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Abstract: Gap-enhanced Raman tags (GERTs) were widely used in cell or biological tissue imaging
due to their narrow spectral linewidth, weak photobleaching effect, and low biological matrix
interference. Here, we reported a new kind of graphene-wrapped, petal-like, gap-enhanced Raman
tags (GP-GERTs). The 4-Nitrobenzenethiol (4-NBT) Raman reporters were embedded in the petal-like
nanogap, and graphene was wrapped on the surface of the petal-like, gap-enhanced Raman tags.
Finite-difference time-domain (FDTD) simulations and Raman experimental studies jointly reveal
the Raman enhancement mechanism of graphene. The SERS enhancement of GP-GERTs is jointly
determined by the petal-like “interstitial hotspots” and electron transfer between graphene and
4-NBT molecules, and the total Raman enhancement factor (EF) can reach 1010. Mesoporous silica
was grown on the surface of GP-GERTs by tetraethyl orthosilicate hydrolysis to obtain Raman tags of
MS-GP-GERTs. Raman tag stability experiments showed that: MS-GP-GERTs not only can maintain
the signal stability in aqueous solutions of different pH values (from 3 to 12) and simulated the
physiological environment (up to 72 h), but it can also stably enhance the signal of different Raman
molecules. These highly stable, high-signal-intensity nanotags show great potential for SERS-based
bioimaging and multicolor imaging.

Keywords: gap-enhanced Raman tags; graphene; Raman-enhanced mechanism; stability

1. Introduction

Surface-enhanced Raman scattering (SERS) is an ultrasensitive vibrational spectroscopy
technique that is widely used in various fields, such as chemistry, physics, biology, and
medicine [1–5]. The nanoprobes designed based on SERS technology are called “SERS tags”,
which are usually composed of metal nanoparticles and Raman reporter molecules [6]. The
strong characteristic Raman signal can be generated by “SERS tags”; thus, it has a similar
optical-labeling function with fluorescent dyes and quantum dots, showing great potential in
the field of biological analysis and imaging [7–9]. However, this simple metal nanoparticle-
Raman reporter molecule structure lacks stability, and the Raman signal is easily disturbed
by the environment. Usually, a layer of material needs to be wrapped around the structure
to protect the Raman signal molecule. When necessary, specific target molecules need to be
modified outside the protective layer to obtain SERS probes with various biological functions.

Gap-enhanced Raman tags (GERTs) are an emerging class of SERS tags. In GERTs,
Raman reporter molecules are embedded between metal core shells, which reduces the in-
fluence of the external environment and nanoparticle aggregation on Raman signals [10–13].
Recently, Zhang et al. [14]. proposed a petal-like, gap-enhanced Raman tag (P-GERTs),
which enables single-particle detection due to the strong electromagnetic field hot spots
generated by both the inner gap and the outer petaloid structure. However, the Raman
reporters adsorbed on the surface of the outer petal structure of P-GERTs are still affected
by the external environment, resulting in unstable SERS signals and poor controllability.
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Graphene is one of the most widely studied and mature two-dimensional (2D) atomic
materials [15–17]. It has the advantages of single atomic layer thickness, unique phononic
structure, high-electron mobility, chemical inertness, and biocompatibility [18–20]. More-
over, graphene can also be used as a shell-separating nanoparticle extension material for
the fabrication of ultrathin shells at the atomic layer scale, while also providing addi-
tional chemical enhancement [21]. Numerous studies have shown that the combination of
graphene and metal nanoparticles can enhance the SERS performance of substrates [22–24].
Qiu et al. [25]. used the electrostatic interaction between graphene oxide and gold nanorods
to synthesize graphene oxide-wrapped gold nanorods and reduce the biological toxicity of
gold nanorods. Zhang’s research group [26,27] combined graphene with silver nanoparti-
cles to obtain stable and highly reproducible SERS substrates. Li et al. [28]. reported the
enhanced Raman spectra of graphene-wrapped gold nanoparticles, which exhibited good
pH stability and high-temperature stability.

In this work, we developed new graphene-wrapped, petal-like, gap-enhanced Raman
tags (GP-GERTs for brevity). The 4-NBT Raman reporters were embedded between the
petal-like nano-gaps, and graphene was wrapped on the surface of the petal-like gold
nanoparticles by electrostatic interaction. We explained the Raman enhancement mech-
anism of GP-GERTs through FDTD simulations and Raman experimental studies. The
“interstitial hot spots” between petals and the “charge transfer” between graphene and
4-NBT jointly enhanced the SERS signal, and the total Raman EF can reach 1.75 × 1010.
Mesoporous silica was grown on the surface of GP-GERTs by hydrolysis of tetraethyl
orthosilicate to obtain MS-GP-GERTs. Due to the special structure of Raman tags and the
chemical inertness of graphene, MS-GP-GERTs showed excellent stability in serum environ-
ment and aqueous solutions with different pH values. The Raman signal of MS-GP-GERTs
remained stable, whether immersed in an aqueous solution with a pH ranging from 3
to 12 or immersed in a simulated physiological environment for a long time (up to 72 h).
In addition, the MS-GP-GERTs structure can also achieve stable SERS enhancement for a
variety of different Raman reporters. This highly stable, high-signal intensity Raman tag
has great potential for applications in different types of biomedical imaging and multicolor
Raman imaging.

