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Abstract: Ultrashort pulse lasers have significant advantages over conventional continuous wave
and long pulse lasers for the texturing of metallic surfaces, especially for nanoscale surface structure
patterning. Furthermore, ultrafast laser beam polarization allows for the precise control of the spatial
alignment of nanotextures imprinted on titanium-based implant surfaces. In this article, we report the
biological effect of beam polarization on human mesenchymal stem cell differentiation. We created,
on polished titanium-6aluminum-4vanadium (Ti-6Al-4V) plates, a laser-induced periodic surface
structure (LIPSS) using linear or azimuthal polarization of infrared beams to generate linear or radial
LIPSS, respectively. The main difference between the two surfaces was the microstructural anisotropy
of the linear LIPSS and the isotropy of the radial LIPSS. At 7 d post seeding, cells on the radial LIPSS
surface showed the highest extracellular fibronectin production. At 14 days, qRT-PCR showed on
the same surface an increase in osteogenesis-related genes, such as alkaline phosphatase and osterix.
At 21 d, mineralization clusters indicative of final osteoinduction were more abundant on the radial
LIPSS. Taken together, we identified that creating more isotropic than linear surfaces enhances cell
differentiation, resulting in an improved osseointegration. Thus, the fine tuning of ultrashort pulse
lasers may be a promising new route for the functionalization of medical implants.

Keywords: femtosecond laser processing; multiscale patterning; human mesenchymal stem cell; cell
adhesion; radial LIPSS

1. Introduction

Titanium and related alloys, such as titanium-6aluminum-4vanadium (Ti-6Al-4V),
have been used as the main biomaterial for dental and orthopedic implant devices, which
can be attributed to their resistance to corrosion, mechanical strength and high biocompati-
bility with host tissues [1,2]. However, patients still face the risk of implant failure because
of insufficient bone integration due to fibrous tissue production and/or the occurrence of
infection [3]. It remains a challenge to improve osseointegration with good mineralization
at the bone–implant interface. The initial cellular response to the implant surface is a key
factor for successful and stable long-term integration [4]. Human mesenchymal stem cells
(hMSCs) are attracted to the implant site and start interacting with the implant surface.
This step is followed by cell proliferation and differentiation toward an osteoblastic lineage.
Mature osteoblasts deposit an extracellular matrix, rich in collagen type I and fibronectin,
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and then produce a new calcified and mineralized matrix in contact with the implant
surface [5]. The filled bone–implant interface of successfully integrated implants have a
similar composition to natural mineralized bone.

Several attempts to optimize the osseointegration capacity of implant materials have
been reported [6]. In particular, it has been shown to be possible to modify surface biofunc-
tionalities, such as accelerated osteogenic differentiation, through surface roughening [7,8].
Surface roughness (Sa) in the microscale range (Sa = 1–2 µm) has been shown to increase
bone generation with implant contact and has been described to improve cell osteogenic
differentiation compared to smooth surfaces [9,10]. However, a surface with high micro-
roughness can also enable bacterial infiltration, with the development of biofilm on the
surface of the implant, leading to infection [11,12]. On the other hand, at smaller scales,
nanostructures can help limit bacterial adhesion to the surface [13,14]. Hence, even more
attention should be paid not only to microscale modifications, but also to the nanoscale
patterning of implants (Sa < 100 nm) for accelerated osseointegration and limited biofilm.
Nanostructuring of titanium surfaces via laser texturing is a very attractive and expanding
area that should be explored further in great detail, as it has emerged as a powerful and
versatile surface engineering process without additional coatings [15–20].

The femtosecond laser (FSL) offers the possibility to texture titanium at nanometric
scales with controlled nanopatterns [15,21]. Particularly, periodic nanostructures such as
laser-induced periodic surface structures (LIPSS) are formed during a complex interplay
between incoming laser light and surface waves [22]. The periodicity of the LIPSS is closely
linked to laser wavelength [23], and the direction of the LIPSS is determined by laser
polarization [24]. As a consequence, LIPSS with desired periodicity and linear or radial
organization can be produced by applying FSL light with a well-defined laser wavelength
and polarization [21]. In the process of developing next-generation implants, it is of great
importance to evaluate biological responses triggered by FSL-induced nanopatterns, which
are dependent on surface parameters, including surface isotropy modification.

