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Abstract: Processing images represents a necessary step in the process of analysing the information
gathered about nanoparticles after characteristic material samples have been scanned with electron
microscopy, which often requires the use of image processing techniques or general purpose image
manipulation software to carry out tasks such as nanoparticle detection and measurement. In
recent years, the use of networks has been successfully implemented to detect and classify electron
microscopy images as well as the objects within them. In this work, we present four detection
models using two versions of the YOLO neural network architectures trained to detect cubical and
quasi-spherical particles in SEM images; the training datasets are a mixture of real images and
synthetic ones generated by a semi-arbitrary method. The resulting models were capable of detecting
nanoparticles in images different than the ones used for training and identifying them in some cases
as the close proximity between nanoparticles proved a challenge for the neural networks in most
situations.

Keywords: scanning electron miscroscopy; nanoparticle detection; neural networks; synthetic data;
yolov3; yolov4

1. Introduction

Processing scanned electron microscopy (SEM) images is a commonly performed
to study the results of nanomaterials synthesis processes in which the measuring and
identification of objects provide the materials scientist with valuable morphological data
about the material of interest. Typically processing SEM imagery was performed using
image processing techniques tailored around the characteristic features of a given material
such as shape, size, brightness and contrast difference between the observed objects [1,2].
Another approach was to use general purpose image processing applications such as imageJ
to perform the analysis of electron microscopy images in a semi-automated manner, again
making use of the knowledge of the defining characteristics of the specific material being
studied [3]. While these methods yield precise results, they are not scalable.

In recent years, there have been works using convolutional neural networks (CNN)
which have successfully classified electron microscopy images. Similarly, CNNs can be
used for the classification of nanoparticles (NPs) in SEM images as demonstrated by the
annotated image repository produced by members of Nanoscience Foundries and Fine
Analysis Europe (NFFA), which was created by using retrained models of Google’s Incep-
tion family of CNNs [4,5]. Neural networks have been used previously in conjunction with
traditional image processing algorithms to detect nanoparticles in images created through
different electron microscopy techniques, not just SEM, as is the case for ParticlesNN [6], a
web service designed to perform the detection and instance segmentation of platinum and
palladium nanoparticles on images obtained through scanning tunneling microscopy (STM)
as well as SEM or transmission electron microscopy (TEM), to name a few, by making
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use of Cascade Mask-RCNN neural networks [7]. Similarly, Kim et al. implemented the
previously trained Imagenet database [8], Inception-v3 neural network, to detect core-shell
type nanoparticles on SEM micrographs with a computer program named LIST [9]. Partic-
ularly, the YOLO convolutional neural network has been implemented previously with the
purpose of detecting different structures in TEM images, not only particles such as cavities
or other deformations on the surface of a specimen that has been radiated with an ion
beam [10]. Because YOLO excels at real time detection, it has been used for in situ detection
and tracking of objects found in a video feed from a transmission electron microscope [11].
It can also be used in tandem with other CNN architectures to obtain an improved instance
segmentation model in one-dimensional nanostructures such as ZnO nanowire arrays [12].

The training of neural networks requires large amounts of data to be carefully anno-
tated before the learning to yield better results. The acquisition and annotation of data
can be partially automated when a method to artificially increase the available data is
used. This synthetic data allows for the controlled balancing of classes in the dataset
and frees the short amounts of real data to be used to evaluate the learning process of
a neural network; a common approach to the creation of synthetic data is the rendering
of 2D and 3D nanoparticle shapes and bodies, respectively, that resemble their real life
counterparts [13,14].

The goal of this work was to implement a detection model based on the YOLO neural
network aimed at detecting cubic and quasi-spherical nanoparticles in SEM images that
are scattered across the scene. To be able to procure the annotated data necessary for
the training of the neural network, a computer program was developed with the main
function of artificially generating digital images that resemble SEM micrographs depicting
Ag nanoparticles from the original sample.

2. Materials and Methods

In this work, Ag nanocubes were previously synthesized at the UTSA using the polyol
method in the following manner: heat 5ml of ethylene glycol (EG) up to 160 C. A 0.1 M
silver nitrate (AgNO3) dissolution was prepared in the EG and another 0.15M PVP one.
Once the EG reached the desired temperature, the AgNO3 and polyvinylpyrrolidone (PVP)
dissolutions were added drop by drop, maintaining a magnetic stirring for 40 s. After this,
it was allowed to cool down, and the resulting product was washed with deionized water
and acetone prior to use and characterization. Synthetic hidroxiapatite (HA) nanopowder
was acquired from Sigma-Aldrich for the purpose of obtaining SEM images depicting
quasi-spherical particles.