2. Materials and Methods
2.1. Materials

Chloroauric acid (HAuCl4·4H2 O)) and cetyltrimethylammonium chloride (CTAC, 99%)
were purchased from Shanghai Meryer Chemical Reagent Co., Ltd (Meryer, Shanghai, China).
The 4-Nitrobenzenethiol (4-NBT, 95%), 1,4-benzenedithiol (1,4-BDT, 98%), 4-mercaptobenzonitrile
(4-MBN, 95%), Biphenyl-4,4′-dithiol (B-4,4′-D, 98%), and 2-naphthalene thiophenol (2-NT, 98%)
were obtained from Shanghai Macklin Biochemical Technology Co., Ltd (Macklin, Shanghai,
China). Ascorbic acid (AR, 99%), sodium hydroxide solid powder (NaOH, AR, 96%), hy-
drochloric acid (ACS, 37%), sodium chloride (AR, 99.5%), glucose monohydrate (98%), and
ethyl orthosilicate (TEOS) were purchased from Shanghai Aladdin Biochemical Technology Co.,
Ltd (Aladdin, Shanghai, China). Bovine serum albumin (98%) was purchased from Hefei Qian-
sheng Biotechnology Company (Qiansheng, Hefei, China). Mechanically exfoliated single-layer
graphene (99%) was purchased from Shenzhen Suiheng Graphene Technology Co., Ltd (Suiheng,
Shenzhen, China). Anhydrous ethanol and isopropanol were purchased from Tianjin Huaxun
Pharmaceutical Technology Co., Ltd. (Huaxun, Tianjin, China). Deionized water (18.25 MΩ)
was used for all experiments.

2.2. Synthesis of GP-GERTs and MS-GP-GERTs

Gold nanocores were synthesized by referring to the work of Zhang et al. [14]. The
synthesis process of GP-GERTs and MS-GP-GERTs are shown in Figure 1.
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Figure 1. Schematic illustration of the synthesis process of the GP-GERTs and MS-GP-GERTs and
SERS measurement by Raman system.

Firstly, Raman reporter molecules were modified on the surface of gold nanocores.
The 4-NBT ethanol solution (500 µL, 10 mM) was added to 10 mL of gold nucleus solution
(1 nM) and sonicated for 30 min; the obtained sol particles were washed with CTAC solution
(50 mM) by centrifugation and then re-dispersed in CTAC (50 mM) solution for later use. In
this process, the ethanol solution of 4-NBT was replaced by the ethanol solution of different
Raman molecules, and the gold nanocores modified with different Raman molecules can
be obtained.

Secondly, gold nanopetals were grown on the surface of gold nanocores modified with
Raman reporters. A total of 0.5 mL of 4-NBT molecule-modified gold nanonucleus solution
was added to a mixed solution of CTAC (8 mL, 0.05 M), ascorbic acid (250 µL, 0.04 M) and
chloroauric acid (500 µL, 5 mM). The solution changed from colorless to pink, purple, and
blue, and it continued to be sonicated for 30 min. P-GERTs with 4-NBT Raman reports were
obtained.

Thirdly, petal-gap enhanced Raman tags was wrapped by graphene. A total of 4 mL of
the prepared P-GERTs were mixed with 2 mL of graphene ethanol solution (20 mg/L), and
NaOH (0.05 M) was added to adjust the pH of the solution to 12.5. The mixture was stirred
at 40 ◦C for 8 h; graphene could be bonded on the surface of P-GERTs via electrostatic
interaction. After the dispersion was cooled to room temperature, it was centrifuged at
14,000 rcf for 15 min to remove the supernatant and was re-dispersed in CTAC to obtain
GP-GERTs.

Finally, mesoporous silica shells were grown on the surface of GP-GERTs through
TEOS hydrolysis. An amount of 1.5 mL of deionized water was added to 2 mL of GP-GERTs,
and sodium hydroxide solution (0.05 M) was added dropwise to adjust the pH to 12.5. Next,
50 µL of 5% TEOS in isopropanol was added slowly to the solution under stirring. This
procedure was repeated three times at 30-min intervals, and then the mixture was reacted
for 24 h at 40 ◦C. The resulting solution was then centrifuged at 14,000 rcf for 15 min, the
supernatant was removed, and the particles were redispersed in 2 mL of ethanol to obtain
MS-GP-GERTs.