Here, our goal was to use two different laser polarization states, linear or azimuthal,
to create two differently designed patterns with nanometric dimensions on a Ti-6Al-4V
surface. It is of interest to evaluate the influence of laser polarization on engineered surface
patterns. The two nanopatterns were conceived in order to obtain a similar LIPSS density
and similar nanoroughness; only the isotropy of the surface was modified. A linear laser
beam polarization created an anisotropic surface (linear LIPSS), whereas an azimuthal
polarization produced an isotropic surface (radial LIPSS). The idea of azimuthal and/or
radial polarization for anisotropy breaking has been investigated previously [24], but the
structures produced were in the µm scale. As mentioned earlier, µm-scale topography
may favor bacterial infiltration; therefore, we aimed at isotropic patterning on a nanoscale.
Furthermore, a direct comparison of isotropic nanostructures and anisotropic structures
with identical roughness has not been studied thus far.

Human MSCs are multipotential bone-marrow-derived stem cells that can differentiate
into a wide diversity of cell types, such as osteoblasts, and they represent a model of
choice in the field of cell–material interaction [25]. It is known that hMSC osteoblastic
differentiation can be directed by the complex interrelationship among surface properties
of the material and the state of intracellular tension [25–29]. The isotropy of nanoroughness
can be an important parameter to drive cellular responses. In order to engineer titanium
surfaces with optimal properties for improved osteogenesis, it is essential to understand if
cellular responses are modified by isotropic or anisotropic surface nanoroughness.

In this in vitro study, we assessed several stages of the osseointegration process. By
providing aligned or disordered textures to hMSCs, we hypothesized that cells differentially
organize their focal adhesions and, more importantly, their fibrillar adhesion (increased
cell contractility), thus accelerating their differentiation toward osteoblasts [30]. Moreover,
alterations in extracellular matrix mechanosensing are known to be potent regulators of
osteogenesis, bone formation and implant maintenance. RGD-containing ligands (such as
fibronectin and osteopontin) present in remnant bones support the adhesion, spreading
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and conversion of marrow-derived stem cells into osteoblasts [31,32]. These processes
are associated with the overexpression of several genes involved in osteogenesis, such
as osterix, bone sialoprotein and alkaline phosphatase. Finally, the ultimate step is initi-
ation and mineralization. Based on the importance of all these different events, we first
investigated the influence of linear or radial LIPSS on cell adhesion and contractility 24 h
post seeding by assessing focal adhesion characteristics. Then, fibronectin production was
quantified at day 7, followed by the expression of osteogenic-related genes at day 14 and
mineralization surfaces at day 21, compared to conventional polished titanium alloys. Our
results clearly indicate that isotropic texturing improved the induction of osteogenesis on
titanium surfaces at all investigated time points.

2. Materials and Methods
2.1. Titanium Alloy Samples

Mirror-polished titanium alloy samples of Ti6Al4V from Goodfellow (Huntingdon,
UK) were used in these experiments. The samples exhibited square dimensions of 1 cm2

and a thickness of 1 mm with a roughness of Ra = 0.5 µm.

2.2. Laser Surface Texturing

Titanium samples were textured using FSLs from Amplitude Systems and galvo
scanners from Scanlab within the GIE Manutech-USD platform (Saint-Etienne, France).
The following laser sources were used: a Tangor HP and a Tangerine FSL (both from
Amplitude Laser Groupe, Pessac, France), operating at 1030 nm central wavelength and a
pulse duration of around 400 fs. Both lasers exhibited linear polarization states. All samples
were placed on XYZ translation stages from Aerotech in order to find the best focusing
plane. Scanlab GmbH’s intelliSCAN 14 scanners were finally associated with two different
f-theta lenses of 56 mm and 100 mm depending on the targeted texturing.