2.1. Image Acquisition

Ag nanocubes and HA nanopowders were dispersed in isopropyl alcohol, and a
drop was placed on a silicon flake for morphological characterization by scanning electron
microscopy (SEM). This characterization was carried out at the Laboratory of Environmental
Engineering Research of the Instituto Tecnológico de Toluca (ITT), the capture of SEM
micrographs being performed using a JEOL JSM-6610LV operated at 20 kV with a resolution
of 137 eV, a tungsten filament as the electron source and equipped with EDS.

2.2. YOLO Neural Network

Nanoparticle detection was performed through the use of YOLO (You Only Look
Once) neural networks Versions 3 and 4 in their faster (tiny) architectures typically used
for applications intended for real-time object detection, although for this project its use is
meant to detect scattered nanoparticles. The training of these neural networks and their
evaluation were performed on a computer equipped with a NVIDIA Quadro RTX 3000
with 6 GB VRAM, property of the ITT and using the YOLO implementations made with
darknet [15,16].
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2.3. Synthetic Images

The available micrographs of Ag nanocubes lacked sufficient numbers of dispersed
particles to successfully train the neural network, causing a need for more images or a
method to artificially increase the data. A method was proposed to increase the amount
of available data for training. Since Ag nanocubes are not magnetic in nature and scatter
arbitrarily across the sample holder without following any particular pattern, a simple
computer program was developed to artificially generate micrographs containing scattered
Ag nanocubes. This program’s logic tries to approximate said behaviour by placing them
semi-arbitrarily in a new image that can be labelled and used for training.

The proposed method makes use of a set of 8 SEM micrographs with scattered nanopar-
ticles. From each of these images, a series of NPs were selected and manually segmented.
That is, a smaller image was obtained from a region of the original one; we refer to these
segmented images as templates, and a group of templates extracted from the same image is
called a pattern. The selected nanoparticle templates extracted from the source micrographs
are of different sizes (in pixels) and orientation, thus creating diverse patterns for generating
images. Figure 1 shows four templates selected from the micrograph displayed in Figure 2,
the template images have a resolution of 71 × 68 pixels compared to 1280 × 960 px of the
original source image; for this particular pattern Templates #2 and #3 (Figure 1b,c) are the
same image as we wanted to test if repeating the template would have a negative effect
during the training process. We did not observe such thing, and it was left that way as part
of the pattern for synthetic image generation. Each pattern has an associated pattern file, a
plain text file that contains the resolution of the original SEM micrograph and the filename
of each template image; the information contained in this file will be used by the computer
program to generate the synthetic images. Similarly, templates for quasi-spherical nanopar-
ticles such as the ones shown in Figure 3 were obtained with the purpose of providing the
training dataset with examples of quasi-spherical particles different from the ones present
in the repository by the NFFA; Figure 4 shows one of the images from which templates of
this morphology were selected.

(a) (b) (c) (d)

Figure 1. Manually segmented images of Ag nanocubes used as template to generate new images.
These four templates, taken from the micrograph in Figure 2, constitute the second pattern used in
this work: (a) Template #1 of an Ag nanocube; (b) Template #2 of an Ag nanocube; (c) Template #3 of
an Ag nanocube; and (d) Template #4 of an Ag nanocube.

Table 1 shows a description of the 8 different patterns used to create artificial micro-
graphs by the previous algorithm, each one containing a different number of template
images, as well as the difference in the type of morphologies present in them, with four
patterns limited to cubic particles. All the original micrographs were captured at UTSA
using a FEG Hitachi S-5500 ultra-high-resolution electron microscope (0.4 nm at 15 kV)
with a BF/DF Duo STEM detector; and they all depict the same Ag nanocube sample
which possesses a similar average length. In this case, it ranges from 0.13 µm to 0.15 µm. A
series of synthetic images generated using the method proposed and the patterns described
(one per pattern) are shown in Figure 5; as stated in Table 1, only images generated using
patterns 4 through 7 can include quasi-spherical particles (Figure 5d, Figure 5e, Figure 5f,
Figure 5g, respectively). The notorious difference in size between the particles in Figure 5a
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and the rest of the examples is due to the original micrograph having been captured using
a greater magnification.

Figure 2. An example of an original SEM micrograph of Ag nanocubes from which templates
were extracted.