2.3. Characterization of GERTs

Scanning electron microscope (SEM) images were acquired on a Merlin Compact
(Zeiss, Oberkochen, Germany) with an accelerating voltage of 10 kV. Transmission electron
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microscopy (TEM) images were acquired on a FEI Talos F200c (ThermoFisher, Waltham,
MA, USA) at 120 kV. UV-Vis spectra were acquired using a Lambda 45 UV-Vis spectropho-
tometer (PerkinElmer, Waltham, MA, USA). Fourier transform infrared spectra (FTIR) were
acquired using a VERTEX V70 Fourier infrared spectrometer (Bruker, Karlsruhe, Germany).
Raman spectra were recorded with a laser confocal Raman spectrometer (XperRam200,
Nanobase, Seoul, Korea) equipped with an Olympus upright microscope with a 40× objec-
tive, numerical aperture (NA) of 0.65, and an Andor scientific grade TE-cooled CCD. The
Raman excitation wavelength was set to 785 nm, the power was 60 mW, the integration time
was set to 1 s, and the spectral resolution was 2.5 cm−1. All Raman-testing experiments
were performed on silicon substrates. The baseline of spectral data was removed by the
LabSpec software (Horiba, Paris, France).

2.4. Stability Experiments of MS-GP-GERTs

For the experiment of PH stability, 2 mL of the prepared MS-GP-GERTs solution was
centrifuged and dispersed in aqueous solutions of different pH values (pH values ranged
from 3 to 12). After soaking for 30 min, it was centrifuged again and redispersed in 2 mL of
ethanol. A small amount of the sample was drawn dropwise on the silicon substrate using
a pipette, and the MS-GP-GERTs sample to be tested was obtained after natural drying.

Using 10% bovine serum albumin, 10% glucose solution, and 0.9% normal saline to
simulate a physiological environment, the time stability of Raman tags in a physiological
environment was tested. The specific test method is as follows: 2 mL of the prepared
MS-GP-GERTs solution was centrifuged and dispersed in 2 mL of bovine serum albumin
solution (10%). The mixing time of MS-GP-GERTs and 10% bovine serum albumin solution
was controlled as 2 h, 12 h, 24 h, 36 h, and 72 h, respectively. It was then washed twice by
centrifugation with absolute ethanol and redispersed in 2 mL of ethanol. A small amount
of sample was drawn dropwise on the silicon substrate using a pipette, and the MS-GP-
GERTs sample to be tested was obtained after natural drying. Two additional tests can be
performed by replacing the 10% bovine serum albumin solution with 10% glucose solution
or 0.9% normal saline.

3. Results
3.1. UV-Vis Absorption Spectroscopy

According to the synthesis process of Raman tags, we tested three sets of UV-Vis
absorption spectroscopy for comparison. The red and black curves of Figure 2a represent
the absorption spectra of gold nanocores and gold nanocores modified 4-NBT molecules,
respectively. As shown in Figure 2a, the absorption peak of gold nanocores is around 524
nm, which is consistent with the absorption peak of 20 nm gold particles [29]. After the
adsorption of 4-NBT molecules on the surface of the gold nanocores, the absorption peak
has a red shift of 3 nm. The blue and green curves in Figure 2a represent the absorption
spectra of P-GERTs and (MS)P-GERTs, respectively. Different from the absorption peak
of gold nanocores, the absorption peak of P-GERTs is around 638 nm, which can be
explained by the larger diameter of Raman tags and the generation of a large number of
electromagnetic hot spots. In addition, compared with P-GERTs, the absorption peak of
(MS)P-GERTs has a 5 nm red shift, which indicates that mesoporous silica can grow on the
surface of P-GERTs [30].

