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Abstract: NiMoO4 is an excellent candidate for supercapacitor electrodes, but poor cycle life, low
electrical conductivity, and small practical capacitance limit its further development. Therefore, in
this paper, we fabricate NiMoO4@MnCo2O4 composites based on a two-step hydrothermal method.
As a supercapacitor electrode, the sample can reach 3000 mF/cm2 at 1 mA/cm2. The asymmetric
supercapacitor (ASC), NiMoO4@MnCo2O4//AC, can be constructed with activated carbon (AC)
as the negative electrode, the device can reach a maximum energy density of 90.89 mWh/cm3 at a
power density of 3726.7 mW/cm3 and the capacitance retention can achieve 78.4% after 10,000 cycles.

Keywords: supercapacitors; NiMoO4@MnCo2O4; microstructure; electrochemical performance;
cycling stability

1. Introduction

With the development of the world economy, environmental pollution is caused by
the excessive burning of traditional fossil fuels, which poses a serious threat to the goal
of human sustainable development [1]. Supercapacitors (SCs), as a new environmentally
friendly electrochemical energy storage device, have attracted extensive attention from
researchers. The selection of electrode material is an important factor for energy storage
performance. Developing an electrode material with excellent electrochemical performance
has become key to the future development of SCs [2–5]. Transition metal oxides possess
high specific capacitance, superior cycling performance and abundant valence states, such
as NiMoO4, MnCo2O4, NiCo2O4 and ZnCo2O4. They have been widely reported due
to their large theoretical capacitance, excellent redox performance and environmental
friendliness [6–10].

NiMoO4 is a very suitable electrode material for SCs because of its advantages of better
electrochemical performance and low price [11–13]. However, there are still many problems
such as low theoretical utilization value, poor cycle life and low conversion performance at a
higher rate [14]. Xuan [15] et al. prepared a NiMoO4@Co3O4 composite nanoarray electrode.
The pseudocapacitance performance of the prepared NiMoO4@Co3O4-5H composite was
1722.3 F/g at the current density of 1 A/g, and the capacitance retention rate of 91%
was realized by the 6000 cycles test. Feng [16] et al. prepared hierarchical flower-like
NiMoO4@Ni3S2 composite material on a 3D nickel foam matrix by the hydrothermal
method. The specific capacity was 870 C/g at 0.6 A/g, and the capacity retention rate was
81.2% after 8000 cycles. Transition metal oxide MnCo2O4 with excellent electrochemical
performance is very suitable for the electrode material of SCs, because its Mn ion can offer
high electron conductivity and excellent rate performance, and cobalt ion has high oxidation
potential. However, they can also demonstrate poor application, such as poor cycling
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performance, poor electrical conductivity and so on, which greatly affect the practical
application of SCs [17,18]. Cheng [19] et al. prepared porous MnCo2O4@NiO nanosheets by
hydrothermal synthesis and calcination. The specific capacitance of the electrode material
was 508.3 F/g at 2 A/g current density. The 2000 cycles test was applied at 10 A/g current
density, and it presented the capacitance retention performance of 89.7%. Liu [20] et al.
prepared MnCo2O4@MnO2 nanosheet arrays with core–shell structure on nickel foam by
two-step hydrothermal treatment. The surface capacitance of the electrode was 3.39 F/cm2

at a current density of 3 mA/cm2. Furthermore, the capacity retention rate was 92.5% by
3000 cycles test at a current density of 15 mA/cm2. It could be seen that the composites
exhibited excellent electrochemical properties due to their excellent conductivity [21–24]. It
was also confirmed that NiMoO4 and MnCo2O4 have great potential as electrode materials
for SCs [25]. The composite electrodes constructed from these two materials can effectively
improve the conductivity, specific surface area, and number of reaction sites, thereby
improving the overall electrochemical performance. [26–28].

In this work, NiMoO4@MnCo2O4 composite electrode material is obtained by the
two-step hydrothermal synthesis method. The results show that the NiMoO4@MnCo2O4
electrode has better electrochemical performance than single NiMoO4 or MnCo2O4 elec-
trode, and its electrochemical performance is greatly improved after the composite. At the
current density of 1 mA/cm2, the specific capacitance of single NiMoO4 electrode material
is 1656 mF/cm2, and the specific capacitance of the single MnCo2O4 electrode material
is 224 mF/cm2. Finally, the NiMoO4@MnCo2O4 electrode material is 3000 mF/cm2. Af-
ter 10,000 cycles, the capacity retention rate of NiMoO4@MnCo2O4 electrode material is
96%. NiMoO4@MnCo2O4//AC devices show high electrochemical performance with a
maximum energy density of 90.89 mWh/cm3 and a power density of 3726.7 mW/cm3.