(a) (b) (c) (d)

Figure 3. Manually segmented images of Ag quasi-spheres used as templates to generate new images.
These four templates, taken from the micrograph in Figure 2 are part of a set of images used in
the fourth pattern in this work: (a) Template #1 of an Ag quasi-sphere; (b) Template #2 of an Ag
quasi-sphere; (c) Template #3 of an Ag quasi-sphere; (d) Template #4 of an Ag quasi-sphere.

Figure 4. An example of an original SEM micrograph of Ag nanocubes and quasi-spheres, among
other structures, from which templates of both morphologies were extracted.
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Table 1. A list of patterns used to create artificial images resembling SEM micrographs.

Pattern Number Number of Templates Resolution (Pixels) Morphologies Avg. Particle Length

1 2 640 × 480 Cubes 0.146 µm
2 4 1280 × 960 Cubes 0.13 µm
3 6 1280 × 960 Cubes 0.13 µm
4 10 1280 × 960 Cubes & quasi-spheres 0.15 µm
5 31 640 × 480 Cubes & quasi-spheres 0.15 µm
6 17 640 × 480 Cubes & quasi-spheres 0.15 µm
7 29 640 × 480 Cubes & quasi-spheres 0.14 µm
8 57 1280 × 960 Cubes 0.15 µm

With the patterns created, a computer program was written in C++ and using OpenCV,
a computer vision and image processing library [17], simply called nanocube generator. This
CLI utility requires 2 inputs to be provided to it in order to produce a synthetic image,
the pattern file and the maximum number of NPs to include in the image. With these two
parameters, the nanocube generator initiates its execution where an image of the same
resolution as the original micrograph in the pattern is generated in-memory and filled
with a dark background. We refer to this image as a background image or canvas. The
next steps are to load the templates listed in the pattern file and semi-randomly select
one of them, rotate it and place it on the canvas in a semi-random position. Then the
program proceeds to select another template and repeat the last two steps, making sure
the new template image does not overlap on the area occupied by an already placed NP
template. The procedure is repeated until no space is left on the canvas to place more
template images, or the maximum number of NPs indicated when calling the program is
reached. All semi-random values used for the described operations are performed using a
seed generated by the computer clock during execution time of the program. An example
of an image generated using the pattern based on the image from Figure 2 is shown in
Figure 5b.

(a) Pattern #1, 14 NPs (b) Pattern #2, 18 NPs (c) Pattern #3, 185 NPs (d) Pattern #4, 43 NPs

(e) Pattern #5, 92 NPs (f) Pattern #6, 49 NPs (g) Pattern #7, 156 NPs (h) Pattern #8, 76 NPs

Figure 5. Synthetic images generated using the different patterns with varying numbers of scattered
nanoparticles. Unlike the original micrographs, these images do not contain overlapping particles.

2.4. Training Datasets

As previously mentioned, the proposed methodology classifies nanoparticles based
on their morphology in two categories: cubes and quasi-spheres, these being chosen for
being simple shapes. For the first class, the images used to create the training datasets are
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the ones generated by the program previously described. For quasi-spheres, most images
were selected from the particles subset of the public repository by Aversa et al. [5] made
of 3412 JPEG images with a 1024× 768 resolution, choosing the ones with quasi-spherical
particles having a diameter smaller than 200 nm. A small number of Ag quasi-spheres
are also included in images generated by the developed program. Preprocessing of the
images before labelling consisted of removing the information bar embedded in them; the
resolution for the images was not adjusted prior to the introduction to the training session.

For the purposes of training, two image sets containing nanocubes and quasi-spherical
particles were prepared. Table 2 shows the proportion of each particle class on the datasets.
Set A is an unbalanced one as it is composed of only 450 cube objects against over twice the
number of quasi-spheres; in contrast, Set B has an equal amount of objects of both classes,
1025 each.

Table 2. Distribution of object classes in the selected training datasets.