Different types of structures were realized using such lasers (Table 1):

• IR linear LIPSS: They were generated on titanium alloy surfaces using the Tangor and
Tangerine lasers and the 100-mm f-theta lens with a fluence of between 0.3–0.47 J/cm2.
The fluence peak is defined as: Fpeak = 2 E

π ω0
2 . Spacing between pulses and a hatch

distance of 4–5 µm were chosen with a 16-µm measured 1/e2 beam diameter. This
configuration makes a number of effective pulses per spot diameter of Neff_1D = 4
and a line separation distance of ∆ = 4–5 µm.

• IR radial LIPSS: A 56-mm f-theta lens was deployed, leading to a 11-µm measured 1/e2

beam diameter. In order to create an exotic LIPSS with ripples pointing to the outside
of the center of the beam, an s-wave plate was implemented in the beam path of the
laser to create a donut-shaped beam that converted the entering linear polarization
into an azimuthal polarization. This decision was based on previous experiments on
the behavior of cell adhesion with this type of structure. A laser pulse energy E of
0.7 µJ was applied to obtain the radial LIPSS. Impact positions were defined in order
to keep the isotropic effect provided by such nanostructures. As a consequence, a
13-µm spacing between pulses led to tangency with a slight overlay on the edges of
the impacts. An accumulation of 5 pulses per impact was chosen to compensate for
a lack of energy accumulation due to this low recovery rate. It is worth mentioning
that the work field of this f-theta lens is about 50 × 50 mm2 in area. In the current
study, we produced our radially aligned LIPSS by using azimuthal polarization in a
relatively small area of 10 × 10 mm2. No marked influence of mirror positions upon
LIPSS quality was wittenessed in such a case. The same nominated laser conditions
proceduced similar impacts at the extremity.
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Table 1. Laser parameters used to create the different titanium alloy textured surfaces.

Topographies Laser Pulse Condition Distance
between Pulses

Hatching
Distance F-Theta

Linear LIPSS Fpeak = 0.3–0.47 J/cm2 4–5 µm 4–5 µm 100 mm

Radial LIPSS E = 0.7 µJ/pulse
5 pulses/impact 13 µm 13 µm 56 mm

2.3. Surface Morphology

Knowing that the scale of the nanostructures created by the laser is near the resolution
limit of an optical microscope (~550 nm), scanning electron microscopy (SEM) was used to
visualize and characterize the different laser-induced patterns. A Tescan VEGA3 SB, Brno
Czech Republic electron microscope was used, operating at 20 kV and with a secondary
electron detector.

2.4. Surface Topography

Atomic force microscopy (AFM, JPK Instruments, Berlin, Germany) was used to
characterize the different nanostructures. Data topographies were analyzed with Mountains
Map® 8.2 software. Surface roughness parameters were computed on the treated surfaces,
and this study focused on the following:

• Areal arithmetic mean height Sa (nm), which expresses the difference in height of each
point compared to the arithmetical mean of the surface. This parameter is used to
evaluate surface roughness.

• Texture aspect ratio Str, which expresses the isotropy and anisotropy of the topog-
raphy. Str is a value ranging from 0 to 1. A value close to 0 indicates directionality
(anisotropy), whereas a value close to 1 indicates that the surface does not exhibit
preferred directions (isotropy).

• Polar spectrum, which shows the privileged texture directions.
• Average period and depth of the ripples.
• Ripple density per cm2.

The definitions of the surface parameters are stated in ISO 25178 standards [33].

2.5. Cell Culture

Prior to the cell culture, we applied the sterilization procedure of industrial standard
to the laser-irradiated samples. In summary, titanium samples were autoclaved at 134 ◦C
for 19 min. Human MSCs from PromoCell (hMSC-BM-c, C-12974) at passage 4 were
maintained in a T75-flask for 3 d in a growth medium (MSCGM, C-28009, PromoCell).
Cells were then seeded on titanium samples at 7000 cells/cm2 in 24-well plates with a
growth medium. At 24 h post seeding, the growth medium was replaced with an osteogenic
medium (MSCODM, C-28013, PromoCell). Thereafter, the osteogenic medium was renewed
every 4 d.