2. Experimental Section
2.1. Preparation of NiMoO4 Nano Pompon-Like Structure Electrode Material

In a typical process, 6 mmol Na2MoO4·2H2O, 6 mmol Ni(NO3)2·6H2O, 1 mmol NH4F,
and 1 mmol CO(NH2)2 was added to 50 mL deionized water. After magnetic stirring, the
nickel foam was put into the solution and reacted at 120 ◦C for 12 h, and then it was cleaned
by deionized water and anhydrous ethanol to remove surface impurities. The NiMoO4
precursor was obtained by drying for 6 h in a drying oven at 60 ◦C and annealing for 2 h in
air at 350 ◦C.

2.2. Preparation of NiMoO4@MnCo2O4 Urchin-like Core-Shell Structure Electrode Material

In a similar process to above, 6 mmol Mn(CH3COO)2·4H2O, 6 mmol Co(NO)3·6H2O,
5 mmol NH4F and 5 mmol CO(NH2)2 were dissolved in 50 mL deionized water to obtain a
homogeneous solution. The nickel foam with NiMoO4 was put into this solution, and it
kept 140 ◦C for 8 h. After cooling down to room temperature, the samples were washed,
dried, and annealed for 2 h at 350 ◦C. The mass loading of NiMoO4, MnCo2O4, and
NiMoO4@MnCo2O4 is 1.27, 1.02, and 1.91 mg/cm2, respectively.

2.3. Materials Characterizations

The elemental composition and valence of the samples were characterized by X-ray
powder diffraction (XRD, D/max-2500/PC, Rigaku Corporation, Tokyo, Japan) with Cu
Kα (λ = 1.5406 Å) and X-ray photo-electron spectroscopy (XPS, ESCALAB250, FEI Com-
pany, Waltham, MA, USA). The structure and morphology were investigated by emission
scanning electron microscopy (SEM, Sigma500, Zeiss, Jena, Germany), and high-resolution
transmission electron microscopy (HRTEM, Tecnai G2 S-Twin F20, FEI Company, Waltham,
MA, USA).

2.4. Electrochemical Measurements

The electrochemical characteristics of the products were tested by Shanghai CHI660E
electrochemical workstation. The sample material was applied as the working electrode,
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the platinum electrode was utilized as the auxiliary electrode, and Hg/HgO electrode
was employed as the reference electrode. The working electrode was processed as a circle
with a diameter of 1 cm. Moreover, 3 M KOH solution was used as the electrolyte and the
ultrasonic-treated nickel foam was served as the collector. Through cyclic voltammetry
(CV), galvanostatic charging–discharging (GCD), electrochemical impedance spectroscopy
(EIS) and cycling performance measurements, the electrochemical properties of electrode
materials and their application value were analyzed.

Energy density (E) can be obtained from the integral area of discharging curves.
Specific capacitance (Cs), power density (P), and coulombic efficiency (η) can be calculated
by the following equations:

Cs = I∆td/S∆V (1)

P = 3600E/∆td (2)

η = ∆td/∆tc (3)

where I is the current value, ∆td and ∆tc represent the discharging time and charging time,
S is the geometrical area of the electrode, and ∆V denotes the voltage window.

2.5. Fabrication of Asymmetric Supercapacitors

Asymmetric supercapacitors were constructed with NiMoO4@MnCo2O4 as the posi-
tive electrode and active carbon as the negative one. The active carbon electrode was made
of active carbon, acetylene black, and polyvinylidene fluoride with N-methylpyrrolidone
as the solvent in a mass ratio of 7:2:1. The slurry was evenly coated on the nickel foam. The
active carbon electrode was vacuum dried for 24 h at 60 ◦C. The electrolyte of ASCs was
PVA-KOH. The preparation process was as follows: 3 g PVA and 3 g KOH were mixed
in 30 mL deionized water, and the mixture was heated in an 80 ◦C water bath for 1 h and
stirred continuously until clear.

3. Results and Discussion

The NiMoO4@MnCo2O4 composite electrode was synthesized by a two-step hy-
drothermal method, as shown in Figure 1. Firstly, NiMoO4 precursor is grown on nickel
foam. Secondly, NiMoO4 can be obtained by calcination. Thirdly, the nano needle-like
MnCo2O4 precursor was coated on NiMoO4 by the second hydrothermal preparation.
Finally, the samples were calcined to obtain NiMoO4@MnCo2O4 on nickel foam.

