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Abstract: Nowadays, the incorporation of nanoparticles into thermal fluids has become one of the
most suitable strategies for developing high-performance fluids. An unconventional improvement of
thermo–physical properties was observed with the addition of 1% wt. of nanoparticles in different
types of fluids, such as molten salts, allowing for the design of more thermally efficient systems using
nanofluids. Despite this, there is a lack of knowledge about the effect that nanoparticles produce on
the thermal stability and the decomposition kinetics of the base fluid. The present study performs IR-
and UV-vis spectroscopy along with thermogravimetric analysis (TGA) of pure nitrate and nitrate
based nanofluids with the presence of SiO2 and Al2O3 nanoparticles (1% wt.). The results obtained
support that nanoparticles accelerate the nitrate to nitrite decomposition at temperatures below
500 ◦C (up to 4%), thus confirming the catalytic role of nanoparticles in nanofluids.

Keywords: nanofluids; thermal stability; nanoparticles; molten salts; UV-vis spectrum;
thermogravimetry analysis (TGA); reaction kinetics

1. Introduction

The incorporation of suspended nanoparticles (NPs) into a fluid has become a suitable
strategy for improving the thermo–physical properties of fluids; this concept, defined as
a nanofluid (NF), was first introduced in 1995 by Choi et al. [1], who showed that the
thermal conductivity of water and ethylene glycol increased by adding Al2O3 or CuO NPs;
since then, many efforts have been devoted to the development of NFs as well as to the
understanding of some exceptional properties exhibited by them [2,3]. More precisely,
one of the aspects that attracted the scientific interest is the abnormal improvement of
the specific heat capacity (Cp) observed in NFs; thus, a large number of publications
indicate Cp increments up to 40% when low concentrations of NPs are incorporated into
the fluid [4], around 1% wt. According to this, and to the fact that material’s energy density
is determined by the product of Cp and the fluid density, the heat capacity becomes one
of the most relevant design parameters in industrial applications allowing to reach more
compact and effective heat transfer systems using NFs. Consequently, NFs open the door to
the next generation of heat transfer fluids (HTF) with better thermal performance than the
traditional fluids such as water, oils, molten salts or ethylene glycol, solving their relatively
poor heat transfer characteristics. In the last years, NFs have been incorporated in many
applications such as solar energy [5,6], geothermal [7], heat exchange [7], oil recovery [8,9],
lubricants [10,11], refrigeration [12], desalination [13] or CO2 capture [14], among others.

Specifically, the incorporation of NFs as a thermal energy storage (TES) medium in
concentrate solar power (CSP) plants would improve the storage efficiency and thus, it
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may contribute to the possibility of reducing the volume of the storage tanks, involving an
important material cost reduction [15–17]. Molten salts and particularly solar salt (i.e., a
eutectic mixture of sodium and potassium nitrate) was the most commercially used TES
material in CSP plants. Molten salt-based NFs are widely studied in the literature [18–21],
showing a high Cp enhancement. For example, Y. Huang et al. [22] report Cp enhance-
ments up to 168% after adding MgO NPs into the solar salt; however, the majority of
publications report Cp enhancements up to 30% adding NPs at different concentrations into
molten salts systems like Li2CO3/K2CO3 + 1% wt. SiO2 [23], NaNO3/KNO3 + 0.8% wt.
Al2O3 [24], KNO3/NaNO2/NaNO3 + 0.07% wt. Al2O3 [25], NaNO3 + 1% wt. SiO2 [4] and
Ca(NO3)2/KNO3/NaNO3/LiNO3 + 0.5% wt. SiO2 [26], among others. Nevertheless, some
studies show just the opposite trend [27–29]; it is the case of the studies carried out by Q.
Xie et al. [30], M. A. Hassan et al. [31] or M. C. Lu et al. [32], in which a decrease in Cp was
reported by the addition of NPs in molten salts. Hence, there are no clear trends regarding
the effect of Cp enhancement due to the addition of nanoparticles in the heat transfer fluid.