Figure 2b is the UV-Vis absorption spectroscopy of graphene, GP-GERTs, and MS-GP-
GERTs. As shown in Figure 2b, in the range of 300–900 nm, the absorption curve of graphene
shows a decreasing trend, which is the same as that reported in the previous literature [31].
In addition, after the Raman tags were combined with graphene, the absorption peak of the
Raman tags in the visible light range disappeared, which was mainly affected by graphene.
It was also confirmed that the Raman tags were encapsulated by graphene, and GP-GERTs
and MS-GP-GERTs were successfully synthesized.
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3.2. Fourier Transform Infrared Spectroscopy (FTIR)

Figure 3 shows the FTIR spectra of graphene, GP-GERTs, and MS-GP-GERTs. As
shown in Figure 3, graphene has no obvious characteristic peaks in the infrared region,
which is because the single-layer graphene we use is prepared by mechanical exfoliation.
During the measurement of FTIR spectra, graphene is compressed into graphite flakes.
Therefore, none of the peaks were measured. GP-GERTs also showed the same trend, with
no obvious peaks in the infrared region, which also indicated that graphene was wrapped
on the surface of petal-like gold nanostructures. The FTIR spectra of MS-GP-GERTs showed
characteristic peaks of mesoporous silica. The peak around 790 cm−1 is derived from the
stretching vibration of Si-O bond, and the peak around 1075 cm−1 is derived from the
Si-O-Si group [32]. Furthermore, since our mesoporous silica was obtained by hydrolysis
of TEOS (isopropanol as solvent), and the composite structure was not calcined when
measuring the FTIR spectrum. Therefore, the vibration peaks of C-H bond appeared
at 2850 cm−1 and 2920 cm−1, and the vibration peak of the Si-OH bond appeared near
3014 cm−1 [33].
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3.3. SEM and TEM

Figure 4 shows the SEM images of P-GERTs. Figure 4a is a 100 KX magnification of
P-GERTs, and the scale bar is 100 nm. The shape of P-GERTs nanoparticles is similar to that
of petals, and the agglomeration between particles is not obvious, and they are relatively
independent of each other. Figure 4b is the P-GERTs magnified by 200 KX, and the scale bar
is 20 nm. According to Figure 4b, the morphology of P-GERTs nanoparticles can be better
observed, and the diameter of the particles can be estimated. The SEM images confirmed
that the P-GERTs had a petal-like shape with particle diameters ranging from about 60 nm
to 80 nm.
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Figure 5a shows the TEM image of P-GERTs, and the scale bar is 20 nm. The mi-
crostructure of P-GERTs can be more clearly observed from Figure 5a, which consists of an
inner gold core, middle nano gaps (marked by a red arrow in Figure 5a), and outer nano
petals. The total diameter of P-GERTs is about 70 nm, which is mutually confirmed with
the previous SEM images. Figure 5b,c are TEM images of monolayer graphene and GP-
GERTs, respectively, and the scale bar is 2 µm. The complete morphology of the monolayer
graphene can be seen from Figure 5b, and combined with Figure 5c, it can be clearly seen
that most of the P-GERTs nanoparticles are covered by the mesh-like monolayer graphene.
Figure 5d shows a TEM image of (MS)P-GERTs with a scale bar of 200 nm, and the upper
right inset shows a further magnified single (MS)P-GERTs particle with a scale bar of 20 nm.
As shown in Figure 5d, the mesoporous silica layer wraps around the P-GERTs with a
thickness of about 15–25 nm, which also shows a clear mesoporous structure in the enlarged
inset. Figure 5e shows the TEM picture of MS-GP-GERTs, and the scale bar is 200 nm.
From Figure 5e, it can be seen that most of the MS-GP-GERTs nanoparticles are dispersed
independently in the solution, and the individual nanoparticles are marked by red arrows,
and the diameter of the particles is about 80–95 nm. It can be observed that a mesoporous
silica layer grows on the surface of P-GERTs while being covered by excess graphene in
solution. It should be pointed out that there is also a very thin graphene layer (about
0.5–1 nm) between the mesoporous silica layer and the P-GERTs particle. This is because
the excess monolayer graphene was well mixed with the P-GERTs before the mesoporous
silica cladding is grown. Unfortunately, such thin graphene is difficult to observe together
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with mesoporous silica and P-GERTs in TEM characterization. However, in our later Raman
experiments and calculations of the enhancement mechanism, the graphene interlayer was
proven to exist.
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3.4. Simulation