Set Cube Class Quasi-Sphere Class Total Images

A 450 1000 105
B 1025 1025 112

Both sets of micrographs were prepared for training the YOLO detector by labelling,
using the program labelImg [18], the particles in them in the proposed classes, omitting
those which are partially occluded by other objects or the image border. Imageset A, com-
prised of 105 images, containing 450 labelled cube class objects and 1000 quasi-sphere ones
was divided into training, testing and validation batches at a ratio of 75%, 15% and 15%,
respectively; in comparison, set B, made up of 1025 objects of each class across 112 im-
ages,was divided into training and testing batches of 80% and 20%, respectively. Four
models were trained, two based on YOLOv3-tiny and the remaining pair on YOLOv4-tiny.
Table 3 is a summary of the architecture and the dataset used to train it; each architecture
was trained on both datasets with 200,080 training batches and a learning rate of 0.001. The
images were rescaled at the input layer to the default resolution of the YOLO architecture,
416 × 416 pixels. Figure 6a,b show one of the images used for training in its original
resolution of 1280 × 960 and the scaled down version to the mentioned resolution, respec-
tively. This resolution preserved the shape of the nanoparticles and since the YOLO neural
network changes the image dimension at random during training, the detection model gets
optimized to make predictions for different image sizes [19]; additionally, it decreased the
video memory requirements during the training process.

(a) Original image (b) Scaled down image

Figure 6. An example of a synthetic image used for training in its original and scaled down resolutions,
the latter being the one the size of the input layer for the YOLO neural network.
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Table 3. A list of the four trained models, both tiny architectures of the YOLO neural network are
trained on the two available datasets.

Model Architecture Trained on Dataset

M1 YOLOv3-tiny A
M2 YOLOv4-tiny A
M3 YOLOv3-tiny B
M4 YOLOv4-tiny B

2.5. Validation Datasets

To evaluate the performance of the trained detector models, three validation datasets
were prepared, each one composed of 20 individual images, Table 4 shows the count
of labelled class objects in each validation dataset. The micrographs comprising Sets I
and II belong to the ones obtained at UTSA and from the repository made available by
NFFA [5] for nanocubes and quasi-spheres, respectively; Dataset III, on the other hand,
is made up of images captured at ITT and include Ag nanocubes (Figure 7i,j) as well as
HA quasi-spheres (Figure 7k,l). Figure 7 shows some of the images that belong to these
datasets. Figure 7a–d are part of Dataset I and include quasi-spherical nanoparticles of
an undetermined material as well as scattered Ag nanocubes; similarly, Dataset II also
contains these types of nanoparticles with the difference lying in the fact that the nanocubes
depicted in these images are very close to each other, with many lying on top of one another
as shown in Figure 7e,f. Figure 7c,d,g,h display only quasi-spherical nanoparticles, of an
unknown series of materials and are also the micrographs with the highest magnification
used to train the neural network.

(a) Ag nanocubes (b) Ag nanocubes (c) Quasi-spheres (d) Quasi-spheres

(e) Ag nanocubes (f) Ag nanocubes (g) Quasi-spheres (h) Quasi-spheres

(i) Ag nanoparticles (j) Ag nanoparticles (k) HA nanoparticles (l) HA nanoparticles

Figure 7. Some images from the three datasets used for the evaluation of the trained models. Dataset
I (first row); Dataset II (second row); Dataset III (third row).
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Table 4. Validation datasets used to evaluate the performance of the trained models.

Set Labelled Cube
Class Objects

Labelled
Quasi-Sphere
Class Objects

Total Labelled
Objects Total Images

I 553 343 896 20
II 1104 623 1727 20
III 17 47 64 20

After running a detection process using the trained models on each validation dataset,
the Jaccard coefficient (also known as intersection over union or IoU) was used as a measure
of the degree to which the detected area and the labelled one overlap each other, with a
threshold of 0.5 used to determine whether a detection was positive.

J(A, B) =
|A ∩ B|
|A ∪ B| (1)

Furthermore, the median average precision (mAP), using the script developed by
Cartucho et al. [20], was also determined to evaluate the classification of detected objects
for each one of the trained models.

mAP =
1
n

k=1

∑
k=n

APk (2)

Finally, the number of correctly detected objects was measured for all trained models
on each dataset, classifying detected objects in two categories: labelled objects that were
detected (true positives or TP) and correctly detected objects that were not part of the
annotations made for the validation datasets (false positives or FP). This last category
comprises the nanoparticles that were not labelled because they were either cropped at the
edge of a given image or partially occluded by other NPs.

