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Abstract: Carbon nanostructures (carbon nanotubes, nano carbon spheres, layered carbon nanostruc-
tures) were prepared from a sodium dodecyl sulfonate @ sodium chloride system. Sodium dodecyl
sulfonate was used as a carbon source. A sodium chloride crystal in the carbonization procedure was
used to separate ordered aggregates of sodium dodecyl sulfonate. The results show that different
carbon nanostructures were prepared at low concentrations (1CMC~5CMC) by controlling the con-
centration of sodium dodecyl sulfonate, such as nano carbon spheres and carbon nanotubes, and that
layered carbon nanostructures were formed at high concentrations (10CMC). The prepared carbon
nanostructures were characterized by transmission electron microscopy, fluorescence spectrometry
and Raman spectrometry. The results of this experiment show that the surfactant @ salt system is a
potential method for the preparation of carbon nanostructures.

Keywords: carbon nanostructures; surfactant; ordered aggregate; carbonization

1. Introduction

Since the advent of carbon nanostructures in the 1970s, although it has a history of
more than 50 years, the research enthusiasm has never been reduced. Common carbon
nanostructures include carbon nanotubes [1], carbon nanoangles [2], carbon nanodots [3],
graphene [4] and other zero-dimensional, one-dimensional, two-dimensional and three-
dimensional materials. The most widely studied carbon-based nanomaterials are carbon
nanotubes and graphene. Carbon nanotubes are circular tubes with a spiral structure,
and they are artificial synthetic carbon materials with the highest hardness and the best
strength [5]. Graphene is a carbon-based material that is tightly stacked by single-layer
carbon atoms in an SP2 hybrid orbit into a two-dimensional honeycomb structure [6];
graphene is expected to make possible not only the improvement of existing technologies,
but also the development of new technologies unthinkable [7]. At present, the prepara-
tion of carbon nanostructures usually adopts the chemical vapor deposition method [8],
oxidation–reduction method, combustion method, arc discharge method, pulse laser abla-
tion method, electrospinning method and detonation synthesis method. However, these
methods have certain defects such as a low yield of carbon nanostructures, harsh reaction
conditions and high requirements for catalysts, which will inevitably lead to complex
production processes and higher costs. Based on these, a new method for preparing carbon
nanostructures with convenient operation and a low cost is proposed in this study.

The electron arrangement of the carbon ground state is 1S2, 2S2, 2P2, and carbon
nanostructures are orderly arranged by the hybridization of different hybrid orbitals [9],
so carbon nanostructures can be obtained by the carbonization of ordered aggregates.
A surfactant is a type of amphiphilic molecule that is both lipophilic and hydrophilic;
this molecule will adopt a unique directional arrangement compared to a water medium
in an aqueous solution system (including the surface and interface) and form a certain
structural organization. Sodium dodecyl sulfonate (SDSN) is an anionic surfactant, and
Hartley [10] proposed that the micelles are spherical and have a certain size in CMC
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aqueous media. With the increase in the solution concentration, the aggregation shape
of the micelles changes to obtain various structures (Figure 1). In primary experiments,
if the SDSN solution is carbonized directly, carbon nanostructures will not be obtained
because of agglomeration. In order to solve this problem, a certain salt was added to the
solution to separate the SDSN micelles in the solution. Since sodium chloride (NaCl) is
resistant to high temperature and belongs to neutral salts, the surfactant micelles should
not be greatly affected. After stirring and evaporation, the SDSN @ NaCl system was
formed and carbonized. In the carbonization process, NaCl plays a role in separation
and also in air isolation, so that the carbonization process does not require the protection
of rare gases. It can be carbonized directly in a muffle furnace connected with the air.
Finally, carbon nanostructures with different morphologies were successfully obtained.
Cleaner production can be achieved by drying the filtrate after washing the carbonization
products to recover NaCl. Compared with other methods, this method has the advantages
of convenient operation, a low cost and no need for a catalyst, and it also has strong
practical application ability.
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Figure 1. Structure formation in surfactant solution.

2. Experimental
2.1. Preparation of SDSN Solution

The CMC value of SDSN in a water medium at 40 ◦C was 9.7 × 10−3mol/L. SDSN
(analytical reagent, 99.98%, Aladdin, Shanghai, China) at 1, 2, 5 and 10 times the CMC was
dissolved in 100 mL water using an electronic balance and a volumetric flask.