Another relevant parameter for the implementation of NFs in industrial applications
is their thermal stability (i.e., solar salts for TES in CSP stations work from 250 to 400 ◦C).
Pramod et al. [33] demonstrated that NPs in molten salts help to improve their thermal
stability. Contrarily, no significant changes were observed by p. Myers et al. [34] and P.
Andreu-Cabedo et al. [35] adding CuO or SiO2 NPs into molten salts, respectively. The
thermal stability of solar salts (a eutectic mixture of NaNO3 (60%)-KNO3 (40%)) is directly
related to the nitrate-nitrite conversion; therefore, more precise experiments are needed
to understand the effect of NPs on the kinetics of the thermal decomposition. Likewise,
monitoring the decomposition rate of nitrates (i.e., nitrites formation) is essential to control
the NF’s stability as the nitrite formation contributes to salt decomposition and to increase
corrosion rates in the storage systems; this aspect is very relevant due to the high corrosion
caused by salts in the metallic components of CSP facilities [36–38].

This work aims at studying the effect of introducing NPs in the sodium nitrate salt
thermal stability. For this propose, IR and UV spectroscopic techniques have been used for
determining the nitrite concentration in aqueous solution in the temperature range from
100 to 500 ◦C. Furthermore, thermogravimetric analysis was performed to study the weight
loss, temperature decomposition and reaction kinetics through representative samples of
two types of NaNO3 based NFs (NaNO3 + 1% wt. SiO2 and NaNO3 + 1% wt. Al2O3) in
the same range of temperatures for evaluating the degree of nitrites formation and the
temperature stability of the samples; other techniques, such as electron microscopy, were
also used for characterizing the NPs.

2. Materials and Methods
2.1. Nanofluids Sample’s Preparation

NaNO3 used to synthetize the NFs was Sigma Aldrich (99.995%), spherical SiO2 and
Al2O3 NPs of 5–15 nm and 13 nm, respectively, of nominal diameter (both Sigma Aldrich,
99.5%) (Sigma Aldrich, St. Louis, MO, USA). The synthesis of the NFs were carried out
through the following six steps (described in Figure 1): (1) weighting of NaNO3 and
1% of NPs (wt./wt.); (2) dissolving the mixture in 20 mL of distilled water; (3) sonicat-
ing during 20 min for a correct dispersion and homogenization of NPs in the solution;
(4) drying in an oven at 105 ◦C until complete water evaporation and salt recrystallization;
(5) grinding in an Agatha mortar; and (6) obtaining a representative sample by following
the quartering standard methodology [39] with a hand-made riffle-splitter suitable for tiny
amounts of sample.
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Figure 1. Schematic representation of the two-step nanofluid synthesis.

2.2. Transmission Electron Microscopy

A transmission electron microscope (TEM) JEOL JEM 2100 (JEOL, Tokyo, Japan) was
employed to characterize the NPs. To proceed, NPs were dispersed in ethanol and sonicated
by ultrasonic bath to avoid agglomeration.

2.3. UV-Spectroscopy

A UV-Vis Spectrophotometer Shimadzu UV-1280 (Shimadzu, Kyoto, Japan) was em-
ployed to measure the absorbance and quantify the nitrite’s ion concentration (i.e., [NO−2 ]).
The absorbance measurements were performed in the wavelength range between 230 to
600 nm. For this purpose, 10 independent samples were synthesized for each type of NP
into pure sodium nitrate. First, each sample was subjected to different thermal treatments in
a furnace at room temperature and then heated at intervals of 50 ◦C from in a temperature
range between 50 and 500 ◦C. For each temperature, the sample was left in the furnace for
around 30 min to ensure a homogeneous temperature of the sample. Subsequently, the sam-
ples were cooled into liquid nitrogen to freeze the structure at each temperature. After the
thermal treatment, 0.3 M solutions were prepared by dissolving the samples in deionized
water; moreover, 0.3 M sodium nitrate samples with different concentrations of sodium
nitrite (2.5%, 5%, 12.5% and 25% and 100% wt.) were prepared for the nitrite calibration.
The measurement uncertainty in the absorbance values was ±0.001 in arbitrary units.