As seen from the XRD results of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4 electrode
materials, it can be observed that the three strong peaks are diffraction peaks of the foamed
nickel substrate in Figure 2. When 2θ values are 26.57◦, 29.14◦, 33.73◦ and 60.01◦, the crystal
planes correspond to (220), (310), (222) and (060). The crystal structure is consistent with
that of NiMoO4 (JCPDS No. 45-0142). Meanwhile, the values of 2θ are 30.53◦, 35.99◦, 57.90◦

and 63.62◦ and the diffraction peaks correspond to (220), (311), (511) and (440) crystal
planes, which is consistent with the crystal structure of MnCo2O4 (JCPDS No. 23–1237).
Therefore, the diffraction peaks of NiMoO4@MnCo2O4 electrode material prepared under
the condition of the best ratio correspond to the diffraction peaks of a single compound.

Figure 3 shows the morphologies of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4
electrode materials. As seen from Figure 3a,b, the NiMoO4 electrode material is nano
pompon-like, and there are many intersecting nano needle-like structures densely grow-
ing on the nickel foam substrate. As shown in Figure 3c,d, MnCo2O4 electrode material
possesses a nano needle-like structure and uniformly grows on the nickel foam substrate.
Figure 3e,f show the micromorphology of NiMoO4@MnCo2O4 electrode material. It can be
observed that a large number of uniformly distributed nano needle-like MnCo2O4 and nano
pompon-like NiMoO4 grow together to form a uniform and orderly arrangement of nano
urchin-like morphology, which increases the specific surface area of NiMoO4 electrode and
presents a great deal of active sites for rapid transfer between ions and active substances.
The gap between the nano needle-like structures allows sufficient Faraday chemical reac-
tions between the active substance and electrolyte, which enhances the electrochemical
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storage performance. Figure 3g,h show TEM images of NiMoO4@MnCo2O4 electrode
material. Figure 3g exhibits the morphology after the composite of NiMoO4 and MnCo2O4.
It can be seen from Figure 3h that NiMoO4@MnCo2O4 composite material shows two kinds
of lattice fringes; the lattice fringes with the spacing of 0.154 nm correspond to the (060)
crystal plane of NiMoO4, and the lattice fringes with the spacing of 0.146 nm correspond to
the (440) crystal plane of MnCo2O4. From the stable microstructure of NiMoO4@MnCo2O4,
it can be inferred that the composite has multiple ion and electron transport channels and a
larger specific surface area, therefore it is beneficial to shorten the ion diffusion path, which
makes it advantageous for high storage capacity and rate capacity.
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In order to further investigate the elemental component and different valence states of
the prepared NiMoO4@MnCo2O4 composite, XPS tests were carried out on the samples.
Figure 4a presents the full measurement scanning spectrum showing the presence of Mn
2p, Co 2p, Mo 3d, Ni 2p, O 1s and C 1s, among which O 1s and C 1s elements are mixed
impurities in the test process. In order to identify the detailed valence states of Mn, the
high resolution XPS spectrum is present in Figure 4b. The Mn 2p3/2 and Mn 2p1/2 are
found in the two main peaks, respectively, which can be divided into four peaks after fine
fitting. The two peaks with a binding energy of 641.4 eV and 652.9 eV can be ascribed to
the presence of Mn2+. The peaks corresponding to Mn3+ are distributed with a binding
energy of 644.6 eV and 654.2 eV, respectively. Meanwhile, there is a satellite peak (defined
as “Sat.”) at a position with a binding energy of 644.6 eV. According to the Co 2p spectrum
of Figure 4c, it was found that two peaks appear at 780 eV and 795.3 eV, corresponding to
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the two excitation spectra of Co 2p3/2 and Co 2p1/2. The diffraction peaks corresponding
to Co2+ have a binding energy of 781.5 eV and 797.3 eV, respectively. The diffraction peaks
corresponding to Co3+ have a binding energy of 779.9 eV and 795.2 eV, respectively. In
Figure 4d, the peaks of Mo 3d spectrum at 231.6 eV and 234.8 eV belong to Mo 3d5/2
and Mo 3d3/2, respectively. In Figure 4e, Ni 2p spectra can be well fitted into two main
peaks, characterized by Ni2+ and Ni3+ oxidation states. Each peak has its own satellite
peak (defined as “Sat.”) at 861.6 eV and 879.9 eV, respectively. Two fitting peaks at 855.1 eV
(Ni 2p3/2) and 872.9 eV (Ni 2p1/2) belong to Ni2+, and two fitting peaks at 855.9 eV (Ni
2p3/2) and 873.8 eV (Ni 2p1/2) belong to Ni3+. Figure 4f shows the O 1s region, which can
be divided into two peaks (529.8 eV and 531.8 eV). For the binding energy of 529.8 eV, it is
attributed to the formation of M-O bond (M=Co, Mn). Therefore, XPS data confirm that the
synthesis of NiMoO4@MnCo2O4 is successful [29–31].
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Figure 5a shows the cyclic voltammetry (CV) curves of NiMoO4@MnCo2O4 electrode
material, which is measured by a scanning rate of 10–100 mV/s and a voltage window of
0–0.5 V, showing excellent rate performance. The visible redox peaks are seen from the
curves, indicating that redox reaction occurs in the process of energy storage. Figure 5b
presents the galvanostatic charge–discharge (GCD) curves with current density of 1, 2,
4, 8, and 10 mA/cm2, the areal capacitance is 3000, 1076, 964, 696, and 580 mF/cm2,
respectively. The high electrochemical performance is mainly attributed to the nano urchin-
like morphology of the material. The nano needle-like structure densely and uniformly
distributed on the urchin-like surface provides a larger surface area for electrolyte contact,
thus improving the electrochemical performance of the composite.
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In order to show the advantages of the composite electrode, NiMoO4, MnCo2O4 and
NiMoO4@MnCo2O4 electrode materials are used as working electrodes, respectively, and
necessary tests are carried out in a three-system with 3 M KOH solution. Studies have
shown that the capacitance of NiMoO4 in an alkaline environment is mainly attributed to
the reversible redox reaction between the valence states of Ni element, while Mo element
does not participate in any reaction, but it helps to improve the conductivity of molybdate.
Figure 5c reveals the CV curves of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4 electrodes
at 10 mV/s. Visible redox peaks can be seen from the curves. By comparing the three
CV curves, it is obviously observed that the NiMoO4@MnCo2O4 electrode has a larger
integral area than NiMoO4 and MnCo2O4 electrode, so it has a larger specific capacitance.
These excellent electrochemical properties can be credited to the singular nano urchin-like
structure and a series of redox reactions, which not only involve Co2+ and Mn2+, but also
come from Ni2+, thus increasing the redox peak. The specific redox reaction mechanism is
as follows:

NiMoO4: NiMoO4 → Ni2+ + MoO4
2− (4)

Ni2+ + 2OH− → Ni(OH)2 (5)

Ni(OH)2 + OH− → NiOOH + H2O + e− (6)

MnCo2O4: MnCo2O4 + H2O + OH− →MnOOH + 2CoOOH + e− (7)

MnOOH + OH− →MnO2 + H2O + e− (8)

CoOOH + OH− → CoO2 + H2O + e− (9)

Figure 5d shows the GCD curves of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4
composite electrode material measured at the current density of 1 mA/cm2. It is observed
that the charge and discharge time of NiMoO4@MnCo2O4 composite electrode material
is the longest, which corresponds to the maximum CV curve area of NiMoO4@MnCo2O4
in Figure 5c. By calculation, the specific capacitances of the three electrodes can reach
1656, 224 and 3000 mF/cm2. The specific capacitance of NiMoO4@MnCo2O4 is compared,
as shown in Table 1, which is higher than that of some previous literatures [32–36]. The
charging–discharging time of NiMoO4@MnCo2O4 composite electrode material is the
longest, and the symmetry of the charging and discharging cycle indicates that the electrode
has excellent reversibility. The capacitance performance is attributed to the nano urchin-like
morphology of the material, which provides a larger electrolyte contact area. Therefore, the
electrochemical properties of composite electrode material are improved. To further explore
the charge transfer ability of the prepared electrodes, EIS measurements were carried out,
as shown in Figure 5e. The inset exhibits that compared with two single electrodes, in the
high frequency region, the NiMoO4@MnCo2O4 sample has a smaller semicircle arc and
x-axis intercept, which represents the charge transfer resistance (Rct) and solution resistance
(Rs), indicating that the composite has a faster ion-electron transfer rate at the electrode
and electrolyte interface, and smaller intrinsic resistance. The corresponding Rs values
of NiMoO4, MnCo2O4, and NiMoO4@MnCo2O4 are 0.91, 0.77 and 0.67 Ω, respectively.
In the low frequency region, the composite material shows the higher straight-line slope,
which accounts for faster electrolyte ion mobility. Cycling performance (10 mA cm−2)
of the as-prepared electrodes is displayed in Figure 5f. Compared with NiMoO4 (75%)
and MnCo2O4 (45%), NiMoO4@MnCo2O4 (96%) shows a better cycling lifespan after
undergoing the charging–discharging process 10,000 times.