3. Results
3.1. Testing on the Source Images

Generating semi-arbitrary micrographs was designed to increase the data available
for the training of the YOLO neural network, and as such, the first attempt to evaluate
this approach was to test the trained detectors on the source set of images, these being
the group from which some micrographs were selected to extract the image templates of
nanocubes. The actual source images are a subset of the validation Dataset I, whilst Dataset
II includes some SEM micrographs of the same Ag sample but depicting scenes with a
greater nanoparticle count and little to no space left between them. The charts displayed on
Figure 8 summarize the achieved results of running a detection on all the images of Dataset
I, the maximum IoU value attained at the 10,000th training batch by the M3 model, 90.22%.
Trained during a total of 100,040 epochs, the Jaccard coefficient varied greatly throughout
the process, reaching less variation between iterations after the 170,000th training batch,
as shown on Figure 8a. These results differ from those of Dataset II, where there is little
variation between iterations on models M1, M2 and M3, with the second achieving the
highest value of 88.32% at the 130,000th training batch. Model M4, on the other hand,
displayed the lowest results throughout the training process as well as the highest variation
between iterations (see Figure 9a).

For median average precision on Dataset I, the results show less variation between
iterations but greater among models, Figure 8b shows models M1 and M3, both using
YOLOv3-tiny architecture, behaving almost inversely to each other after the first quarter of
the training process, with each obtaining mAP values of 56.46% and 53.28%, respectively.
In contrast, models M2 and M4 presented similar behaviour after the 50,000th training
batch. However, they differ greatly in their capacity to correctly classify detected objects
with Model M2 reaching a mAP of 64.41%, while M4 obtained a maximum of 46.41%.
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Table 5 shows the percentage of correctly detected nanoparticles achieved by the
trained models on the first validation dataset, the highest value, 77.68%, belonging to
Model M2 after 140,000 training batches. That is, from 896 annotated objects, Model M2
correctly detected 505, plus an additional 240 NPs that were not labelled. For the second
dataset, the percentage of correctly detected particles ranged between 13 and just below
25%, the highest value attained by Model M4 after 120,000 training batches yielding 24.90%
of correctly detected particles, equivalent to 430 out of 1727 labelled NPs plus 62 which
were not originally annotated (see Table 6).

Table 5. Detection results for all models on the validation Dataset I.
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M4 53.24% 110,000

Table 6. Detection results for all models on the validation Dataset II.

Model Correctly Detected NPs (%) Training Batch

M1 15.63% 100,000
M2 24.26% 170,000
M3 13.14% 160,000
M4 24.90% 120,000

3.2. Testing on a New Dataset

The third validation dataset, composed of micrographs of HA and Ag nanoparticles,
was used to evaluate the performance of the trained models on images not belonging to the
original Ag sample nor the NFFA SEM image repository. The charts displayed in Figure 10
summarize the achieved IoU and mAP values for the third validation dataset, in which the
M4 model attained values of 67.54% and 35.32%, respectively.
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Detected Particles

Table 5 shows the percentage of correctly detected nanoparticles achieved by the
trained models on the first validation dataset, the highest value, 77.68%, belonging to
Model M2 after 140,000 training batches. That is, from 896 annotated objects, Model M2
correctly detected 505, plus an additional 240 NPs that were not labelled. For the second
dataset, the percentage of correctly detected particles ranged between 13 and just below
25%, the highest value attained by Model M4 after 120,000 training batches yielding 24.90%
of correctly detected particles, equivalent to 430 out of 1727 labelled NPs plus 62 which
were not originally annotated (see Table 6).

Table 5. Detection results for all models on the validation Dataset I.

Model Correctly Detected NPs (%) Training Batch

M1 67.19% 130,000
M2 77.68% 140,000
M3 62.72% 20,000
M4 53.24% 110,000
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Table 6. Detection results for all models on the validation Dataset II.

Model Correctly Detected NPs (%) Training Batch

M1 15.63% 100,000
M2 24.26% 170,000
M3 13.14% 160,000
M4 24.90% 120,000

3.2. Testing on a New Dataset

The third validation dataset, composed of micrographs of HA and Ag nanoparticles,
was used to evaluate the performance of the trained models on images not belonging to the
original Ag sample nor the NFFA SEM image repository. The charts displayed in Figure 10
summarize the achieved IoU and mAP values for the third validation dataset, in which the
M4 model attained values of 67.54% and 35.32%, respectively.

For this third dataset, the trained models yielded similar results to the ones obtained
for the first two, a disparity between the Jaccard coefficient and mAP, regardless of the
model tested and, in the case of this dataset, the distance between the nanoparticles depicted
in a given image.
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Figure 10. Average Jaccard coefficient and mAP for the trained detection models on validation
Dataset III.