FDTD solutions (Lumerical, Vancouver, BC, Canada) simulation software was used to
simulate the spatial distribution of the electromagnetic field strength of the Raman tags.
Figure 6a shows a simulation model for simulating the electric field effect of a Raman tag.
As shown in Figure 6a, the laser source is total-field scattered-field, and the laser is polarized
along the X direction and propagates in the -Z direction. The real structures of P-GERTs are
very complex with random petal-like structures, and in the FDTD simulations, we used
small gold nanospheres to simulate the petal structures. Figure 6c shows the 3D model
of the P-GERTs we used, which consists of an inner gold core (radius 15 nm), a molecular
layer of 4-NBT in the middle (thickness 1 nm), and outer petals (small gold spheres with
a radius of 9 nm). A total of 26 small golden spheres were used to simulate the petals of
P-GERTs. A total of 18 of them were evenly distributed on three circles perpendicular to
the X, Y, and Z axes, and the distance between the center of the small gold sphere and the
center of the inner gold core is 25 nm. The remaining eight were distributed in the center
of the remaining blank area, and the distance between the centers of the spheres is also
25 nm. The total particle size of the P-GERTs is about 68 nm, and the specific size is given
in Figure 6b. As shown in Figure 6d–f, the frequency domain filed and power monitor
are placed in the XY plane, and the 4-NBT molecular layer refractive index was set to one,
according to other literatures [34,35]. The graphene layer thickness was set to 1 nm, and
the refractive index of graphene was set to 2.63 + 1.28 i [36]. The thickness of the SiO2
layer was set to 20 nm, and the refractive index of SiO2 and Au were both derived from
the parameters in the software. The calculation priority is from inside to outside, and the
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refractive index of the medium surrounding the Raman label was set to 1.33 (simulated
water environment).
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Figure 6. (a) Schematic diagram of the Raman tag electric field effects simulation model; (b) 2D
dimension drawing of P-GERTs simulation model; (c) 3D simulation model of P-GERTs, the scale bar
is 20 nm; (d–f) Monitor setup planes for P-GERTs, GP-GERTs, and MS-GP-GERTs, the scale bars are
10 nm, 10 nm and 20 nm, respectively.

To investigate the effect of different laser wavelengths on the electric field enhancement
effect of P-GERTs, we calculated the electromagnetic field strengths of P-GERTs when
excited at three different laser wavelengths (532, 638, and 785 nm). As shown in Figure 7a–c,
the electric field intensity distributions of single P-GERTs were similar under the excitation
of three laser wavelengths, and the electromagnetic hot spots were mainly concentrated in
the gap between the gold core and the petals. When excited by 638 nm laser, the maximum
ratio of electromagnetic field strength is 38.6, when excited by 785 nm laser, the maximum
ratio is 33, and when excited by 532 nm laser, the maximum ratio is 28.7. According to the
previous absorption spectrum of P-GERTs, the resonance absorption peak of P-GERTs is
around 638 nm; thus, 638 nm belongs to resonance excitation, which is also the reason for
the strongest electric field enhancement effect. However, resonance excitation can lead to
a significant endothermic effect of metal nanoparticles, and the temperature around the
nanoparticles increases rapidly, which in turn affects the stability of Raman tags [37]. Both
785 nm and 532 nm belong to non-resonant excitation, and the thermal effect is not obvious,
which can ensure the long-term stability of the Raman tags. Compared with 532 nm, the
electric field enhancement effect is stronger at 785 nm excitation; thus, the excitation light
of 785 nm wavelength is used in the subsequent simulation and Raman experiments.
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Figure 7. (a–c) Electric field enhancement distributions of single P-GERTs calculated by FDTD at
excitation wavelengths of 785, 638, and 532 nm; (d–f) Electric field enhancement distributions of
single (MS)P-GERTs, GP-GERTs, and MS-GP-GERTs, all with excitation wavelengths of 785 nm.

Figure 7d–f shows the electric field enhancement distributions for single (MS)P-GERTs,
GP-GERTs, and MS-GP-GERTs. As shown in Figure 7d–f, the electromagnetic hot spots
of single (MS)P-GERTs, GP-GERTs, and MS-GP-GERTs are also concentrated in the gap
between the gold core and the petals. Silica layer and graphene layer have little effect
on the electromagnetic field strength of P-GERTs. The maximum ratio of electromagnetic
field strength of single (MS)P-GERTs, GP-GERTs, and MS-GP-GERTs were 32.3, 33.8, and
33.5, respectively. Several studies have shown that graphene has the effect of enhancing
the Raman signal, but the enhancement mechanism is chemical enhancement, and the
enhancement effect of graphene on the electromagnetic field is not obvious [38–40]. Our
simulation results also provide support for this claim.

3.5. Raman Spectra and Enhancement Mechanism of GERTs

Figure 8a shows the Raman spectrum of 4-NBT molecule (10−3 mol/L) on silicon
substrate. As shown in Figure 8a, there are five main characteristic peaks in the Raman
spectrum of 4-NBT molecule, which are 1335 cm−1, 722 cm−1, 854 cm−1, 1080 cm−1,