In order to study the application of NiMoO4@MnCo2O4 in SCs, the positive electrode
and negative electrode of ASCs are NiMoO4@MnCo2O4 electrode and active carbon (AC)
electrode, respectively. Figure 6 shows the electrochemical curves of the assembled device.
Figure 5a shows the CV curves at the scanning rate of 100 mV/s. The voltage windows
of the device are 1.1 V, 1.2 V, 1.3 V, 1.4 V, 1.5 V and 1.6 V, respectively. The shapes of all
curves are nearly the same, indicating that the device can operate at 1.1 V–1.6 V and the
maximum voltage window can reach 1.6 V at the same time. Figure 6b shows the CV
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curves of NiMoO4@MnCo2O4//AC at scanning rates of 5–100 mV/s. With the increase
in scanning rate, the shapes of the CV curves increase, which is mainly attributed to
the synergy between materials. These curves have obvious redox peaks, indicating that
the asymmetric SCs have pseudocapacitance characteristics. Meanwhile, with increasing
scanning rate, the integral area of the curves is enhanced. The GCD curves with different
current densities are shown in Figure 6c, which indicates that the linear trend of the curve is
obvious at high current densities. The voltage window is 1.5 V, and the surface capacitance
of the device can be calculated according to the formula. When the current densities are 1, 2,
4, 8 and 10 mA/cm2, the surface capacitances are 58.53, 22.73, 12.13, 1.9 and 1.13 mF/cm2,
respectively. Figure 6d shows the charge transfer characteristics of the prepared electrode
studied by EIS test. The slope is larger in the low frequency region, indicating that the
diffusion resistance of the assembled asymmetric SC is lower. The inset shows the Rs value
is only 1 Ω. Figure 6e shows the long cycling test with 10,000 times at 10 mA cm−2 and
coulombic efficiency. The capacity retention rate of the assembled asymmetric SC is 78.4%.
The decrease in capacity may be due to the morphology damage caused by long-term redox
reaction of electrode materials, which reduces the potential activity of the surface of the
material. The coulombic efficiency of ASCs keeps nearly 100% during 10,000 charging–
discharging tests. From Figure 6f, the Ragone plot offers an expression of the trend of the
energy density with the corresponding power density. Importantly, the maximum energy
density of the NiMoO4@MnCo2O4//AC device reaches 90.89 mWh/cm3 at the power
density of 3726.7 mW/cm3, which is better than some reported devices [37–41].

Table 1. Electrochemical performance comparison of NiMoO4@MnCo2O4 with previous literatures.

Materials Capacity Current
Density Electrolyte Capacitance

Retention Ref.

NiCo2O4/rGO/NiO 2.644 F cm−2 1 mA cm−2 3 M KOH 97.5% (3000 cycles) [32]
Fe2O3/Fe dendrite 2.166 F cm−2 1 mA cm−2 1 M KOH 90% (1000 cycles) [33]

NiCo2O4/C 2.057 F cm−2 1 mA cm−2 2 M KOH 81% (10,000 cycles) [34]
rGO/PPy 0.807 F cm−2 1 mA cm−2 1 M H2SO4 78% (2000 cycles) [35]

C@MnNiCo-OH/Ni3S2 2.332 F cm−2 1 mA cm−2 3 M KOH 89.45% (5000 cycles) [36]
NiMoO4@MnCo2O4 3 F cm−2 1 mA cm−2 3 M KOH 96% (10,000 cycles) This work
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4. Conclusions

A new type of NiMoO4@MnCo2O4 composite electrode material has been successfully
prepared on nickel foam by the two-step hydrothermal method, and its phase structures,
micromorphology and electrochemical properties are characterized and analyzed. Due
to the synergistic effect between the NiMoO4 nano pompon-like structure and MnCo2O4
nano needle-like structure, the prepared nano urchin-like NiMoO4@MnCo2O4 core–shell
nanostructure presents good pseudocapacitance properties. NiMoO4@MnCo2O4 samples
show better electrochemical performance than single NiMoO4 or MnCo2O4 electrode
materials, which exhibit a high specific capacitance of 3000 mF/cm2. After 10,000 cycles, the
capacity retention rate is 96%. In addition, the NiMoO4@MnCo2O4//AC assembled device
delivers a high energy density of 90.89 mWh/cm3 at a power density of 3726.7 mW/cm3.
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