2.6. Fluorescent Cell Labeling at 24 h and 7 d Post Seeding

At 24 h post seeding, some samples of each type were fixed in 10% formalin for 30 min
at room temperature and then permeabilized with 0.1% Triton X-100 in phosphate-buffered
saline (PBS) for 3 min. Samples were incubated with rhodamine-conjugated phalloidin
diluted at 1:300 in PBS at 37 ◦C for 1.5 h for actin labeling (cytoskeleton). Then, focal
adhesion labeling was performed using a fluorescein isothiocyanate (FITC)-conjugated
vinculin antibody (Prod. No. F7053, Sigma-Aldrich, St. Louis, MO, USA) diluted at 1:50
in PBS at 4 ◦C overnight. Afterwards, nuclei labeling was performed with 1 µg/mL 40,
6-diamidino-2-phenylindole (DAPI) diluted at 1:200 in PBS at room temperature for 20 min.
Washes were performed using PBS between each step of the experiment.
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At 7 d post seeding, other samples of each type were fixed and permeabilized in 10%
formalin and 0.1% Triton X-100, respectively, as described above. Samples were incubated
with rhodamine-conjugated phalloidin diluted at 1:300 in PBS at 37 ◦C for 1.5 h for actin
labeling. Cells were then incubated with fibronectin (extracellular glycoprotein for cell
adhesion) antibody, diluted at 1:100 in PBS at 37 ◦C for 2 h. Then, the samples were
incubated with 488 fluoprobes diluted at 1:250 in PBS for 1.5 h at room temperature. Finally,
nuclei labeling was performed with DAPI, as explained above. Washes were performed
using PBS between each step.

2.7. Quantitative Real Time PCR (qRT-qPCR) at 14 d Post Seeding

For qRT-PCR, the cells were harvested on the laser-patterned and reference-polished
titanium surfaces with Tri-Reagent (Sigma-Aldrich). RNA amounts were assessed with
the Ribogreen kit (Invitrogen, Life Technologies, Eugene, OR, USA), and their quality
checked with the Experion-automated electrophoresis station (Bio Rad, Hercules, CA, USA).
Messenger RNA was reverse transcribed (iScript cDNA synthesis Kit, Biorad) according
to the manufacturer’s instructions, and then 300 ng of cDNA was amplified through qRT-
PCR using the SYBR Green I dye (Lightcycler faststart DNA masterSYBR green I, Roche,
Germany). Primer sequences for the osteogenic genes of interest are given in Table 2. The
expression of the housekeeping gene (GAPDH) did not vary significantly within or between
groups in either experimental setting (data not shown).

Table 2. PCR primer sequences of genes implicated in different osteogenic pathways.

Protein Forward Reverse Gene Bank ID

ALP tgtaaggacatcgcctacca gaagctcttccaggtgtcaa NM_000478.5
BSP gaagactctgaggctgagaa cctctgtgctgttggtactg NM_004967.3
COL1A1 tccggctcctgctcctctta gttgtcgcagacgcagatcc NM_000088
FN1 ggctggatgatggtagattg tgcctctcacacttccactc NM_212482.4
GAPDH catcaccatcttccaggagcga gtggtcatgagtccttccacga NM_001289745.1
OCN agcggtgcagagtccagcaa agccgatgtggtcagccaac NM_199173.5
OPN tgatggccgaggtgatagtg atcagaaggcgcgttcaggt NM_001251830.1
OSX ctggctgcggcaaggtgtat ccagctcatccgaacgagtg NM_001300837.1
RUNX2 ccttgaccataaccgtcttc aaggacttggtgcagagttc NM_001024630.3

Abbreviations: ALP: alkaline phosphatase; BSP: bone sialoprotein; COL1A1: collagen type 1 α1 chain; FN1:
fibronectin 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase (housekeeping gene); OCN: osteocalcin; OPN:
osteopontin; OSX: osterix; RUNX2: runt-related transcription factor 2.

2.8. Assessment of Mineralization at 21 d Post Seeding

At 21 d post seeding, the cells on the different surfaces were fixed with formalin for
30 min and then were washed with demineralized water. A 3 × 10−3 M solution of calcein
blue (M1255-10G, Sigma) was deposited on the cells and left for 5 min at room temperature.
The samples were then rinsed with demineralized water and dried.