2.2. Preparation of SDSN @ NaCl System

The SDSN @ NaCl was grown using the evaporative crystallization method. The
prepared solution was placed in a 200 mL beaker, and the beaker was reposed on a
magnetic heating stirrer to add a magnet. The temperature of the magnetic heating stirrer
was adjusted to 200 ◦C, and the rotation speed was 300 r/min. When the solution was clear,
it showed that SDSN formed the corresponding micelles, and NaCl (analytical reagent,
98.98%, Aladdin, Shanghai, China) was gradually added to the solution until crystallization
occurred in the solution. The SDSN @ NaCl system was successfully prepared by continuing
stirring and heating to evaporate all the water in the SDSN solution to form a white
blending solid.

2.3. Preparation of Carbon Nanostructures

The prepared SDSN @ NaCl was placed in a crucible and reposed in a box-type
resistance furnace. The temperature was raised to 500 ◦C, 600 ◦C and 800 ◦C at a rate
of 5 ◦C/min. The samples were kept at the corresponding temperature for 1h to ensure
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that they were fully carbonized. The box-type resistance furnace was closed to wait for
automatic cooling to room temperature to remove the samples, and then the carbonized
products of SDSN @ NaCl at various temperatures were obtained (Figure 2).
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Figure 2. Experimental process diagram.

2.4. After-Treatment

The carbonized products extracted from the box-type resistance furnace were grinded
to a powder by a mortar and then added into a 1000 mL beaker to soak in ultrapure water
for 24 h to make the carbon nanostructures aggregate. The carbonized products were
filtered by a vacuum pump and a sand core filter and dried at 60 ◦C for 5~10 h in a constant
temperature drying oven.

2.5. Characterization

The carbon nanostructures were characterized by transmission electron microscopy
(TEM) (FEI tecnai G2 F30, USA), fluorescence spectrometry (PL) (Hitachi, F-400, Japan) and
Raman spectrometry (Raman) (Horiba HR Evolution, France).

Transmission electron microscopy was used to observe the microstructure information
of the carbon nanostructures and understand their morphology under different concen-
trations of SDSN. Samples were prepared for transmission electron microscopy (TEM) by
dispersing some of the as-prepared products in ethanol with sonication and dropping a
small amount of the dispersed product onto carbon-coated grids [11]. The prepared spheri-
cal carbon nanostructures were characterized by fluorescence spectroscopy. The samples
were excited at 360 nm, 380 nm, 400 nm and 420 nm to obtain PL spectra. Additionally, the
sample was excited by 532 nm visible light to obtain its Raman spectrum. [12].

3. Results and Discussion
3.1. TEM Image Analysis of Carbon Nanostructures
3.1.1. TEM Images of Carbon Nanostructures at 500 ◦C

The TEM images of the carbon nanostructures obtained by the carbonization of dif-
ferent concentrations of SDSN @ NaCl at 500 ◦C are shown in Figure 3 [13]. Figure 3a
shows the formation of spherical carbon nanostructures at the concentration of 1CMC.
With the concentration reaching 2CMC (Figure 3b), the particle size of the spherical carbon
nanostructures increased, and the agglomeration phenomenon increased. When the con-
centration increased to 5CMC (Figure 3c), the morphology of the carbon nanostructures
changed into a tubular structure. Figure 3d shows that when the concentration reached
10CMC, layered micelles formed due to SDSN, so the layered carbon nanostructures were
formed after carbonization.
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3.1.2. TEM Images of Carbon Nanostructures at 600 ◦C

Carbon nanostructures were obtained by the carbonization of the SDSN @ NaCl system
at 600 ◦C, as shown in Figure 4. The TEM images of carbon nanostructures formed at four
concentrations of a, b, c and d were not significantly different from those at 500 ◦C. The
difference was that when the carbonization temperature was 600 ◦C, the carbonization effect
was better due to the increase of temperature, and the formation of carbon nanostructures
were more complete and clearer.
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3.1.3. TEM Images of Carbon Nanostructures at 800 ◦C

Similarly, the carbon nanostructures obtained by the carbonization of the SDSN @
NaCl system at 800 ◦C are shown in Figure 5. Compared with Figure 3, the morphology of
the obtained carbon nanostructures is similar, but compared with Figure 4, the morphology
of carbon nanostructures is not more clear and complete, and serious agglomeration occurs.
This is due to the hysteresis phenomenon of the muffle furnace when the carbonization
temperature is set at 800 ◦C, which leads to the temperature exceeding the melting point
of NaCl (801 ◦C), as a result, NaCl does not play a better role in separating carbonization,
resulting in serious agglomeration of the carbon nanomaterials.
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3.2. PL Spectrum Analysis of Spherical Carbon Nanostructures