2.4. Thermogravimetric Analysis

To perform the thermogravimetric and differential thermogravimetric analysis (TG/DTG),
a Q-600 SDT TA Instruments (TA instruments, New Castle, DE, USA) was used. Mea-
surements were conducted from 30 ◦C to 900 ◦C at a heating rate of 10 ◦C min−1 in air
atmosphere with a gas flow of 100 mL min−1. Each sample was prepared in standard
aluminum crucibles with around 11 mg wt. Uncertainties were 0.5 ◦C for temperature, 1%
for weight loss and 0.01% for mass.

2.5. pH

A pH and ion-meter GLP 22 from Crison (Crison Instruments, Alella, Spain) was
employed to measure the pH of the samples at room temperature (29.5 ± 0.2 ◦C) with an
uncertainty of 1%.
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2.6. FT-IR Spectroscopy

Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FT-IR
ATR) technique with a spectrometer TwoTM by PerkinElmer (PerkinElmer, Waltham, MA,
USA) was used to determine the chemical composition. The instrumental error associated
with the measure was 4 cm−1.

3. Results
3.1. Nanoparticle’s Characterization

The size and the concentration of the NPs are important parameters that govern the NF
performance [40,41]. The characterization of the nanoparticles has been done through pure
samples electronic microscopy. Thus, Figure 2 shows TEM images of the SiO2 and Al2O3
NPs. The silicon oxide NPs exhibit a higher degree of sintering, forming agglomerates of
even more than one micrometer (Figure 2a,b). The SiO2 nanoparticles’ length and width
were around: (12 × 25) nm2. On the contrary, alumina NPs have a nominal diameter in the
range 10.8–12.3 nm (Figure 2c,d).
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Figure 2. TEM images at different magnifications for SiO2, (a,b), and Al2O3 nanoparticles, (c,d).

3.2. Nitrite Determination

Indirect methods based on UV and visible spectroscopy allow quantifying the ni-
trite concentration with an excellent limit of detection [42,43]. The UV-Vis absorption
spectra were performed to NaNO3/NaNO2 mixtures samples for 0.3 M (in deionized
water) at 2.5%, 5%, 12.5% and 25% wt. in NaNO2 concentration, Figure 3. The charac-
teristic absorption peaks for [NO−2 ] and [NO−3 ] ions were found at 354 nm and 300 nm,
respectively [43,44]. The most interesting result is the increase observed in the nitrite
peak as the concentration increases from 2.5% to 25% wt., Figure 3a. The absorbance of
nitrite peaks as a function of concentration (Figure 3b) exhibits a perfect linear trend with
R = 0.99782, a = 0.19999 ± 0.01013 (intersection) and b = 0.0706 ± 0.00165 (slope) with a
good accuracy, σ = ± 0.2.
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Samples were exposed to different thermal treatments, from room temperature to
500 ◦C and then cooled in liquid N2 to freeze the structure at each temperature. Figure 4
shows the temperature evolution of the UV-Vis spectrum of pure 0.3M NaNO3 (Figure 4a),
0.3M NaNO3/SiO2 NF (Figure 4b), and 0.3M NaNO3/Al2O3 NF (Figure 4c); moreover,
for each spectrum, the absorbance intensity at 354 nm was determined (grey line). For
the pure NaNO3 and the two formulated NFs, an intensity difference in the nitrite peak
with temperature was observed. Thus, Table 1 summarizes all the absorbance intensities at
354 nm as a function of the temperature; additionally, for each value, the predicted NaNO2
concentration was determined by the linear fit of Figure 3b. Both formulated NFs show a
slight increase in the concentration of NaNO2 (absorbance of 0.378 and 0.434 for SiO2 and
Al2O3 NPs at 1% wt. at 50 ◦C) in front of the pure NaNO3 (absorbance of 0.232 at 50 ◦C)
caused by the presence of NPs. Therefore, the NPs modify the reaction kinetics of NaNO3
decomposition in the temperature range explored; moreover, Al2O3 NPs accelerate the
nitrate-nitrite conversion even more than the SiO2 NPs. This fact indicates that the nature
of the NPs influences the chemical degradation of NFs, and thus, the more alkaline NPs
(Al2O3 > SiO2) the greater variation in absorbance for the temperature range; however,
it is remarkable that the maximum concentration of NaNO2 was around 300 ◦C for the
2 NFs. Despite this, it is noteworthy that the maximum NaNO2 concentration was less than
4 ± 0.2% for the two NFs and less than 0.8 ± 0.2% for the pure NaNO3, Figure 5.