2.9. Image Acquisition and Analysis

At 24 h, 7 d and 21 d, 8 fields of 0.7 mm2 were acquired for each surface using a
confocal laser microscope (Zeiss LSM 800 Airyscan, Oberkochen, Germany) equipped
with Zen software. DAPI labeling (at 24 h and 7 d) and calcein blue labeling (at 21 d)
were visualized with a 405-nm-wavelength laser. Vinculin (at 24 h) and fibronectin (at
7 d) labelings were visualized with a 488-nm laser. Actin labeling (at 24 h and 7 d) was
visualized with a 561-nm laser. All images were analyzed with imageJ software to obtain
cell density and contractility (cell area/vinculin area) at 24 h post seeding, fibronectin area
at 7 d, and relative mineralized area as well as the number of mineralized spots and average
mineralized area at 21 d.
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2.10. Statistics

The data were compared between each surface by performing a Wilcoxon–Mann–
Whitney U-test. Significance was set at p = 0.05. The comparison between the polished
surface and the two textured ones aimed at evaluating the effect of each texture compared
to a standard reference. The comparison between linear LIPSS and radial LIPSS was
performed to assess the effect of the laser beam polarization change.

3. Results
3.1. Directionality of LIPSS Was the Main Difference between the Two Designed Textures

The two surface structures manufactured in the present work were LIPSS, produced
by a radiation wavelength of λ 1. SEM images in Figure 1A showed that linear laser
polarization produced linear periodic LIPSS, whereas azimuthal polarization produced
LIPSS with a radial direction. The directions of the structures of LIPSS were perpendicular
to the polarization direction of the laser beam.

AFM measurements enabled a 3D-view reconstruction of the surface topography and
the calculation of different surface parameters with Mountains Map® software (Figure 1B).
The linear LIPSS texture has a surface roughness equivalent to the radial LIPSS texture,
with Sa of 71 nm and 77 nm, respectivelly. The average roughness was, however, not
sufficient to uniquely describe a surface in relation to cellular behavior. The depth of
ripples (151 nm vs. 130 nm) and density of ripples (22309/cm2 vs. 21381/cm2) were also
very similar between the two laser-textured structure types. However, large differences in
texture direction could be observed. The texture aspect ratio Str was close to 0 for the linear
LIPSS (0.083), indicating an anisotropic surface with directionality. This was confirmed
by the polar spectrum, which showed a privileged direction of 90◦. In contrast, the radial
LIPSS had a Str value close to 1 (0.682), underlining the isotropy of the surface, and the
polar spectrum did not indicate a privileged direction. All these data on surface parameters
indicated that the main difference between the linear LIPSS and radial LIPSS lay in the
directionality of the overall texture.

3.2. Radial LIPSS Increased Cell Contractility in the Early Stages

Immunostaining performed 24 h post seeding showed that cell density was similar
among the three surfaces, indicating that hMSCs have the same probability of attachment on
all three textures (Figure 2). Vinculin, a major protein present at focal adhesion complexes,
showed a different pattern between the three surfaces. The cells on polished and linear
LIPSS surfaces presented a higher number of focal adhesions (indicated by the white
arrows and the zoom squares in Figure 2) compared to the radial LIPSS surface. In addition,
the polished surface showed the most prominent focal adhesions. As we know that
vinculin contacts may undergo rapid turnover, we compared the measurements of mean
cell area/mean vinculin area ratio as an indirect evaluation of focal adhesion dynamic or
turnover. The ability of a cell to maintain its shape with small contacts relies on increased
cell tension or contractility. We found significantly higher cell contractility on the radial
LIPSS surface compared to the two other surfaces (+467% vs. polished; +391% vs. linear
LIPSS; p = 0.00078 for both).

3.3. Radial LIPSS Improved Fibronectin Matrix Production

At 7 d post seeding, fibronectin production was assessed by immunolabeling to
observe the advancement of extracellular matrix production. Fibronectin is a protein
secreted in the extracellular matrix that serves as an attachment of the cells to several
components, such as collagen fibers. Moreover, fibronectin is required for osteoblast
mineralization. Image analysis at 7 d showed that the radial LIPSS surface displayed a
higher amount of extracellular fibronectin proteins compared to polished (+16%, p = 0.045)
and linear LIPSS (+31%, p = 0.016) surfaces (Figure 3).
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Figure 1. (A) SEM images of the two surface textures with linear or radial LIPSS (magnification
3000×). (B) 3D image reconstruction of the nanometer-scale surface texture with linear or radial
LIPSS (data from atomic force microscopy images 10 µm × 10 µm) and surface analysis by Mountain
Map® software.