The spherical carbon nanostructures prepared at three temperatures were excited by a
wavelength of 360 nm–420 nm with an interval of 20 nm. Figure 6 shows the PL spectra of
the three spherical carbon nanostructures.
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It can be seen from Figure 6 that the optimal excitation wavelength of the three
spherical carbon nanostructures was 420 nm; when the excitation wavelength increased
from 360 nm to 420 nm, the emission wavelengths of samples a and c were similarly
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concentrated between 430 nm and 700 nm, and the emission wavelength of sample b
was concentrated between 330 nm and 600 nm. At the same time, with the increase in the
excitation wavelength, the three spherical carbon nanostructures all had different degrees of
red-shift, indicating that the fluorescence of the three spherical carbon nanostructures was
closely related to the excitation wavelength, which may be the result of the surface defects
of the spherical carbon nanostructures [14–16]. This indicates that the polar functional
groups on the surface of the spherical carbon nanostructures reduced the energy level
difference of the π−π* transition. Therefore, with the increase in surface chromophores,
the PL spectrum of the spherical carbon nanostructures red-shifted [17]. The upconversion
luminescence properties of the spherical carbon nanostructures have great application
prospects in high-efficiency photocatalysis, photovoltaic devices, energy conversion and
other fields [18].

3.3. Analysis of Graphitization Degree

Graphitization is usually understood as a phase transformation of C-C SP3 to C-C SP2

bonds in metastable diamonds [19]. Raman spectroscopy is a direct and non-destructive
analysis method to characterize the structural properties of carbon nanostructures such
as defects, disorder and doping. The Raman spectra of the carbon nanostructures ob-
tained at the three temperatures are shown in Figure 7. The Raman spectra of the carbon
nanostructures show the G and D bands that are characteristic for graphitic structures,
where the G band (at ~1580 cm−1) originates from the ordered, well-graphitized carbon,
while the D band (at ~1360 cm−1) is the disorder-activated band [20,21]. The ratio of the
area of the D band to G band (ID/IG ratio) in Raman spectra has been used extensively
as a measure of the graphitization of a sample, and as a measure of the quality of the
carbon nanostructures produced: a smaller ID/IG ratio corresponds to fewer defects [22].
There is a characteristic peak α band at 600 cm−1, which is due to the oxygen vacancies in
the carbonation process. With the increase in the experimental temperature, the oxygen
vacancies decreased gradually [23].
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Figure 7. Raman spectra of carbon nanostructures at different temperatures.

The carbon nanomaterial ID/IG ratios obtained at the three temperatures were 2.973,
2.731 and 2.812. The ID/IG value at 600 ◦C was the smallest, indicating that the carbon
nanostructures at 600 ◦C had the least defects and a more complete crystal structure;
when the temperature was 500 ◦C, the degree of graphitization was the lowest; when the
temperature was 800 ◦C, NaCl melted and covered the surface of SDSN, resulting in the
carbonization temperature not reaching the set temperature.
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4. Conclusions

The synthesis of carbon nanostructures was carried out by a new method. Ordered
aggregates can be obtained by controlling the surfactant concentration. Ordered aggregates
have spherical, tubular, layered, wormlike shapes. The direct carbonization of ordered
aggregates will destroy the ordered structure. In this study, the ordered aggregates were
evenly separated by salt crystallization, and on this basis, carbon nanostructures with
different shapes were obtained by carbonization. Nano carbon spheres were formed at
the concentration of SDSN1CMC, carbon nanotubes were formed at the concentration
of SDSN5CMC and layered carbon nanostructures were formed at the concentration of
SDSN10CMC. This method is based on the specific structure of the surfactant in the aqueous
solution and the idea of salt wrapping, effectively avoiding the current preparation of
carbon nanostructures which entails a complex process, harsh reaction conditions, a high
cost and many other defects. In this paper, the best carbonization temperature was 600
◦C under the three temperatures studied. The prepared carbon nanostructures had the
highest graphitization degree and a pure phase. At the same time, this method can be
extended to other carbonized surfactants and high-temperature salt systems. It has a
strong application prospect to prepare different carbon nanostructures by controlling the
concentration of surfactants.
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