Table 1. Nitrite concentration (% wt.) in pure 0.3M NaNO3, 0.3M NaNO3/SiO2 NF (1% wt.) and 0.3M
NaNO3/Al2O3 NF (1% wt.) derived from the absorbance (arbitrary units) at 354 nm as a function of
temperature from 100 ◦C to 500 ◦C.

Sample NaNO3 NaNO3/SiO2 NF NaNO3/Al2O3 NF

Temperature Abs. at
354 nm [ NaNO2] Abs. at

354 nm [ NaNO2] Abs. at
354 nm [ NaNO2]

(◦C) a.u ± 0.001 % wt. ± 0.2 a.u ± 0.001 % wt. ± 0.2 a.u ± 0.001 % wt. ± 0.2

100 0.213 0.2 0.387 2.6 0.395 2.7
150 0.231 0.4 0.432 3.3 0.374 2.5
200 0.232 0.5 0.411 3.0 0.360 2.3
250 0.218 0.3 0.442 3.4 0.420 3.1
300 0.232 0.5 0.425 3.2 0.493 4.1
350 0.239 0.5 0.429 3.2 0.461 3.7
400 0.225 0.4 0.348 2.1 0.459 3.6
450 0.257 0.8 0.406 2.9 0.440 3.4
500 0.232 0.5 0.378 2.5 0.434 3.3
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Nonetheless, the nitrite concentration in the aqueous solution is strongly pH-dependent.
At pH values higher than 5 (pH > 5), the literature suggests that the UV absorbance have
good linearity with nitrite concentration [45]. To corroborate the adjustment and then, the
nitrite concentration, the pH was measured for all the samples of Table 1 and the results
are summarized in Table 2. The pH values were in the range 5–7; furthermore, with the
addition of both NPs, the acidity of the NFs slightly decreases (i.e., the pH increases). Since
the pH of the dissolution of nitrite was 7.08± 0.01, the increase of pH in the two formulated
NFs was in accordance with the increase of NaNO2 concentration in the samples obtained
from the linear fit in Table 1.

Table 2. pH values at room temperature for pure 0.3M NaNO3, 0.3M NaNO3/SiO2 NF (1% wt.) and
0.3M NaNO3/Al2O3 NF (1% wt.) at different thermal treatments from 50 to 500 ◦C.

Thermal Treatment (◦C) NaNO3
pH ± 0.01

NaNO3/SiO2 NF
pH ± 0.01

NaNO3/Al2O3 NF
pH ± 0.01

50 5.76 5.52 6.08
100 5.83 6.25 6.18
150 5.92 5.73 6.17
200 5.77 5.51 6.34
250 5.78 5.98 6.31
300 5.99 6.03 6.52
350 5.78 6.42 6.84
400 6.08 6.67 6.74
450 5.88 6.88 6.81
500 5.93 6.96 6.69

To corroborate and validate the nitrite formation, FT-IR spectroscopy was employed
to determine the chemical composition of the samples. The FT-IR spectra for pure NaNO3
and the two NFs after thermal treatments at 50 ◦C and 500 ◦C, are shown in Figure 6.
There are several vibrational bands that allow to identify the NaNO3-NaNO2 conversion,
three of them are: (1) the relative intensity of the band at 825 cm−1 corresponding to the
bending mode ν2 of NO−2 . The relative intensity of this mode decreases with the increase
of [NO−2 ] also observing a slight shift of the mode frequency from 835 cm−1 to 825 cm−1.
(2) Modification of the band contour of the ν4 mode, 725 cm−1, that corresponds to the
asymmetric in-plane bending mode; this band begins to appear as the [NO−3 ] decrease for

x = 0.6 ( [
NO−2 ]
[NO−3 ]