and 1570 cm−1, respectively. The peak of 1335 cm−1 corresponds to the strong mode
ν(NO2), the remaining four peaks correspond to the four weak modes, π(CH) + π(CS) +
π(CC), π(CH), ν(CS), and ν(CC), respectively. Figure 8b shows the Raman spectrum of
graphene (10−3 mol/L) on silicon substrate. Within 1200–2800 cm−1, there are three Raman
characteristic peaks of graphene, which are D peak at 1330 cm−1, G peak at 1575 cm−1, and
2D peak at 2670 cm−1. Figure 8c shows the Raman spectra of four Raman tags of P-GERTs,
(MS)P-GERTs, GP-GERTs, and MS-GP-GERTs. As shown in Figure 8c, the Raman peaks
of all Raman tags are similar to those of the 4-NBT molecule. We found that the Raman
signal intensities of P-GERTs and (MS)P-GERTs were comparable, and the Raman signal
intensities of GP-GERTs and MS-GP-GERTs were comparable. We can clearly see that after
graphene-wrapped P-GERTs, the Raman signal of GP-GERTs is significantly enhanced. The
same conclusion can be drawn by comparing the Raman signal intensities of MS-GP-GERTs
and (MS)P-GERTs. To determine the concentration detection limit of MS-GP-GERTs Raman
tags, the prepared MS-GP-GERTs Raman tag solutions were diluted with ethanol. We
prepared samples with Raman tags of MS-GP-GERTs at concentrations of 100 pM, 10 pM,
1 pM, 100 fM, and 10 fM for Raman measurement, and the experimental results obtained
are shown in Figure 8e. From Figure 8e, it can be seen that even at a concentration of 100 fM
of MS-GP-GERTs, a 4-NBT Raman curve with a good signal-to-noise ratio can be obtained.
At further dilution to 10 fM, the Raman signal of 4-NBT was hardly detected.
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Figure 8. (a) Raman spectrum of 4-NBT on silicon substrate; (b) Raman spectrum of graphene
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It is generally reported that there are two enhancement mechanisms of SERS effect,
namely physical enhancement mechanism and chemical enhancement mechanism [41–43].
The physical enhancement mechanism can be explained as the “interstitial hot spots” of
rough metal surfaces or nanostructures are excited by the laser, causing localized surface
plasmon resonance to generate electromagnetic field enhancement (EM). The chemical
enhancement mechanism can be regarded as the signal enhancement caused by the charge
transfer between the substrate and the molecule, namely the charge transfer mechanism
(CT). It is worth mentioning that the graphene D peak (1330 cm−1) used in our experiments
is very close to the strong mode ν(NO2) peak (1335 cm−1) of the 4-NBT molecule, and
the graphene G peak (1575 cm−1) is very close to the ν(CC) peak (1570 cm−1) of the
4-NBT molecule. Coincidentally, in our experiments, the most obvious Raman signal
enhancements are also the two peaks at 1335 cm−1 (the yellow-shaded area in Figure 8c)
and 1570 cm−1 (the red-shaded area in Figure 8c). According to Zhu et al. [44], the intensity
ratio of the D peak and the G peak in the Raman spectra will change during the process of
converting graphene to graphene oxide. Due to the increased defects in graphene oxide,
the D peak will eventually become stronger. To determine the source of the Raman peak
enhancement in Figure 8c, we replaced the 4-NBT ethanol solution with ethanol solution
during the synthesis of MS-GP-GERTs and GP-GERTs so that the final composite structure
does not contain 4-NBT molecules. Figure 8d shows the Raman spectra of the composite
structures, MS-GP-GERTs, GP-GERTs, and graphene. As shown in Figure 8d, although the
signal intensities of graphene D peak (1330 cm−1) and G peak (1575 cm−1) in MS-GP-GERTs
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and GP-GERTs were slightly enhanced, the ratio of the two hardly changed. This indicates
that the graphene in the composite structure has not changed. It was further confirmed that
the enhancement of Raman peak in Figure 8c originated from the SERS signal of 4-NBT
molecules.

Therefore, the Raman signal enhancement mechanism of GP-GERTs tags may have
three situations: one can be explained as CT mechanism, the electron transfer between
graphene and 4-NBT molecules causes the Raman signal enhancement of GP-GERTs; the
other one can be explained as the EM mechanism, the “interstitial hotspot” around the
P-GERTs tag enhances the Raman signal of graphene, leading to the enhancement of the
Raman signal of GP-GERTs; the third possibility is that these two enhancement mechanisms
coexist.

According to the principle of electromagnetic field enhancement, the approximate
electromagnetic enhancement factor (EFEM) can usually be calculated with the following
formula [45]:

EFEM =
|Eout(ω0)|2|Eout(ωs)|2

|E0|4
≈ |Eout(ω0)|4

|E0|4
(1)

where E0 is the incident electric field strength, which is usually set to 1 V/m. Eout(ω0) is
the local electric field strength of incident light (frequency ω0), and Eout(ωs) is the local
electric field strength of Raman scattered light (frequency ωs).

