plane streamlines.

It also should be stressed that the characteristic spatial scale of all discussed patterns
is much smaller than the incident radiation wavelength. We hope the unveiled peculiarities
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of the singular points shed new light on the vital problem of resonant light scattering by
subwavelength particles and can help to enrich and optimize its practical applications.
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10. Luk’yanchuk, B.; Tribel’skiĭ, M.; Ternovskiĭ, V. Light scattering at nanoparticles close to plasmon resonance frequencies. J. Opt.
Technol. 2006, 73, 371–377. [CrossRef]

11. Tribelsky, M.I.; Luk’yanchuk, B.S. Anomalous light scattering by small particles. Phys. Rev. Lett. 2006, 97, 263902. [CrossRef]
[PubMed]

12. Novitsky, A.V.; Barkovsky, L.M. Poynting singularities in optical dynamic systems. Phys. Rev. A 2009, 79, 033821. [CrossRef]
13. Angelsky, O.V.; Bekshaev, A.Y.; Hanson, S.G.; Mokhun, I.I.; Vasnetsov, M.V.; Wang, W. Editorial: Singular and Correlation Optics.

Front. Phys. 2021, 9, 651964. [CrossRef]
14. Yue, L.; Yan, B.; Monks, J.N.; Dhama, R.; Jiang, C.; Minin, O.V.; Minin, I.V.; Wang, Z. Full three-dimensional Poynting vector

flow analysis of great field-intensity enhancement in specifically sized spherical-particles. Sci. Rep. 2019, 9, 20224. [CrossRef]
[PubMed]

15. Gao, D.; Novitsky, A.; Zhang, T.; Cheong, F.C.; Gao, L.; Lim, C.T.; Luk'yanchuk, B.; Qiu, C.W. Unveiling the correlation between
non-diffracting tractor beam and its singularity in Poynting vector. Laser Photonics Rev. 2014, 9, 75–82. [CrossRef]

http://doi.org/10.1021/acsami.1c22192
http://www.ncbi.nlm.nih.gov/pubmed/35080844
http://dx.doi.org/10.1016/j.mtnano.2022.100213
http://dx.doi.org/10.1039/D2RA00611A
http://www.ncbi.nlm.nih.gov/pubmed/35424732
http://dx.doi.org/10.1039/D2CP01070D
http://www.ncbi.nlm.nih.gov/pubmed/35356962
http://dx.doi.org/10.1021/acsami.0c18900
http://www.ncbi.nlm.nih.gov/pubmed/33410669
http://dx.doi.org/10.1039/C7RA02198D
http://dx.doi.org/10.1016/j.talanta.2014.11.040
http://www.ncbi.nlm.nih.gov/pubmed/25618690
http://dx.doi.org/10.1103/PhysRevB.70.035418
http://dx.doi.org/10.1364/OPEX.13.008372
http://www.ncbi.nlm.nih.gov/pubmed/19498867
http://dx.doi.org/10.1364/JOT.73.000371
http://dx.doi.org/10.1103/PhysRevLett.97.263902
http://www.ncbi.nlm.nih.gov/pubmed/17280424
http://dx.doi.org/10.1103/PhysRevA.79.033821
http://dx.doi.org/10.3389/fphy.2021.651964
http://dx.doi.org/10.1038/s41598-019-56761-9
http://www.ncbi.nlm.nih.gov/pubmed/31882944
http://dx.doi.org/10.1002/lpor.201400071


Nanomaterials 2022, 12, 1878 9 of 9

16. Dennis, M.R.; O’Holleran, K.; Padgett, M.J. Chapter 5 Singular Optics: Optical Vortices and Polarization Singularities. In Progress
in Optics; Elsevier: Amsterdam, The Netherlands, 2009; Volume 53, pp. 293–363. [CrossRef]

17. Mokhun, I.; Khrobatin, R.; Mokhun, A.; Viktorovskaya, J. The behavior of the Poynting vector in the area of elementary
polarization singularities. Opt. Appl. 2007, 37, 261–277.

18. Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; WILEY-VCH Verlag: Weinheim, Germany, 1998.
19. Landau, L.D.; Bell, J.; Kearsley, M.; Pitaevskii, L.; Lifshitz, E.; Sykes, J. Electrodynamics of Continuous Media; Elsevier: Amsterdam,

The Netherlands, 2013; Volume 8.
20. Polyanskiy, M. Refractive Index Database. Available online: http://refractiveindex.info/ (accessed on 5 May 2022).
21. Bohren, C.F. How can a particle absorb more than the light incident on it? Am. J. Phys. 1983, 51, 323–327. [CrossRef]
22. Tribelsky, M.I.; Miroshnichenko, A.E. Resonant scattering of electromagnetic waves by small metal particles: A new insight into

the old problem. Physics-Uspekhi 2022, 65, 40–61. [CrossRef]

http://dx.doi.org/10.1016/S0079-6638(08)00205-9
http://refractiveindex.info/
http://dx.doi.org/10.1119/1.13262
http://dx.doi.org/10.3367/UFNe.2021.01.038924

	Introduction
	Methods
	Results and Discussion
	Sphere
	Cylinder

	Conclusions
	References