) and exhibits a slight shift from 725 cm−1 to 715 cm−1. (3) The narrowing of

the band located around 1358 cm−1, corresponding to the asymmetric stretching mode of
[NO−3 ], and the presence of the band at 1271 cm−1, corresponding to one of the fundamental
vibrational modes of NaNO2, ν3 [46,47]. Nonetheless, at low [NO−2 ] concentrations, band
(3) is the only that can monitor the evolution of nitrite concentration [48,49]. Figure 5 shows
the 3 bands: (1) ~1358 cm−1, (2) ~1270 cm−1, and (3) ~1100 cm−1. All the samples, except
for NaNO3, show the presence of the tiny band (2) and a slight broadening of the band (1) as
temperature increases. The relative intensity of the band (2) is increased in the NFs samples,
indicating a high nitrite formation in comparison to pure NaNO3. The low intensity of this
band agrees with the low [NO−2 ] concentrations determined in Table 1; additionally, the
presence of the band (3) in the NaNO3 sample at 500 ◦C, is a good indicator of the presence
of low [NO−2 ] concentrations, between x = 0.1/0.2 [48–50]. In the NFs spectra this band
appears with higher intensity corroborating the [NO−2 ] formation. Nonetheless, in the case
of SiO2 NFs, this band overlaps with the asymmetric stretching of SiO2, causing a higher
band intensity.
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Figure 6. FT-IR spectra of NaNO3 and NaNO3/SiO2, NaNO3/Al2O3 NFs with 1% wt. of NPs after
thermal treatment at 50 ◦C and 500 ◦C. Band (1) corresponds to asymmetric stretching mode of NO−3 ,
and bands (2)–(3) corresponds to fundamental vibration bands of NO−2 .

3.3. Nanofluids Reaction Kinetics and Decomposition

The increase of NaNO2 concentration in the NFs indicates a change in the reaction
kinetics of NaNO3 decomposition. To study the effect of the NPs in the decomposition of
NaNO3, the sample weight loss and derivative weight over time from 100 to 900 ◦C were
evaluated in Figure 7. In the temperature range between 100 and 500 ◦C, Figure 7a, no
significant weight loss was observed for pure NaNO3 and NaNO3/SiO2, NaNO3/Al2O3
NFs. The maximum weight loss was 2.5% in the case of pure NaNO3 and lower than 1%
for the two formulated NFs. Hence, NFs were slightly more stable than the pure NaNO3.
On the other hand, due to the limit of detection (1%) in the weight loss, it is not possible to
identify the low NaNO3-NaNO2 conversion determined in Table 1. Conversely, the NFs
samples did not show any relevant change in the temperature range sampled, and they
start to decompose around 600 ◦C, as previously suggested for pure NaNO3 [51]. It is
remarkable that after the total decomposition, ≈800 ◦C, the weight loss of Al2O3-NF was
lower than SiO2 NF and pure NaNO3.
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Figure 7. TGA measurement from 100 to 900 ◦C of NaNO3, and NaNO3/SiO2, NaNO3/Al2O3 NFs
with 1% wt. of NPs: (a) weight loss as a function of temperature and, (b) weight derivative as a
function of time and temperature.

Figure 7b, shows the derivative of the weight (d(%/t)), as a function of time. The
derivative of weight loss gives information of the reaction kinetics. Dissimilar behaviours
were identified. Two main peaks were observed for the three samples, approximately
between 278–699 ◦C (around 60 min) and at 730–775 ◦C (between 80–86 min), respectively.
On the other hand, a third peak was observed for the AlO3 NF sample over 795 ◦C (around
90 min) The principal decomposition peak (around 80 min) shows a variation in time and
temperature. Consequently, a variation in the reaction kinetics and the thermal stability of
the salt (i.e., the equilibrium constants and the activation energy) are modified with the
addition of AlO3 and SiO2 NPs. Table 3 summarizes all the main identified temperature
peaks and the associated weight loss.

Table 3. Temperature and weight loss obtained by TGA measurements of pure NaNO3 and NaNO3

with SiO2 and Al2O3 NFs at 1% wt.