According to the electric field simulation results in Section 3.3, the EFEM of P-GERTs,
(MS)P-GERTs, GP-GERTs, and MS-GP-GERTs Raman tags can be calculated to be 1.18 ×
106, 1.09 × 106, 1.31 × 106, and 1.26 × 106, respectively.

On the other hand, in the actual Raman experiment, the following formula can be
used to calculate the enhancement factor (EF) of the experimental results [46]:

EF =
ISERS/NSERS

IRaman
/NRaman (2)

Among them, EF represents the enhancement factor obtained by analyzing the exper-
imental results. ISERS and IRaman represent the Raman intensity of SERS and the Raman
intensity of the molecule itself, respectively. NSERS and NRaman represent the number of
molecules in the SERS experiment and the number of molecules in the ordinary Raman
experiment, respectively.

For normal Raman measurements, the concentration of the 4-NBT Raman molecule is
1 mM. For the calculation of the number of molecules in the SERS experiment, according to
literature, the surface area of gold nanospheres with a diameter of 20 nm is about 1256 nm2,
and it can be assumed that the adsorption area of each Raman molecule is 0.2 nm2 [47,48].
We estimate the number of Raman molecules adsorbed on each P-GERT to be 6280, and
multiplying the concentration of gold nanocores can calculate the number of 4-NBT Raman
molecules in the SERS experiment. The enhancement factors of P-GERTs, (MS)P-GERTs,
GP-GERTs, and MS-GP-GERTs can be calculated according to the signal intensity of 4-
NBT molecule at 1335 cm−1 in the Raman experiment and Equation (2), respectively,
EF= 7.56× 109, EF= 7.95× 109, EF= 1.67× 1010, and EF= 1.75× 1010. According to the
signal intensity of graphene at 1575 cm−1 in the Raman experiment and Equation (2), the
enhancement factors of GP-GERTs and MS-GP-GERTs can be calculated to be EF= 5.3× 109

and EF= 4.34× 109, respectively. Compared with the previous calculation results of the
electromagnetic enhancement factor (EFEM), EFEM is 106 order of magnitude, while the
actual EF in the experiment is 109~1010 order of magnitude, and the difference between
EFEM and actual EF is 103~104 order of magnitude. This indicates that the Raman signal
enhancement of GP-GERTs comes not only from EM enhancement, but also from chemical
enhancement (CT mechanism), and the Raman signal enhanced by CT mechanism is in the
order of 103~104.

Based on the experimental and theoretical calculation results, we propose a schematic
diagram of the possible Raman enhancement mechanism of GP-GERTs tags. As shown in
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Figure 9, the EM mechanism and the CT mechanism work together on 4-NBT molecules
and graphene. The EM mechanism originates from “electromagnetic hot spots” inside
and on the surface of the petal-like nanotags. The CT mechanism mainly comes from the
following three aspects: Firstly, the gold nanoparticles are excited by light to generate
hot electrons, which are transferred to 4-NBT molecules, and the 4-NBT molecules are
excited to generate SERS signals. Secondly, the hot electrons on the gold nanoparticles
may also be transferred to the graphene to enhance the Raman signal of the graphene or
transferred to the 4-NBT molecule after passing through the graphene. Thirdly, the hot
electrons generated by the photo-excited graphene are transferred to the 4-NBT molecule,
which in turn generates the SERS signal.
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3.6. Stability of MS-GP-GERTs

The stability of the Raman signal is an important indicator for evaluating Raman tags.
A stable Raman signal for a long time is an important basis for the practical application value
of Raman tags. For Raman tags applied in the field of bioimaging, it is usually necessary
to maintain stability under various storage conditions and physiological environments
(such as different pH and serum solutions). Figure 10a shows the experimental data of
the stability study of MS-GP-GERTs in aqueous solutions with different pH values. As
shown in Figure 10a, the Raman spectra and signal intensities of MS-GP-GERTs were hardly
affected despite the wide range of pH changes (from pH = 3 to pH = 12). This indicates that
MS-GP-GERTs have strong pH stability, especially in acidic environments, and the Raman
tags reported previously are difficult to maintain in acidic solutions (pH < 5) [14,30] since
the Raman 2D peak of graphene is more easily affected by the pH of the solution [49,50].
To evaluate the stability of graphene quality, similar to Figure 8d, we investigated the
changes of the 2D peaks of graphene in the composite structure MS-GP-GERTs without
4-NBT molecules in aqueous solutions with different pH values. The experimental results
are shown in Figure 10b. It can be seen from Figure 10b that the 2D peaks of graphene
were less affected by the pH values of the solution, and the intensity of the 2D peaks hardly
changes. Only when the pH value was 3, the 2D characteristic peak was shifted slightly to
lower wave numbers. Therefore, we believe that the quality of graphene in the composite
structure MS-GP-GERTs is stable in solutions of different pH values.
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peak Raman curves of graphene in composite MS-GP-GERTs in aqueous solutions with different
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times; (e) variation curve of normalized Raman intensity at 1335 cm−1 during incubation of MS-GP-
GERTs with normal saline.