Nanomaterials 2022, 12, 1619 8 of 16

Nanomaterials 2022, 12, x FOR PEER REVIEW 8 of 18 
 

 

Immunostaining performed 24 h post seeding showed that cell density was similar 
among the three surfaces, indicating that hMSCs have the same probability of attachment 
on all three textures (Figure 2). Vinculin, a major protein present at focal adhesion 
complexes, showed a different pattern between the three surfaces. The cells on polished 
and linear LIPSS surfaces presented a higher number of focal adhesions (indicated by the 
white arrows and the zoom squares in Figure 2) compared to the radial LIPSS surface. In 
addition, the polished surface showed the most prominent focal adhesions. As we know 
that vinculin contacts may undergo rapid turnover, we compared the measurements of 
mean cell area/mean vinculin area ratio as an indirect evaluation of focal adhesion 
dynamic or turnover. The ability of a cell to maintain its shape with small contacts relies 
on increased cell tension or contractility. We found significantly higher cell contractility 
on the radial LIPSS surface compared to the two other surfaces (+467% vs. polished; 
+391% vs. linear LIPSS; p = 0.00078 for both).  
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FITC-conjugated vinculin antibody (green), overlaid fluorescent image of immunostained cellular Figure 2. DAPI nuclear staining (blue), rhodamine-conjugated phalloidin-labeled actin (red), FITC-

conjugated vinculin antibody (green), overlaid fluorescent image of immunostained cellular compo-
nent (merged) for the cells cultured on polished, linear LIPSS and radial LIPSS surfaces 24 h post
seeding. SEM images show other cells present on the three surfaces. White arrows indicate focal
adhesions recognized by prominent vinculin labeling. The squares show a zoom of some focal adhe-
sions for each surface. On the right side of the image are the results of cell density and contractility
for the three surfaces. The graphs show the p-values between each group, Mann–Whitney U test,
n = 8 fields/group.
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Figure 3. DAPI nuclear staining (blue), rhodamine-conjugated phalloidin labeled actin (red), fi-
bronectin antibody coupled with a 488 fluoroprobe (green) and overlaid fluorescent image of im-
munostained cellular component (merged) for the cells cultured on polished linear LIPSS and radial
LIPSS surfaces 7 d post seeding. On the bottom of the image is the result of the fibronectin area for
the three surfaces. The graph gives the p-values between each group, Mann–Whitney U test, n = 8
fields/group.
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3.4. Radial LIPSS Induced Overexpression of Osteogenic Related Genes

At 14 d post seeding, qRT-PCR analysis showed that the radial LIPSS surface induced
an increase in the osteoblastic differentiation genes OSX (+465% vs. polished, p = 0.009 and
+252% vs. linear LIPSS, p = 0.045) and BSP (+91% vs. polished, p = 0.047) (Figure 4). In
addition, matrix production genes were also increased on the radial LIPSS surface, such
as fibronectin (+23% vs. polished, p = 0.027), which is in line with the observations made
at 7 d, and COL1A1 (increased in trend compared to the polished surface). Furthermore,
mineralization genes such as ALP and OPN were increased on the radial LIPSS surface
compared to the polished surface (Figure 4). OCN, a major gene for mineralization pro-
cesses, was not different among the three surfaces, potentially related to the early timing of
qRT-PCR assessment (14 d) in relation to the expression of this gene. There was no increase
in osteogenic genes for the linear LIPSS surface compared to the polished surface.
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3.5. Radial LIPSS Increased the Mineralized Surfaces