Sample NaNO3 SiO2 Al2O3

Mass (mg) ± 0.01 13.74 14.27 14.55
First peak temperature (◦C) ± 0.5 678.7 681.1 698.9
Weight loss at first peak (%) ± 1 18 20 27

Second peak temperature (◦C) ± 0.5 774.8 775.2 755.0
Weight loss at second peak (%) ± 1 62 62 45
Third peak temperature (◦C) ± 0.5 - - 794.5
Weight loss at third peak (%) ± 1 - - 3

Total weight loss between 507–840 ◦C (%) ± 1 80 81 75

The lowest weight loss before the beginning of the decomposition above 600 ◦C can
be explained by the lower hygroscopicity of NFs; the NPs help to reduce the moisture
absorption. Figure 8 illustrates the change that experiments sodium nitrate after one year of
exposure at room temperature when it is pure (a) and in the presence of SiO2 (b) and Al2O3
(c) NPs. Pure NaNO3 showed more aggregates than sodium nitrate with the presence of
NPs due to moisture absorption; this behaviour is a relevant finding on the point of view
of molten salts application because their high hygroscopicity in contact with environment
increases the damage of metal compounds present in the plant [52,53]; thus, this effect is
reduced considerably with the presence of NPs.
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Figure 8. Effect of moisture on physical properties (water absorption) of (a) pure NaNO3,
(b) NaNO3/SiO2 NPs (1% wt.) and (c) NaNO3/Al2O3 NPs (1% wt.).

To better understand the thermal decomposition and to relate the TGA profiles to the
possible reactions involved, the deconvolution of the TGA peaks have been statistically
performed by a Gaussian fit [54]. A total of 15 reactions have been taken into consideration
corresponding all to nitrate-nitrite conversions and to sodium oxides decompositions:

NaNO3(s) � NaNO2(s) +
1
2

O2(g) (1)

NO−3(l) � NO−2(l) +
1
2

O2(g) (2)

NO−3(l) +
1
2

O2(g) � NO−2(l) + O2(g) (3)

NaNO2(l) →
1
2

Na2O(s) + NO +
1
4

O2(g) (4)

NaNO2(l) �
1
2

Na2O2(s) + NO(g) (5)

2NaNO3(l) → Na2O(l) + NO2(g) + NO(g) + O2(g) (6)

2NaNO2(l) + 2NO(g) → 2NaNO3(l) + N2(g) (7)

NaNO2(l) + NO2(g) → NaNO3(l) + NO(g) (8)

Na2O2(s) + 2NO2(g) → NaNO3(l) + NaNO2(l) +
1
2

O2(g) (9)

NaNO2(l) �
1
2

Na2O(s) + NO(g) +
1
4

O2(g) (10)

Na2O2(s) → Na2O(s) +
1
2

O2(g) (11)

Na2O2(s) +
1
2

O2(g) � 2NaO(s) +
1
2

O2(g) (12)

Na2O2(s) � Na2O(s) +
1
2

O2(g) (13)

2NaNO2(l) � Na2O(s) + N2 +
3
2

O2 (14)

2NaNO3(l) � Na2O(s) + N2(l) +
5
2
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Figure 9 shows the TGA peak deconvolution and the cumulative fit peak (grey dotted
line) for pure NaNO3 (Figure 9a), for SiO2 NF (Figure 9b) and AlO3 NF (Figure 9c). All the
Gaussian models (cumulative fit peak) show a good fitting (i.e., R2 = 0.996, 0.998 and 0.999
for pure NaNO3, SiO2 and Al2O3 NFs, respectively); moreover, Table 4 summarizes the
parameters of the deconvoluted peaks and also the reactions that contribute to each of them.
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Three main stages were identified in the peak deconvolution of NaNO3 in Figure 9a.
The decomposition of NaNO3 has been well studied in the literature [55–59], and it is
known that at high temperatures as a result of its decomposition, nitrite and sodium oxides
species coexist; moreover, the decomposition process of nitrate salt can be subdivided into
several stages that occur simultaneously and/or consecutively.