Subsequently, we carried out a temporal stability test of the Raman signal of MS-GP-
GERTs in 10% bovine serum albumin solution. As shown in Figure 10c, MS-GP-GERTs were
stable for a long time in 10% bovine serum albumin solution. After 72 h, the Raman spectral
curves and signal intensities of MS-GP-GERTs remained basically unchanged, showing
excellent temporal stability in a simulated serum physiological environment. Considering
the actual physiological environment, we further investigated the stability of MS-GP-GERTs
in glucose solution and normal saline. The concentration of glucose solution was set to
10%, and 0.9% normal saline was prepared with sodium chloride and deionized water.
Similar to 10% bovine serum albumin, the incubation time of MS-GP-GERTs with glucose
solution (10%) and normal saline (0.9%) was varied from 0 h to 72 h, and the obtained
experimental results are shown in Figure 10d,e. From Figure 10d, it can be seen that the
Raman spectra of MS-GP-GERTs are very stable during the incubation time, and the Raman
tags show excellent temporal stability in glucose solution. Figure 10e shows the change of
the normalized Raman intensity of the 1335 cm−1 Raman peak during the incubation of
MS-GP-GERTs with normal saline. The Raman intensity of MS-GP-GERTs was also stable
during the incubation time, and saline had little effect on the stability of the Raman signal.

For most SERS tags, due to the direct adsorption of Raman reporters on the surface
of metal substrates, it is difficult to maintain stable performance under harsh conditions,
such as long-term laser irradiation and strong acid conditions [51–53]. This limits the
application of SERS tags to a certain extent, especially in in vivo imaging applications. In
our experiments, MS-GP-GERTs showed excellent stability in the serum environment and
aqueous solutions with different pH values. The main reasons are analyzed as follows:
First, our Raman reporters are not simply adsorbed on the surface of the metal substrate but
embedded in the inner gap of the petal-shaped gold nanoparticles, which makes the Raman
reporters less disturbed by the external environment. Secondly, graphene is wrapped on
the surface of P-GERTs, and the chemical inertness of graphene can protect Raman reporters
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from harsh environments. In addition, the protective layers of the mesoporous silica grow
on the surface of the graphene-wrapped, petal-like tags, which further improve the stability
and biocompatibility of the Raman tags.

Finally, we changed the Raman reporters inside the MS-GP-GERTs to study the stability
of the graphene-wrapped, petal-like, gap-enhanced Raman tag structure to the SERS
enhancement of different Raman reporters. Figure 11a shows the schematic structure of
MS-GP-GERTs with different Raman reporters. Different colors correspond to different
Raman reporters, and red, green, blue, and purple correspond to 1,4-BDT molecules, 4-
MBN molecules, B-4,4′-D, and 2-NT molecules, respectively. Figure 11b shows the SERS
spectra corresponding to Figure 11a. As can be seen in Figure 11b, the graphene-wrapped,
petal-like, gap-enhanced Raman tag structure can achieve stable SERS enhancement for all
four Raman reporter molecules. Similar to Figure 8e, we further examined the concentration
detection limit of MS-GP-GERTs tags with different Raman reporters. Figure 11c,d show
the Raman signals of MS-GP-GERTs tags with different Raman reporters at concentrations
of 10 pM and 100 fM, respectively. Raman spectra of different reporter molecules with
good signal-to-noise ratio can also be obtained when the Raman tags concentration is
100 fM. This means that SERS tags with different Raman characteristic peaks can be easily
prepared by only replacing the internal Raman reporters of MS-GP-GERTs. It shows the
great potential of MS-GP-GERTs in different types of biomedical imaging and multicolor
Raman imaging.
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4. Conclusions

In summary, we developed new graphene-wrapped, petal-like, gap-enhanced Raman
tags and demonstrated the detailed synthesis process. We explained the specific role of
graphene in Raman tags through FDTD simulations and Raman spectroscopy experimental
studies. The Raman enhancement of GP-GERTs is determined by both CT mechanism
and EM mechanism, and the total Raman EF can reach 1010. The stability experiments
show that MS-GP-GERTs not only have excellent stability in different PH values (from 3
to 12) aqueous solutions, but also maintain signal stability in the simulated physiological
environment for a long time (up to 72 h). In addition, the MS-GP-GERTs structure can also
achieve stable enhancement of different Raman reporters, showing a bright application
prospect in the field of biomedical imaging.
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