At 21 d post seeding, mineralization was assessed by calcein blue labeling. Image
analysis revealed that hMSCs on the radial LIPSS surface had increased mineralization
activity compared to the other two surfaces (Figure 5). This was highlighted by a larger
mineralized area (+99% vs. polished, p = 0.016; +132% vs. linear LIPSS, p = 0.002) and a
higher number of mineralized spots (+83% vs. polished, p = 0.046; +128% vs. linear LIPSS,
p = 0.006) on the radial LIPSS surface. The average size of the mineralization spots was not
different between the three surfaces.
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4. Discussion

The topography of titanium is one of the key features for the acceleration of osteogenic
cell differentiation on medical implant devices. Stem cells interact with underlying surface
patterns, which lead to modulating the cell’s fate [34,35]. In this study, we focused our work
on two different nanostructures obtained by FSL texturing. The nanoroughness of the two
textures was similar, but one texture was anisotropic (linear LIPSS), whereas the other could
be considered as isotropic (radial LIPSS). We have demonstrated that isotropic texturing
improves osteoblastic differentiation compared to anisotropic and polished surfaces. This
was conducted by a cross-time investigation and by various operational techniques.



Nanomaterials 2022, 12, 1619 12 of 16

Our data demonstrate that a concerted assembly of fibronectin networks and a com-
mitment toward osteoblastogenesis occurs earlier on irregular nanopatterned surfaces
(isotropic) as compared to regular or untextured ones. As nicely demonstrated by Han et al.,
polished and anisotropic surfaces lead to more abundant focal adhesion with longer life-
times, suggestive of higher recruitment and activation of FAK and Src as a response to
increased integrin binding and clustering, and with enhanced osteogenesis [30]. We were
surprised to find that initial smaller contacts (vinculin positive) were formed on the most
osteoinductive surface. Our data showing significantly higher accumulations of fibronectin
on the texture presenting the smallest contacts are somewhat expected, given that smaller
vinculin contacts are not associated with cell adhesion defects or reduced contractility. On
the other hand, cells on isotropic surface (radial LIPSS) presented numerous actin fibers
as well as increased ratios of cell area/vinculin area and thus increased contractility. We
can speculate that maintaining efficient cell spreading on isotropic surfaces necessitates
highly dynamic focal contacts (increased turnover), leading to higher maturation in fib-
rillar contacts, potentially explaining increased fibronectin fibrillogenesis [36]. This may
explain sustained integrin signaling; enhanced mechanotransduction and osteogenesis, as
evidenced by gene expression levels of OSX, OPN and ALP; and the deposition of mineral
clusters. It is possible that on isotropic surfaces, cells adapt to increased cell contractility by
accumulation and force transmission into the actin cytoskeleton, leading to increases in
YAP/TAZ nuclear accumulation, which coactivates with RUNX2 (and TEAD) and leads to
improved osteogenic commitment [37].

In many studies, one of the most investigated aspects related to topography is surface
roughness (Ra (2D parameter) or Sa (3D parameter)), which quantifies the protrusions
or depressions on the surface [38]. Sa can be considered an extension of Ra (arithmetical
mean height of a line). It expresses, as an absolute value, the difference in height of each
point compared to the arithmetical mean of the surface. Concerning implant surfaces,
roughness can be divided into different levels: macroroughness (Ra scale around 10 µm),
microroughness (Ra scale around 1 µm) and nanoroughness (Ra scale < 200 nm). In general,
macroroughness is described to improve bone–implant interactions, but it is well known
that the optimal surface roughness should be about 1 µm to promote the osteogenic differ-
entiation of MSCs [39,40]. Unfortunately, increasing surface roughness can promote the
microbial colonization of the implant surface, as initial bacterial adhesion begins at sites that
offer shelter [41,42]. Several studies have shown that, in order to reduce bacterial adhesion,
a nanoscale surface with a roughness of <200 nm is the most effective, since the depth
and period of the nanostructures are smaller than most bacteria [12,42,43]. Moreover, a
nanoscale surface roughness can also influence stem cell fate. Although the optimal scale of
nanoroughness for osteogenic differentiation is challenging to define, it has generally been
shown that nanoroughness can also enhance osteogenic differentiation [44–46]. Previous
studies have reported osteogenic performance depending on nanofeature morphologies or
organization, such as anisotropic or isotropic nanotextures [47].