Stage I: The first identified stage corresponds to the solid-state reaction of formation
of NaNO2, above the melting temperature to 450 ◦C, according to Equation (1). The
equilibrium of this reversible reaction depends on the temperature and, above 600–730 ◦C,
the backward reaction with oxygen is slower than the decomposition [55], Equation (2). In
Stage I-B occurs the oxidation-decomposition processes, Equations (2) and (3); this peak
reaches the maximum value at 697.3 ± 0.5 ◦C (at a velocity of 9.88 ± 0.01 ◦C/min) for pure
NaNO3. Noticeably, the same peak for SiO2 NF (Figure 9b) and for Al2O3 NF (Figure 9c)
appears shifted at lower temperatures (i.e., −14.3 ± 0.7 ◦C and −1.6 ± 0.7 ◦C, respectively).
Furthermore, the addition of SiO2 NPs make that the single peak decomposes into two
peaks (I-A and I-B), varying the decomposition kinetics of Equations (1)–(3). Specifically,
an initial decomposition stage appears, Stage I-A, with a maximum at 625.8 ± 0.5 ◦C, with
highest reaction kinetics (11.1 ± 0.1 ◦C/min); therefore, the addition of NPs drives to an
acceleration of decomposition at lower temperatures than pure NaNO3 (Table 3).

Stage II: In the intermediate stage, from 450 to 700 ◦C, the first-order liquid-liquid
reaction occurs, the reverse reaction in the melt sodium nitrite to form sodium nitrate
(oxidation-decomposition) Equation (2); this reverse equation is possible due to the for-
mation of NaO2 or Na2O2 as intermediates during the decomposition of sodium nitrite,
Equations (4)–(10). When the equilibrium of Equation (2) was displaced to the decompo-
sition, the formation of O2 and NO is favoured. Therefore, the Equation (4) becomes the
most kinetically and energy-favoured reaction [56]. A single peak was identified for the
three samples in this stage. The maximum of this stage for NaNO3 occurs at 747.9 ± 0.5 ◦C.
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A decrease of temperature was observed only with Al2O3 NPs (−9.4 ± 0.5 ◦C). Therefore,
the presence of Al2O3 NPs drives to a NaNO2 decomposition, Equations (4)–(10), at lower
temperatures.

Stage III: Finally, above 700 ◦C, a reaction of NaNO2 and direct decomposition of NaNO3
occurs with the formation of Na2O and release of nitrogen oxides [55], Equations (11)–(15). In
the case of pure NaNO3 the reaction occurs with a single step, stage III-A, with a maximum
at 781.2 ± 0.5 ◦C. The presence of this peak confirms that Na2O2 and/or NaO2 are formed
as intermediates for the formation of Na2O, Equations (11)–(15), [60]. In contrast, the
decomposition to Na2O for NFs follow two steps: III-A and III-B described by parallel
reactions. The initial decomposition stage for NFs, III-A, starts at lower temperature than
the pure NaNO3 (and at lower times). The peak temperature decreases by −9.8 ± 0.7 ◦C
and −22.3 ± 0.7 ◦C with SiO2 and Al2O3 NPs, respectively, in comparison to pure NaNO3.
Contrarily, in the final reaction process, III-B, the maximum peak temperature increases
+4.2 ± 0.7 ◦C with SiO2 NPs and 13.9 ± 0.7 ◦C with Al2O3 NPs.

Table 4. Gaussian non-linear fit parameters and the predominant reactions involved of the deconvo-
luted peaks for NaNO3, NaNO3/SiO2 NF (1% wt.) and NaNO3/Al2O3 NF (1% wt.).

Stage Step Fit Max.
Peak

NaNO3 NaNO3/SiO2 NF NaNO3/Al2O3 NF
Reactive
ProcessesValue

± Std. Dev.
Value

± Std. Dev.
Value

± Std. Dev.

St
ag

e
I

I-
A

Peak Peak 1

(1)
(2)
(3)

Time (min.) - 56.2
± 0.5 -

Temp.
(◦C) - 625.8

± 0.5 -

I-
B

Peak Peak 1 Peak 2 Peak 1

Time (min.) 70.56
± 0.06

67.80
± 0.06

70.34
± 0.03

Temp.
(◦C)

697.3
± 0.5

683.0
± 0.5

695.7
± 0.5

St
ag

e
II

Peak Peak 2 Peak 3 Peak 2 (4)
(5)
(6)
(7)
(8)
(9)

(10)

Time (min.) 80.66
± 0.15

80.55
± 0.07

79.28
± 0.05

Temp.
(◦C)