Detected Particles

After testing the trained models on the third validation dataset, Model M4 yielded the
highest percentage of correctly detected particles at 62.50% after 10,000 training batches,
analogous to the detection of 40 out of 64 annotated objects plus 31 unlabelled nanoparticles,
as shown in Table 7. This table also shows that for Models M1 and M2, the highest percent-
age was achieved at least twice after training with increasing numbers of training batches.

As shown in the graphs in Figures 8–10, there is noticeable difference between the
models based on Version 3 of the YOLO neural network and the two based on Version 4
which can be attributed to the improvements between these versions. The values of mAP
display the greatest variation, particularly for Dataset II and stand in contrast with the
results obtained for the Jaccard coefficient, where the latter is above the 80% mark. The
mAP for the four models remained under 70% (see Figure 9b). The disparity between the
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Jaccard coefficient, mAP and the percentage of detected NPs seen in all datasets suggest
that while most of the trained models are capable of detecting the nanoparticles present in
a given image, they display moderate success in being able to correctly categorize them.
This is tied to the similarity between the training datasets and the validation ones.

Table 7. Detection results for all models on the validation Dataset III.

Model Correctly Detected NPs (%) Training Batch

M1 54.69% 10,000–30,000, 60,000 & 90,000
M2 57.81% 180,000 & 200,000
M3 59.38% 10,000
M4 62.50% 10,000

In Figures 8–10, it is observed that as the training batches increase, there is an instability
in the detection of objects. This is explained considering that the complexity of the images
used in the testing datasets increased as described below. It is important to mention that it
was performed in this way since it is expected that any user who has micrographs obtained
in a SEM, regardless of the quality of the images, can use these YOLO-based models to
support the characterization of their materials.

Dataset I contains images very similar to the ones used to extract the templates for
synthetic image generation. Not only are distinguishing features such as the contrast
between the edges of a nanocube it faces very similar, but their position and numbers across
the image resemble the scattering these nanostructures display when viewed through a
scanning electron microscope, hence the high levels of detection on this dataset. Next, we
have the images from the second validation dataset, which display a higher number of Ag
nanoparticles per image, as well as these being much closer to each other and even having
some nanocubes on top of others. This coupled with the refinement of the images during
capture, which removed the bright edges on most of the observed nanocubes, and YOLO’s
difficulty to detect objects that are within close proximity to each other, makes the whole
set of annotated nanocubes different enough from the ones used during training to make
the trained models miss most of the particles in the dataset.

Finally, the characteristics of the electron microscopes, such as maximum magnifica-
tion, resolution of both SE and BSE detectors and electron source, used to capture the images
used for training are different from the one used for validation. The micrographs depicting
Ag nanocubes from Datasets I and II, along with the ones belonging to the NFFA repository
were captured at a greater magnification than the one allowed by the SEM equipment used
for the images from Dataset III. These differences, along with the variables added by the
sample preparation methods used prior to characterization by electron microscopy, make
the particles easier or harder to identify to both the human eye and the trained neural
network models. The relatively low resolution of the latter microscope produced noise
around the nanoparticles which made it difficult, even for a human expert, to distinguish a
nanocube from a quasi-spherical particle.

4. Discussion

In this paper, we presented a simple method to generate images that resemble SEM
micrographs of scattered Ag nanoparticles, allowing the training of a neural network based
on two versions of the YOLO tiny architecture. The resulting models were evaluated on
three validation datasets and proved to be capable of detecting nanoparticles with cubical
and quasi-spherical morphologies, even when these were agglomerated in dense groups
or blurred by some noise. However, a visible disparity existed between the values for
the Jaccard coefficient and the median average precision yielded by all the models, with
the first being considerably higher than the latter. This behaviour is a consequence of the
little variation between the artificially generated images as well as the source images used,
which in turn limited the data with scenes of nanocubes close to each other and resulted
in the models being able to detect nanoparticles but having a poor ability to classify them



Nanomaterials 2022, 12, 1818 12 of 13

correctly. This was most notorious for the images of the validation Dataset III, which was
characterized by noisy images, as a result of the limited resolution of the scanning electron
microscope available to us for the capture of images of the Ag and HA samples.

To improve these results, it would be necessary to modify the program that generates
the artificial images so their resemblance to real SEM micrographs that include features
such as agglomerated particles, lower contrast between nanocubes and the background
and moderately noisy images is more precise. Additionally, the trained models show
a lower variation between training batches, both for Jaccard coefficient and mAP, after
160,000 batches (see Figures 8–10) which suggests that the improvement of these detectors
will require a larger dataset of images as well as a longer training process.
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