In our study, in order to link osteogenic differentiation to surface nanoroughness, we
used a classification based on the orientation of topography (isotropic or anisotropic). An
anisotropic surface is a surface with a specific orientation, such as a linear LIPSS. In con-
trast, an isotropic surface is a surface with no preferred orientation, such as a radial LIPSS.
Anisotropic surfaces have often been studied in terms of a tool to direct cell alignment,
which can influence stem cell fate. On substrate surfaces with groove scales < 500 nm, stud-
ies have reported that MSCs are committed to adipogenic and myogenic lineages [48,49].
On the other hand, osteogenic differentiation can be decreased by anisotropic textures,
since as microscale periodicity becomes lower, osteogenesis also lowers [50]. An isotropic
surface is not described as influencing cell alignments, but it is proved to control cell func-
tions. Isotropic topographies such as nanopillar or nano-island usually enhance osteogenic
differentiation, but there is a lack of clear data to establish which precise size or density
of nanopattern is more efficient [51–53]. Cell osteogenic responses to isotropic patterns
are often inconsistent because dimensions, organization or density of nanopatterns vary
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from one study to another. Only one study from Dalby et al. verified how the distribution
of topographical features influences cell differentiation [39]. They reported that surfaces
composed of nanopits with controlled disorder resulted in increased osteogenic markers
compared to highly ordered surfaces or randomly displaced nanopits.

Very strict surface chemistry analysis and cytotoxicity tests are to be made. Nonethe-
less, as these are considerably time consuming, they are to be pursued and performed on
surface textures that already exhibit a promising osteogenesis property after bioassessment.
If necessary, anodization of our laser-treated samples can be considered for shielding out
surface chemistry changes, if any, induced by laser irradiation. These topics deserve sepa-
rate and dedicated studies. They are, naturally, beyond the scope of this report, but they are
not to be left uninvestigated in future developments. We are well aware that the chemistry
of extreme surfaces is inevitably altered after laser irradiation in air, such as observations
made in other studies [24,54–56]. Even though our irradiation condition applied in this
study is even milder than the mildest one mentioned in the literature, there is no means of
knowing if we are not producing surface chemistry modification to some extent.

Finally, in terms of surface nanotexturing, the most common techniques on titanium,
such as acid etching, cluster deposition, sandblasting and anodizing, yield to the limited
control and adjustability of surface features [57–60]. Thus, it can be difficult to obtain
repeatable cell behavior due to batch-to-batch fluctuations. More accurate monitoring
of nanopatterns typically requires lithographic techniques, but these are challenging to
apply on materials such as titanium [51,61]. Otherwise, FSLs allow for the creation of
reproducible features. With a precise tuning of laser parameters, such surfaces can be used
to produce well-controlled cell effects, paving the way to unravel the complex interplay
between cells and topography. Ultrashort pulsed laser texturing has emerged as a powerful
and versatile surface engineering process. It is a highly valid and innovative approach and
is more eco-friendly due to its simplicity and its flexibility, with no consumables except
light itself. Such a solution can also be performed in air environments, which further
makes it a good candidate for implementation in an industrial context for functionalizing
orthopedic and/or dental implants. As mentioned before, the possible variation of surface
chemistry after laser irradiation is to be investigated, and/or surface annodization (such as
the method described in [62]) for shielding away any possible surface chemistry changes is
to be performed.

5. Conclusions

This study provides insights into how small changes in laser polarization can modulate
hMSC fate choice and extracellular matrix deposition. Nanoscale radial LIPSS generated
on titanium alloys by FSLs with azimuthal polarizations exhibited an isotropic distribu-
tion that seemed to promote osteoblastic differentiation. Cell contractility and density,
fibronectin production, gene overexpression and improved mineralization helped to ensure
the consistency of cell evolution analysis over a time period of several weeks. Such dynamic
hMSC sensitivity appears very important during implant osteogenesis, as these cells are
primarily recruited to the implantation site. As a perspective, texturing titanium surfaces
with such small features opens the possibility to couple-enhanced osseointegration with
potential antibacterial properties, which are known to be more sensitive at the nanoscale
than the microscale.
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