747.9
± 0.5

747.0
± 0.5

740.5
± 0.5

St
ag

e
II

I

Peak Peak 3 Peak 4 Peak 3

(11)
(12)
(13)
(14)
(15)

II
I-

A

Time (min.) 87.17
± 0.04

85.32
± 0.05

82.876
± 0.009

Temp.
(◦C)

781.2
± 0.5

771.4
± 0.5

758.9
± 0.5

Peak Peak 5 Peak 4

II
I-

B

Time (min.) - 87.966
± 0.008

89.86
± 0.03

Temp.
(◦C) - 785.4

± 0.5
795.2
± 0.5

Consequently, the presence of NPs produces an acceleration of the decomposition of ni-
trates through the sequence NaNO3-NaNO2-Na2O2, and a shift to high temperatures in the
formation of Na2O. Despite the final decomposition occurs at higher temperatures, it occurs
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at lower times. Accordingly, the NFs need higher temperatures and lower times to decom-
pose than the pure salt confirming the role of NPs as catalysts of decomposition reactions.

Moreover, some authors described a chemical reaction between NaNO3 and NPs,
generating new intermediate species like Na2SiO3 [61,62]. To corroborate the reactivity
between the NPs and NaNO3, the final product of the two NFs after the thermal treatment
(after stage III, 850 ◦C) was analysed by FT-IR. Figure 10, shows the comparison between
FT-IR spectra at 500 ◦C and 850 ◦C, for the two NFs. The identified bands at the regions
(1–4), indicate the formation of new species. In the case of presence of Al2O3 NPs, these
bands indicated the formation of species like NaAlO2 [63]. Similarly, the presence of SiO2
NPs favours the formation of NaSiO2. The bands in the region (1) and (4) indicate the mixed
formation of NaSiO2 and Na2SiO3 [64]; this fact can explain the variation in decomposition
rates and temperatures, as demonstrated by the study carried out by Y. Hoshino et al. [49],
with the addition of several oxides at the µm scale into NaNO3.
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Figure 10. FT-IR spectra for (top) NaNO3/Al2O3 NF (1% wt.) and (bottom) NaNO3/SiO2 NF (1% wt.)
after thermal treatment at 500 ◦C and 850 ◦C.

4. Conclusions

The effect of the incorporation of nanoparticles on the thermal stability of NaNO3 was
investigated in this study. Through UV-Vis spectroscopy and thermogravimetric analysis,
NaNO2 concentration and decomposition were studied for pure NaNO3 and two NaNO3-
based nanofluids formulated with 1% wt. of SiO2 and Al2O3 nanoparticles, respectively.
Three key findings were achieved:

1. Detection of higher nitrite concentration (up to 4% wt.) than pure NaNO3 (up
to 0.8% wt.), due to the presence of nanoparticles in the temperature range from
50 ◦C to 500 ◦C. Al2O3 nanoparticles cause a higher nitrate-nitrite conversion than
SiO2 nanoparticles.
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2. The presence of nanoparticles increases thermal stability to over 600 ◦C before starting
to decompose. In addition, with Al2O3 nanoparticles, weight loss at 900 ◦C was about
6% lower than NaNO3.

3. Three main reaction stages were identified in the NaNO3 decomposition in accordance
with the literature. These decomposition stages are altered by the presence of nanopar-
ticles. First, SiO2 and Al2O3 nanoparticles reduce the decomposition temperatures of
NaNO3-NaNO2-Na2O2 up to 7 ◦C. Even so, the reactions involved were accelerated
by the presence of nanoparticles. Particularly, SiO2 NPs accelerate the reactions more
than Al2O3 NPs. Second, the final decomposition to Na2O occurs at higher temper-
atures (up to 14 ◦C) than pure NaNO3. Nonetheless, the final decomposition takes
place in shorter times.

In view of these results, the nanoparticles act as catalyst for the reactions; however, at
temperatures above 500 ◦C, nanofluids exhibit higher thermal stability than pure NaNO3
despite the slight increase in nitrite concentration. To conclude, this study demonstrates the
adequacy of the use of UV-Vis absorption and deconvolution of the TGA signal to study
nitrite concentration and reaction kinetics.
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